Ma 5051 - Real Variables and Functional Analysis

Solutions for Problem Set \#6 due October 15, 2009
Prof. Sawyer - Washington University
Let (X, \mathcal{M}, μ) be a measure space. Recall $\int_{A} f(x) d \mu=\int I_{A}(x) f(x) d \mu$ for $A \in \mathcal{M}$ and $f \in L^{+}$, where $I_{A}(x)$ is the indicator function of A.

1. (a) Clearly $\rho(f, g)=\rho(g, f)$ and $\rho(f, g)=0$ if and only if $f=g$ a.e. Thus to prove that ρ is a metric it is sufficient to prove that $\rho(f, h) \leq \rho(f, g)+\rho(g, h)$ for all $f, g, h \in B$. Since the function $\phi(A)=A /(1+A)$ is increasing for $A>0$,

$$
\begin{aligned}
\rho(f, h) & =\int_{X} \frac{|f-h|}{1+|f-h|} d \mu=\int_{X} \frac{|f-g+g-h|}{1+|f-g+g-h|} d \mu \\
& \leq \int_{X} \frac{|f-g|+|g-h|}{1+|f-g|+|g-h|} d \mu \\
& =\int_{X} \frac{|f-g|}{1+|f-g|+|g-h|} d \mu+\int_{X} \frac{|g-h|}{1+|f-g|+|g-h|} d \mu \\
& \leq \int_{X} \frac{|f-g|}{1+|f-g|} d \mu+\int_{X} \frac{|g-h|}{1+|g-h|} d \mu=\rho(f, g)+\rho(g, h)
\end{aligned}
$$

Thus $\rho(f, g)$ satisfies the triangle inequality and is hence a metric.
(b) Assume $\rho\left(f_{n}, f\right) \rightarrow 0$. If $\left|f_{n}(x)-f(x)\right|>\epsilon$, then $\epsilon /(1+\epsilon) \leq A /(1+A)$ for $A=\left|f_{n}(x)-f(x)\right|$. Hence for all $\epsilon>0$

$$
\begin{aligned}
& \mu\left(\left\{x:\left|f_{n}(x)-f(x)\right|>\epsilon\right\}\right) \leq \frac{1+\epsilon}{\epsilon} \int_{\left\{\left|f_{n}-f\right|>\epsilon\right\}} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu \\
& \quad \leq \frac{1+\epsilon}{\epsilon} \int_{X} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu=\frac{1+\epsilon}{\epsilon} \rho\left(f_{n}, f\right) \rightarrow 0
\end{aligned}
$$

(c) Assume $\mu\left(\left\{\left|f_{n}-f\right|>\epsilon\right\}\right) \rightarrow 0$ for all $\epsilon>0$. Then

$$
\begin{aligned}
\int_{X} & \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu \\
& =\int_{X \cap\left\{\left|f_{n}-f\right|>\epsilon\right\}} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu+\int_{X \cap\left\{\left|f_{n}-f\right| \leq \epsilon\right\}} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu \\
& \leq \mu\left(\left\{\left|f_{n}-f\right|>\epsilon\right\}\right)+\frac{\epsilon}{1+\epsilon} \mu(X)
\end{aligned}
$$

Thus $\lim \sup _{n \rightarrow \infty} \rho\left(f_{n}, f\right) \leq \epsilon \mu(X)$ for all $\epsilon>0$ and $\rho\left(f_{n}, f\right) \rightarrow 0$.
2. Since $\left|\int f_{n} d \mu-\int f d \mu\right|=\left|\int\left(f_{n}-f\right) d \mu\right| \leq \int\left|f_{n}-f\right| d \mu$, part (a) follows from part (b). Thus it is sufficient to prove (b).

Assume $\limsup \operatorname{sum}_{n \rightarrow \infty} \int\left|f_{n}-f\right| d \mu=A \geq 0$. If $A=0$, then $\int\left|f_{n}-f\right| d \mu \rightarrow 0$. If $A>0$, there exists a sequence $n_{k} \uparrow \infty$ such that $\lim _{k \rightarrow \infty} \int\left|f_{n_{k}}-f\right| d \mu=A>0$.

Since $\left\{f_{n_{k}}\right\}$ is a subsequence of $\left\{f_{n}\right\}, \mu\left\{\left|f_{n_{k}}-f\right|>\epsilon\right\} \rightarrow 0$ for all $\epsilon>0$. Hence there exists a sequence $k_{j} \uparrow \infty$ such that $\lim _{j \rightarrow \infty} f_{n_{k_{j}}}(x)=f(x)$ a.e. Since $\left|f_{n_{k_{j}}}(x)\right| \leq g(x)$, we conclude $|f(x)| \leq g(x)$ and $\left|f_{n_{k_{j}}}(x)-f(x)\right| \leq 2 g(x)$. Then, by dominated convergence, $\lim _{j \rightarrow \infty} \int\left|f_{n_{k_{j}}}-f\right| d \mu=0$. Since $\left\{f_{n_{k_{j}}}\right\}$ is a subsequence of $\left\{f_{n_{k}}\right\}$ and $\lim _{k \rightarrow \infty} \int\left|f_{n_{k}}-f\right| d \mu=A$, this implies $A=0$. Hence $\int\left|f_{n}-f\right| d \mu \rightarrow$ 0 .
3. Since $f_{n}(x) \rightarrow f(x)$ a.e., then $|f(x)| \leq g(x)$ and $\sup _{n \geq 1}\left|f_{n}(x)-f(x)\right| \leq 2 g(x)$. As in the proof of Egoroff's theorem, let $A_{n}(\epsilon)=\left\{\sup _{m \geq n}\left|f_{m}-f\right|>\epsilon\right\}$. Then $A_{n}(\epsilon) \downarrow \phi$ for fixed $\epsilon>0$ and

$$
\mu\left(A_{1}(\epsilon)\right) \leq \mu\{2 g>\epsilon\} \leq \frac{2}{\epsilon} \int g(x) d \mu<\infty
$$

If $\mu\left(A_{1}(\epsilon)\right)<\infty, A_{n}(\epsilon) \downarrow \phi$ implies $\mu\left(A_{n}(\epsilon)\right) \downarrow 0$ for each $\epsilon>0$. Thus, as in the proof of Egoroff's theorem in the text, can choose $n_{k} \uparrow \infty$ such that $\mu\left(A_{n_{k}}(1 / k)\right)<$ $\epsilon / 2^{k}$. Then $A=\bigcup_{k=1}^{\infty} A_{n_{k}}(1 / k)$ implies $\mu(A)<\epsilon$ and $f_{n}(x) \rightarrow f(x)$ uniformly on A^{c}.
4. By Proposition 2.26, there exist continuous functions $\phi_{n}(x)$ on $[a, b]$ such that $\int\left|f(x)-\phi_{n}(x)\right| d \mu<1 / 2^{n}$. Then

$$
\int_{a}^{b} \sum_{n=1}^{\infty}\left|f(x)-\phi_{n}(x)\right| d x=\sum_{n=1}^{\infty} \int_{a}^{b}\left|f(x)-\phi_{n}(x)\right| d x<1
$$

Since integrable functions are finite a.e., this implies $\phi_{n}(x) \rightarrow f(x)$ a.e. Hence by Egoroff's theorem, there exists a measurable set E with $m\left(E^{c}\right)<\epsilon / 2$ such that $\phi_{n}(x) \rightarrow f(x)$ uniformly on E. By Proposition 1.20 , we can choose a compact set $K \subseteq E$ such that $m(E-K)<\epsilon / 2$. Since $K^{c}=(E-K) \cup E^{c}$, we conclude $m\left(K^{c}\right)<\epsilon$ and $\phi_{n}(x) \rightarrow f(x)$ uniformly on K.
5. Here μ is Lebesgue measure and β is counting measure on $[0,1]$. Since, for fixed $y, I_{D}(x, y)=0$ except for $x=y, \int_{X} I_{D}(x, y) d \mu(x)=\mu(\{y\})=0$ for all y, and $B=\int_{Y}\left(\int_{X} I_{D}(x, y) d \mu(x)\right) d \beta(y)=0$. Similarly, for fixed $x, \int_{Y} I_{D}(x, y) d \beta(y)=$ $\beta(\{x\})=1$ and $C=\int_{X}\left(\int_{Y} I_{D}(x, y) d \beta\right) d \mu=1$.

Finally, $\int I_{D}(z) d(\mu \times \beta)(z)=(\mu \times \beta)(D)$ where, by definition,
$(\mu \times \beta)(D)=\inf \left\{\sum_{k=1}^{\infty} \mu\left(A_{k}\right) \beta\left(B_{k}\right): D \subseteq \bigcup_{k=1}^{\infty}\left(A_{k} \times B_{k}\right), A_{k} \in \mathcal{B}(R), B_{k} \subseteq[0,1]\right\}$
(Remark: The σ-algebra \mathcal{M}_{2} on which counting measure β is defined is ambiguous. As defined on page 25 in the text, \mathcal{M}_{2} is the set of all countable or co-countable (complements of countable) sets in $[0,1]$. If it helps your proof, you can assume $B_{k} \in \mathcal{M}_{2}$ above.)

Let $D \subseteq \bigcup_{k=1}^{\infty}\left(A_{k} \times B_{k}\right)$ be one of the coverings above. If we can show that this implies that $\mu\left(A_{k}\right)>0$ and $\beta\left(B_{k}\right)=\infty$ for at least one value of k, then $(\mu \times \beta)(D)=\infty$ and $A=\iint_{Z} I_{D}(z)(\mu \times \beta)(d z)=\infty$.

For each $x \in[0,1],(x, x) \in A_{k} \times B_{k}$ for at least one value of k. Let K_{1} be the union of the A_{k} with $\mu\left(A_{k}\right)=0$. Since the union is countable, $\mu\left(K_{1}\right)=0$. Let K_{2} be the union of the B_{k} with $\beta\left(B_{k}\right)<\infty$; i.e, such that B_{k} is finite. Then K_{2} is countable and $\mu\left(K_{2}\right)=0$. Since $\mu\left([0,1]-\left(K_{1} \cup K_{2}\right)\right)=1-\mu\left(K_{1} \cup K_{2}\right)=1$, there exists at least one value $x \notin K_{1} \cup K_{2}$.

For this x, assume $(x, x) \in A_{k} \times B_{k}$, so that $x \in A_{k}$ and $x \in B_{k}$. Since $x \notin K_{1}$ (that is, x is not in the union of the A_{k} with $\mu\left(A_{k}\right)=0$), $\mu\left(A_{k}\right)>0$. Since $x \notin K_{2}$ (that is, x is not in the union of the B_{k} with $\left.\beta\left(B_{k}\right)<\infty\right), \beta\left(B_{k}\right)=\infty$. Thus $\mu\left(A_{k}\right) \beta\left(B_{k}\right)=\infty$, which completes the proof of $(\mu \times \beta)(D)=\infty$ and $A=$ $\iint_{Z} I_{D}(z)(\mu \times \beta)(d z)=\infty$. In particular, the values A, B, C are $\infty, 0,1$.

