
Ma5051 — Real Variables and Functional Analysis
Solutions for Problem Set #6 due October 15, 2009

Prof. Sawyer — Washington University

Let (X,M, µ) be a measure space. Recall
∫

A
f(x)dµ =

∫
IA(x)f(x)dµ for A ∈ M

and f ∈ L+, where IA(x) is the indicator function of A.

1. (a) Clearly ρ(f, g) = ρ(g, f) and ρ(f, g) = 0 if and only if f = g a.e. Thus to
prove that ρ is a metric it is sufficient to prove that ρ(f, h) ≤ ρ(f, g) + ρ(g, h) for
all f, g, h ∈ B. Since the function φ(A) = A/(1 + A) is increasing for A > 0,

ρ(f, h) =
∫

X

|f − h|
1 + |f − h| dµ =

∫

X

|f − g + g − h|
1 + |f − g + g − h| dµ

≤
∫

X

|f − g|+ |g − h|
1 + |f − g|+ |g − h| dµ

=
∫

X

|f − g|
1 + |f − g|+ |g − h| dµ +

∫

X

|g − h|
1 + |f − g|+ |g − h| dµ

≤
∫

X

|f − g|
1 + |f − g| dµ +

∫

X

|g − h|
1 + |g − h| dµ = ρ(f, g) + ρ(g, h)

Thus ρ(f, g) satisfies the triangle inequality and is hence a metric.
(b) Assume ρ(fn, f) → 0. If |fn(x)− f(x)| > ε, then ε/(1 + ε) ≤ A/(1 + A) for

A = |fn(x)− f(x)|. Hence for all ε > 0

µ
({x : |fn(x)− f(x)| > ε }) ≤ 1 + ε

ε

∫

{ |fn−f |>ε }

|fn − f |
1 + |fn − f |dµ

≤ 1 + ε

ε

∫

X

|fn − f |
1 + |fn − f |dµ =

1 + ε

ε
ρ(fn, f) → 0

(c) Assume µ
({ |fn − f | > ε }) → 0 for all ε > 0. Then

∫

X

|fn − f |
1 + |fn − f | dµ

=
∫

X∩{ |fn−f |>ε }

|fn − f |
1 + |fn − f | dµ +

∫

X∩{ |fn−f |≤ε }

|fn − f |
1 + |fn − f | dµ

≤ µ
({ |fn − f | > ε }) +

ε

1 + ε
µ(X)

Thus lim supn→∞ ρ(fn, f) ≤ εµ(X) for all ε > 0 and ρ(fn, f) → 0.
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2. Since
∣∣∫ fn dµ− ∫

f dµ
∣∣ =

∣∣∫ (fn − f) dµ
∣∣ ≤ ∫ |fn − f |dµ, part (a) follows from

part (b). Thus it is sufficient to prove (b).
Assume lim supn→∞

∫ |fn − f | dµ = A ≥ 0. If A = 0, then
∫ |fn − f | dµ → 0.

If A > 0, there exists a sequence nk ↑ ∞ such that limk→∞
∫ |fnk

− f | dµ = A > 0.
Since { fnk

} is a subsequence of { fn }, µ{ |fnk
− f | > ε } → 0 for all ε > 0.

Hence there exists a sequence kj ↑ ∞ such that limj→∞ fnkj
(x) = f(x) a.e. Since

|fnkj
(x)| ≤ g(x), we conclude |f(x)| ≤ g(x) and |fnkj

(x)− f(x)| ≤ 2g(x). Then, by
dominated convergence, limj→∞

∫ |fnkj
− f | dµ = 0. Since { fnkj

} is a subsequence
of { fnk

} and limk→∞
∫ |fnk

−f | dµ = A, this implies A = 0. Hence
∫ |fn−f |dµ →

0.

3. Since fn(x) → f(x) a.e., then |f(x)| ≤ g(x) and supn≥1 |fn(x)− f(x)| ≤ 2g(x).
As in the proof of Egoroff’s theorem, let An(ε) = { supm≥n |fm − f | > ε }. Then
An(ε) ↓ φ for fixed ε > 0 and

µ
(
A1(ε)

) ≤ µ{ 2g > ε } ≤ 2
ε

∫
g(x) dµ < ∞

If µ
(
A1(ε)

)
< ∞, An(ε) ↓ φ implies µ

(
An(ε)

) ↓ 0 for each ε > 0. Thus, as in the
proof of Egoroff’s theorem in the text, can choose nk ↑ ∞ such that µ

(
Ank

(1/k)
)

<
ε/2k. Then A =

⋃∞
k=1 Ank

(1/k) implies µ(A) < ε and fn(x) → f(x) uniformly
on Ac.

4. By Proposition 2.26, there exist continuous functions φn(x) on [a, b] such that∫ |f(x)− φn(x)| dµ < 1/2n. Then
∫ b

a

∞∑
n=1

|f(x)− φn(x)| dx =
∞∑

n=1

∫ b

a

|f(x)− φn(x)| dx < 1

Since integrable functions are finite a.e., this implies φn(x) → f(x) a.e. Hence by
Egoroff’s theorem, there exists a measurable set E with m(Ec) < ε/2 such that
φn(x) → f(x) uniformly on E. By Proposition 1.20, we can choose a compact
set K ⊆ E such that m(E − K) < ε/2. Since Kc = (E − K) ∪ Ec, we conclude
m(Kc) < ε and φn(x) → f(x) uniformly on K.

5. Here µ is Lebesgue measure and β is counting measure on [0, 1]. Since, for
fixed y, ID(x, y) = 0 except for x = y,

∫
X

ID(x, y)dµ(x) = µ({ y }) = 0 for all y, and
B =

∫
Y

(∫
X

ID(x, y)dµ(x)
)
dβ(y) = 0. Similarly, for fixed x,

∫
Y

ID(x, y)dβ(y) =
β({x }) = 1 and C =

∫
X

(∫
Y

ID(x, y)dβ
)
dµ = 1.

Finally,
∫

ID(z)d(µ× β)(z) = (µ× β)(D) where, by definition,

(µ× β)(D) = inf
{ ∞∑

k=1

µ(Ak)β(Bk) : D ⊆
∞⋃

k=1

(Ak ×Bk), Ak ∈ B(R), Bk ⊆ [0, 1]
}
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(Remark: The σ-algebra M2 on which counting measure β is defined is ambiguous.
As defined on page 25 in the text, M2 is the set of all countable or co-countable
(complements of countable) sets in [0, 1]. If it helps your proof, you can assume
Bk ∈M2 above.)

Let D ⊆ ⋃∞
k=1(Ak × Bk) be one of the coverings above. If we can show that

this implies that µ(Ak) > 0 and β(Bk) = ∞ for at least one value of k, then
(µ× β)(D) = ∞ and A =

∫∫
Z

ID(z)(µ× β)(dz) = ∞.
For each x ∈ [0, 1], (x, x) ∈ Ak ×Bk for at least one value of k. Let K1 be the

union of the Ak with µ(Ak) = 0. Since the union is countable, µ(K1) = 0. Let K2

be the union of the Bk with β(Bk) < ∞; i.e, such that Bk is finite. Then K2 is
countable and µ(K2) = 0. Since µ([0, 1]− (K1 ∪K2)) = 1− µ(K1 ∪K2) = 1, there
exists at least one value x /∈ K1 ∪K2.

For this x, assume (x, x) ∈ Ak × Bk, so that x ∈ Ak and x ∈ Bk. Since
x /∈ K1 (that is, x is not in the union of the Ak with µ(Ak) = 0), µ(Ak) > 0. Since
x /∈ K2 (that is, x is not in the union of the Bk with β(Bk) < ∞), β(Bk) = ∞.
Thus µ(Ak)β(Bk) = ∞, which completes the proof of (µ × β)(D) = ∞ and A =∫∫

Z
ID(z)(µ× β)(dz) = ∞. In particular, the values A, B,C are ∞, 0, 1.


