Ma 5051 - Real Variables and Functional Analysis Solutions for Problem Set \#5 due October 8, 2009

Let (X, \mathcal{M}, μ) be a measure space. Recall $\int_{A} f(x) d \mu=\int I_{A}(x) f(x) d \mu$ for $A \in \mathcal{M}$ and $f \in L^{+} \cup L^{1}$, where $I_{A}(x)$ is the indicator function of A.

1. Since $g_{n}(x) \pm f_{n}(x) \geq 0, g_{n}(x) \rightarrow g(x)$ a.e., and $f_{n}(x) \rightarrow f(x)$ a.e., by Fatou's Lemma

$$
\begin{aligned}
& \int(g(x)+f(x)) d x \leq \liminf _{n \rightarrow \infty} \int\left(g_{n}(x)+f_{n}(x)\right) d x \\
& \int(g(x)-f(x)) d x \leq \liminf _{n \rightarrow \infty} \int\left(g_{n}(x)-f_{n}(x)\right) d x
\end{aligned}
$$

Subtract the limit $\int g_{n}(x) d \mu \rightarrow \int g(x) d \mu$ from both inequalities and note that the second inequality is equivalent to $\lim _{\sup }^{n \rightarrow \infty} \boldsymbol{\int} f_{n}(x) d \mu \leq \int f(x) d \mu$. Then

$$
\int f(x) d \mu \leq \liminf _{n \rightarrow \infty} \int f_{n}(x) d \mu \leq \limsup _{n \rightarrow \infty} \int f_{n}(x) d \mu \leq \int f(x) d \mu
$$

Since the first and last integrals are the same and finite, $\int f_{n}(x) d \mu \rightarrow \int f(x) d \mu$.
2. (a) If $\int\left|f_{n}-f\right| d \mu \rightarrow 0$, then

$$
\begin{aligned}
\left|\int\right| f_{n}\left|d \mu-\int\right| f|d \mu| & =\left|\int\left(\left|f_{n}\right|-|f|\right) d \mu\right| \leq \int| | f_{n}|-|f|| d \mu \\
\leq \int\left|f_{n}-f\right| d \mu & \rightarrow 0
\end{aligned}
$$

(b) Let $g_{n}(x)=\left|f_{n}(x)\right|+|f(x)|$ and $g(x)=2|f(x)|$. Then $\left|f_{n}(x)-f(x)\right| \leq$ $g_{n}(x),\left|f_{n}(x)-f(x)\right| \rightarrow 0$ a.e., $g_{n}(x) \rightarrow g(x)$ a.e., and $\int g_{n} d \mu \rightarrow \int g d \mu$ since $\int\left|f_{n}\right| d \mu \rightarrow \int|f| d \mu$. Hence, by the previous problem, $\int\left|f_{n}-f\right| d \mu \rightarrow 0$.
3. It is sufficient to show that $x_{n} \rightarrow x$ implies $F\left(x_{n}\right) \rightarrow F(x)$ where

$$
F(x)=\int_{-\infty}^{x} f(y) d y=\int I_{(-\infty, x)}(y) f(y) d y
$$

Note that $I_{\left(0, x_{n}\right)}(y) f(y) \rightarrow I_{(0, x)}(y) f(y)$ for $y \neq x$ (that is, for a.e. $\left.y\right)$ and

$$
\left|I_{(-\infty, x)}(y) f(y)\right| \leq|f(y)|
$$

since $f \in L^{1}$ implies $\int|f(y)| d y<\infty$. Thus $F\left(x_{n}\right) \rightarrow F(x)$ by the dominated convergence theorem.
4. (Problems 28ac, page 60 in text)
(a) Evaluate $\lim _{n \rightarrow \infty} \int_{0}^{\infty}(1+(x / n))^{-n} \sin (x / n) d x$. Proofs I and II below are from student homeworks, in comparison with my more long-winded Proof III. There is also a shorter Proof IV.

In all cases, let $f_{n}(x)=(1+(x / n))^{-n} \sin (x / n)$ and $g_{n}(x)=(1+(x / n))^{-n}$. Then $\left|f_{n}(x)\right| \leq g_{n}(x), f_{n}(x) \rightarrow e^{-x} 0=0$ and $g_{n}(x) \rightarrow g(x)=e^{-x}$ for all $x>0$, but $g_{n}(x)$ is not uniformly bounded by e^{-x} since $g_{n}(x) \sim C_{n} / x^{n} \gg e^{-x}$ for fixed n as $x \rightarrow \infty$.

In Proofs I-III, the problem is to find dominating function(s) for $g_{n}(x)$. Proof IV uses a direct estimate of $\left|f_{n}(x)\right|$ and doesn't really use the dominated convergence theorem.

If we can show (i) $g_{n}(x) \leq g(x)$ where $\int_{0}^{\infty} g(x) d x<\infty$, then $\int_{0}^{\infty} f_{n} d x \rightarrow 0$ by dominated convergence. If (ii) $\int_{0}^{\infty} g_{n}(x) d x \rightarrow \int_{0}^{\infty} g(x) d x<\infty$ where $g_{n}(x) \rightarrow$ $g(x)=e^{-x}$, then we can use Problem 1 to show $\int_{0}^{\infty} f_{n}(x) d x \rightarrow \int_{0}^{\infty} 0 d x=0$.

Proof I: By the binomial theorem for $x>0, n \geq 4,(1+(x / n))^{n}=1+$ $n(x / n)+\binom{n}{2}(x / n)^{2}+\ldots \geq 1+((n-1) / 2 n) x^{2}$ or even $\geq 1+(n(n-1)(n-2)(n-$ $3) / 24)(x / n)^{4}$. Thus $(1+(x / n))^{n} \geq 1+(1 / 4) x^{2}$ or $\geq 1+(1 / 256) x^{4}$ for $n \geq 4$. Thus $\left|(1+(x / n))^{-n} \sin (x / n)\right| \leq 4 /\left(4+x^{2}\right)$ or $\leq 256 /\left(256+x^{4}\right)$ and we can use dominated convergence.

Proof II: We use the "moving dominated convergence" result of Problem 1 HW5. Let $f_{n}(x)$ and $g_{n}(x)$ be as above. Then $\left|f_{n}(x)\right| \leq g_{n}(x), g_{n}(x) \rightarrow g(x)=e^{-x}$, and $f_{n}(x) \rightarrow e^{-x}(0)=0$ for all x. If we can then show that $\lim _{n \rightarrow \infty} \int_{0}^{\infty} g_{n}(x) d x=$ $\int_{0}^{\infty} g(x) d x=\int_{0}^{\infty} e^{-x} d x=1$, then we can conclude that $\int_{0}^{\infty} f_{n}(x) d x \rightarrow 0$.

Now $\int_{0}^{\infty}(1+(x / n))^{-n} d x=n \int_{0}^{\infty}(1+x)^{-n} d x=n \int_{1}^{\infty} x^{-n} d x=n /(n-1)$ $\rightarrow 1$ as $n \rightarrow \infty$. Since $\left|f_{n}(x)\right| \leq g_{n}(x)$, we conclude $\int_{0}^{\infty} f_{n}(x) d x \rightarrow 0$.

Proof III: The following argument is longer in this case, but is easier in other cases. I claim that, for fixed $x>0,(1+(x / n))^{-n} \downarrow$ as $n \uparrow$. This would imply (for example) that $e^{-x} \leq(1+(x / n))^{-n} \leq(1+(x / 2))^{-2}$ for fixed $x>0$ and $n \geq 2$. The statement is equivalent to $K(y)=(1+x y)^{-1 / y} \uparrow$ as $y \uparrow$. Note

$$
\frac{d}{d y} \log K(y)=-\frac{d}{d y} \frac{\log (1+x y)}{y}=\frac{\log (1+x y)-y x /(1+x y)}{y^{2}}
$$

For $A>0, \log (1+A)=\int_{1}^{1+A}(1 / y) d y>A /(1+A)$. Thus, for $A=x y$, we conclude $(d / d y) \log K(y)>0$ for $x>0, y>0$. It follows that $(1+(x / n))^{-n} \leq(1+x / 2)^{-2}$ for $n \geq 2$ and $x>0$. Thus for $n \geq 2$

$$
\left|\frac{\sin (x / n)}{(1+(x / n))^{n}}\right| \leq \frac{1}{(1+x / 2)^{2}}
$$

which is integrable on $(0, \infty)$. Hence by dominated convergence

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{\sin (x / n)}{(1+(x / n))^{n}} d x=\int_{0}^{\infty} \lim _{n \rightarrow \infty} \frac{\sin (x / n)}{(1+(x / n))^{n}} d x=0
$$

Proof IV: More directly, if $n \geq 3$, the integral is bounded by

$$
\begin{aligned}
\int & \mid\left((1+(x / n))^{-n} \sin (x / n) \mid d x \leq \int_{0}^{\infty}\left((1+(x / n))^{-n}(x / n) d x\right.\right. \\
& =n \int_{0}^{\infty}(1+x)^{-n} x d x=n \int_{1}^{\infty} x^{-n}(x-1) d x \\
& =n \int_{1}^{\infty}\left(x^{-n+1}-x^{-n}\right) d x=n\left(\int_{1}^{\infty} x^{-n+1} d x-\int_{1}^{\infty} x^{-n} d x\right) \\
& =n\left(\frac{1}{n-2}-\frac{1}{n-1}\right)=\frac{n}{n-1)(n-2)} \rightarrow 0
\end{aligned}
$$

(c) This integral is $\int_{0}^{\infty} \frac{\sin (x / n)}{x / n} \frac{d x}{1+x^{2}} d x$ where, since $|\sin (x) / x| \leq 1$,

$$
\left|\frac{\sin (x / n)}{x / n} \frac{1}{1+x^{2}}\right| \leq \frac{1}{1+x^{2}}
$$

which is integrable on $(0, \infty)$. Thus by dominated convergence

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{\sin (x / n)}{x / n} \frac{d x}{1+x^{2}}=\int_{0}^{\infty} \lim _{n \rightarrow \infty} \frac{\sin (x / n)}{x / n} \frac{d x}{1+x^{2}}=\int_{0}^{\infty} \frac{d x}{1+x^{2}}=\frac{\pi}{2}
$$

5. (Problem 31ac page 60)
(a) For $a>0$,

$$
\int_{-\infty}^{\infty} e^{-x^{2}} \cos (a x) d x=\int_{-\infty}^{\infty} e^{-x^{2}} \sum_{n=0}^{\infty} \frac{(-1)^{n}(a x)^{2 n}}{(2 n)!} d x=\int_{-\infty}^{\infty} e^{-x^{2}} \sum_{n=0}^{\infty} f_{n}(x) d x
$$

where $f_{n}(x)=(-1)^{n}(a x)^{2 n} /(2 n!)$. The problem is to justify interchanging the integral and the infinite sum. Note

$$
\begin{gathered}
\int_{-\infty}^{\infty} e^{-x^{2}} \sum_{n=0}^{\infty}\left|f_{n}(x)\right| d x=\int_{-\infty}^{\infty} e^{-x^{2}} \sum_{n=0}^{\infty} \frac{(a x)^{2 n}}{(2 n)!} d x \\
=\int_{-\infty}^{\infty} e^{-x^{2}} \frac{\left(e^{a x}+e^{-a x}\right)}{2} d x<\infty
\end{gathered}
$$

Ma 5051- Real Variables and Functional Analysis- October 8, 2009 4
Thus, by a form of dominated convergence (see Theorem 2.25 in the text), we can interchange the sum and the integral and obtain

$$
\begin{aligned}
\sum_{n=0}^{\infty}(-1)^{n} \frac{a^{2 n}}{(2 n)!} \int_{-\infty}^{\infty} e^{-x^{2}} x^{2 n} d x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{a^{2 n}}{(2 n)!} \frac{(2 n)!\sqrt{\pi}}{4^{n} n!} \\
& =\sqrt{\pi} \sum_{n=0}^{\infty}(-1)^{n} \frac{1}{n!}\left(\frac{a^{2}}{4}\right)^{n}=\sqrt{\pi} e^{-a^{2} / 4}
\end{aligned}
$$

(c) For $a>1$, since the terms in the sum below are nonnegative, and by a form of the monotone convergence theorem (see Theorem 2.15 in the text)

$$
\begin{gathered}
\int_{0}^{\infty} x^{a-1} \frac{1}{e^{x}-1} d x=\int_{0}^{\infty} x^{a-1} \frac{e^{-x}}{1-e^{-x}} d x=\int_{0}^{\infty} x^{a-1} \sum_{n=1}^{\infty} e^{-n x} d x \\
\quad=\sum_{n=1}^{\infty} \int_{0}^{\infty} x^{a-1} e^{-n x} d x=\sum_{n=1}^{\infty} \frac{1}{n^{a}} \int_{0}^{\infty} x^{a-1} e^{-x} d x=\Gamma(a) \zeta(a)
\end{gathered}
$$

