Ma 5051 - Real Variables and Functional Analysis

 Problem Set \#6 - Due October 15, 2009Prof. Sawyer - Washington University
Let (X, \mathcal{M}, μ) be a measure space. Recall $\int_{A} f(x) d \mu=\int I_{A}(x) f(x) d \mu$ for $A \in \mathcal{M}$ and $f \in L^{+}$, where $I_{A}(x)$ is the indicator function of A.

1. (Problem 32, page 63) Assume $\mu(X)<\infty$. Let B be the set of all complexvalued measurable functions on X. Define

$$
\rho(f, g)=\int_{X} \frac{|f-g|}{1+|f-g|} d \mu
$$

for $f, g \in B$. Show that ρ is a metric on B if we identify functions that are equal a.e., and, if $f_{n}, f \in B$, that $\rho\left(f_{n}, f\right) \rightarrow 0$ if and only if $f_{n} \rightarrow f$ in measure.
2. (Problem 34, page 63) Suppose that $\left|f_{n}\right| \leq g \in L^{1}$ and $f_{n} \rightarrow f$ in measure. Show that
(a) $\int f_{n} d \mu \rightarrow \int f d \mu$ as $n \rightarrow \infty$
(b) $f_{n} \rightarrow f$ in L^{1}
3. (Problem 40, page 63) In Egoroff's theorem, the hypothesis " $\mu(X)<\infty$ " can be replaced by " $\left|f_{n}\right| \leq g$ for all n where $g \in L^{1}$ ".
4. (Problem 44, page 64) (Lusin's Theorem) Let $f:[a, b] \rightarrow C$ be a complex-valued Lebesgue-measurable function on a closed and bounded interval $[a, b]$. For all $\epsilon>0$, there exists a compact set $K \subseteq[a, b]$ such that $\mu\left(K^{c}\right)<\epsilon$ and the restriction of $f(x)$ to K is continuous. (Hint: Use Egoroff's theorem, Proposition 2.26, and Proposition 1.20.)
5. (Problem 46, page 68) Let $X=Y=[0,1]$. Let $(X, \mathcal{B}(X), \mu)$ be Lebesgue measure and $(Y, \mathcal{B}(Y), \beta)$ be counting measure. Let $D=\{(x, x): x \in[0,1]\}$ be the diagonal in $Z=X \times Y$. Show that $A=\iint_{Z} I_{D}(z)(\mu \times \beta)(d z), B=$ $\int_{Y}\left(\int_{X} I_{D}(x, y) d \mu\right) d \beta$, and $C=\int_{X}\left(\int_{Y} I_{D}(x, y) d \beta\right) d \mu$ all exist and that A, B, C have three distinct values. (Hint: $A=(\mu \times \beta)(D)$ exists since $I_{D}(x, y)$ is a nonnegative Borel function on Z. To compute A, go back to the definition of $\mu \times \beta$ on Borel sets in terms of outer measures.)

