
Ma5051 — Real Variables and Functional Analysis
Solutions for Problem Set #5 due October 8, 2009

Let (X,M, µ) be a measure space. Recall
∫

A
f(x)dµ =

∫
IA(x)f(x)dµ for A ∈ M

and f ∈ L+ ∪ L1, where IA(x) is the indicator function of A.

1. Since gn(x)± fn(x) ≥ 0, gn(x) → g(x) a.e., and fn(x) → f(x) a.e., by Fatou’s
Lemma ∫ (

g(x) + f(x)
)
dx ≤ lim inf

n→∞

∫ (
gn(x) + fn(x)

)
dx

∫ (
g(x)− f(x)

)
dx ≤ lim inf

n→∞

∫ (
gn(x)− fn(x)

)
dx

Subtract the limit
∫

gn(x)dµ → ∫
g(x)dµ from both inequalities and note that the

second inequality is equivalent to lim supn→∞
∫

fn(x)dµ ≤ ∫
f(x)dµ. Then

∫
f(x)dµ ≤ lim inf

n→∞

∫
fn(x)dµ ≤ lim sup

n→∞

∫
fn(x)dµ ≤

∫
f(x)dµ

Since the first and last integrals are the same and finite,
∫

fn(x)dµ → ∫
f(x)dµ.

2. (a) If
∫ |fn − f | dµ → 0, then
∣∣∣∣
∫
|fn|dµ−

∫
|f |dµ

∣∣∣∣ =
∣∣∣∣
∫

(|fn| − |f |)dµ

∣∣∣∣ ≤
∫ ∣∣∣|fn| − |f |

∣∣∣ dµ

≤
∫ ∣∣fn − f

∣∣ dµ → 0

(b) Let gn(x) = |fn(x)| + |f(x)| and g(x) = 2|f(x)|. Then |fn(x) − f(x)| ≤
gn(x), |fn(x) − f(x)| → 0 a.e., gn(x) → g(x) a.e., and

∫
gn dµ → ∫

g dµ since∫ |fn| dµ → ∫ |f | dµ. Hence, by the previous problem,
∫ |fn − f | dµ → 0.

3. It is sufficient to show that xn → x implies F (xn) → F (x) where

F (x) =
∫ x

−∞
f(y)dy =

∫
I(−∞,x)(y)f(y)dy

Note that I(0,xn)(y)f(y) → I(0,x)(y)f(y) for y 6= x (that is, for a.e. y) and

|I(−∞,x)(y)f(y)| ≤ |f(y)|

since f ∈ L1 implies
∫ |f(y)|dy < ∞. Thus F (xn) → F (x) by the dominated

convergence theorem.
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4. (Problems 28ac, page 60 in text)
(a) Evaluate limn→∞

∫∞
0

(
1 + (x/n)

)−n sin(x/n) dx. Proofs I and II below are
from student homeworks, in comparison with my more long-winded Proof III. There
is also a shorter Proof IV.

In all cases, let fn(x) =
(
1 + (x/n)

)−n sin(x/n) and gn(x) =
(
1 + (x/n)

)−n.
Then |fn(x)| ≤ gn(x), fn(x) → e−x0 = 0 and gn(x) → g(x) = e−x for all x > 0,
but gn(x) is not uniformly bounded by e−x since gn(x) ∼ Cn/xn À e−x for fixed n
as x →∞.

In Proofs I–III, the problem is to find dominating function(s) for gn(x). Proof IV
uses a direct estimate of |fn(x)| and doesn’t really use the dominated convergence
theorem.

If we can show (i) gn(x) ≤ g(x) where
∫∞
0

g(x) dx < ∞, then
∫∞
0

fn dx → 0
by dominated convergence. If (ii)

∫∞
0

gn(x) dx → ∫∞
0

g(x) dx < ∞ where gn(x) →
g(x) = e−x, then we can use Problem 1 to show

∫∞
0

fn(x) dx → ∫∞
0

0 dx = 0.
Proof I: By the binomial theorem for x > 0, n ≥ 4,

(
1 + (x/n)

)n = 1 +
n(x/n) +

(
n
2

)
(x/n)2 + . . . ≥ 1 + ((n− 1)/2n)x2 or even ≥ 1 + (n(n− 1)(n− 2)(n−

3)/24)(x/n)4. Thus
(
1 + (x/n)

)n ≥ 1 + (1/4)x2 or ≥ 1 + (1/256)x4 for n ≥ 4.
Thus |(1 + (x/n)

)−n sin(x/n)| ≤ 4/(4 + x2) or ≤ 256/(256 + x4) and we can use
dominated convergence.

Proof II: We use the “moving dominated convergence” result of Problem 1
HW5. Let fn(x) and gn(x) be as above. Then |fn(x)| ≤ gn(x), gn(x) → g(x) = e−x,
and fn(x) → e−x(0) = 0 for all x. If we can then show that limn→∞

∫∞
0

gn(x)dx =∫∞
0

g(x)dx =
∫∞
0

e−xdx = 1, then we can conclude that
∫∞
0

fn(x)dx → 0.
Now

∫∞
0

(
1 + (x/n)

)−n
dx = n

∫∞
0

(1 + x)−n dx = n
∫∞
1

x−n dx = n/(n− 1)
→ 1 as n →∞. Since |fn(x)| ≤ gn(x), we conclude

∫∞
0

fn(x)dx → 0.
Proof III: The following argument is longer in this case, but is easier in other

cases. I claim that, for fixed x > 0, (1 + (x/n))−n ↓ as n ↑. This would imply (for
example) that e−x ≤ (1+ (x/n))−n ≤ (1+ (x/2))−2 for fixed x > 0 and n ≥ 2. The
statement is equivalent to K(y) = (1 + xy)−1/y ↑ as y ↑. Note

d

dy
log K(y) = − d

dy

log(1 + xy)
y

=
log(1 + xy)− yx/(1 + xy)

y2

For A > 0, log(1 + A) =
∫ 1+A

1
(1/y)dy > A/(1 + A). Thus, for A = xy, we conclude

(d/dy) log K(y) > 0 for x > 0, y > 0. It follows that (1 + (x/n))−n ≤ (1 + x/2)−2

for n ≥ 2 and x > 0. Thus for n ≥ 2
∣∣∣∣∣

sin(x/n)(
1 + (x/n)

)n

∣∣∣∣∣ ≤
1

(1 + x/2)2
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which is integrable on (0,∞). Hence by dominated convergence

lim
n→∞

∫ ∞

0

sin(x/n)(
1 + (x/n)

)n dx =
∫ ∞

0

lim
n→∞

sin(x/n)(
1 + (x/n)

)n dx = 0

Proof IV: More directly, if n ≥ 3, the integral is bounded by
∫
|((1 + (x/n)

)−n sin(x/n)| dx ≤
∫ ∞

0

(
(1 + (x/n)

)−n(x/n) dx

= n

∫ ∞

0

(1 + x)−nx dx = n

∫ ∞

1

x−n(x− 1) dx

= n

∫ ∞

1

(
x−n+1 − x−n

)
dx = n

(∫ ∞

1

x−n+1 dx−
∫ ∞

1

x−n dx

)

= n

(
1

n− 2
− 1

n− 1

)
=

n

n− 1)(n− 2)
→ 0

(c) This integral is
∫∞
0

sin(x/n)
x/n

dx
1+x2 dx where, since | sin(x)/x| ≤ 1,

∣∣∣∣
sin(x/n)

x/n

1
1 + x2

∣∣∣∣ ≤
1

1 + x2

which is integrable on (0,∞). Thus by dominated convergence

lim
n→∞

∫ ∞

0

sin(x/n)
x/n

dx

1 + x2
=

∫ ∞

0

lim
n→∞

sin(x/n)
x/n

dx

1 + x2
=

∫ ∞

0

dx

1 + x2
=

π

2

5. (Problem 31ac page 60)
(a) For a > 0,

∫ ∞

−∞
e−x2

cos(ax)dx =
∫ ∞

−∞
e−x2

∞∑
n=0

(−1)n(ax)2n

(2n)!
dx =

∫ ∞

−∞
e−x2

∞∑
n=0

fn(x) dx

where fn(x) = (−1)n(ax)2n/(2n!). The problem is to justify interchanging the
integral and the infinite sum. Note

∫ ∞

−∞
e−x2

∞∑
n=0

|fn(x)| dx =
∫ ∞

−∞
e−x2

∞∑
n=0

(ax)2n

(2n)!
dx

=
∫ ∞

−∞
e−x2 (eax + e−ax)

2
dx < ∞
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Thus, by a form of dominated convergence (see Theorem 2.25 in the text), we can
interchange the sum and the integral and obtain

∞∑
n=0

(−1)n a2n

(2n)!

∫ ∞

−∞
e−x2

x2ndx =
∞∑

n=0

(−1)n a2n

(2n)!
(2n)!

√
π

4n n!

=
√

π

∞∑
n=0

(−1)n 1
n!

(
a2

4

)n

=
√

π e−a2/4

(c) For a > 1, since the terms in the sum below are nonnegative, and by a form
of the monotone convergence theorem (see Theorem 2.15 in the text)

∫ ∞

0

xa−1 1
ex − 1

dx =
∫ ∞

0

xa−1 e−x

1− e−x
dx =

∫ ∞

0

xa−1
∞∑

n=1

e−nxdx

=
∞∑

n=1

∫ ∞

0

xa−1e−nxdx =
∞∑

n=1

1
na

∫ ∞

0

xa−1e−xdx = Γ(a)ζ(a)


