Ma 5051 — Real Variables and Functional Analysis Solutions for Problem Set #6 due October 15, 2009

Prof. Sawyer — Washington University

Let (X, \mathcal{M}, μ) be a measure space. Recall $\int_A f(x)d\mu = \int I_A(x)f(x)d\mu$ for $A \in \mathcal{M}$ and $f \in L^+$, where $I_A(x)$ is the indicator function of A.

1. (a) Clearly $\rho(f,g) = \rho(g,f)$ and $\rho(f,g) = 0$ if and only if f = g a.e. Thus to prove that ρ is a metric it is sufficient to prove that $\rho(f,h) \leq \rho(f,g) + \rho(g,h)$ for all $f, g, h \in B$. Since the function $\phi(A) = A/(1+A)$ is increasing for A > 0,

$$\begin{split} \rho(f,h) \ &= \ \int_X \frac{|f-h|}{1+|f-h|} \, d\mu \ &= \ \int_X \frac{|f-g+g-h|}{1+|f-g+g-h|} \, d\mu \\ &\leq \ \int_X \frac{|f-g|+|g-h|}{1+|f-g|+|g-h|} \, d\mu \\ &= \ \int_X \frac{|f-g|}{1+|f-g|+|g-h|} \, d\mu \ &+ \ \int_X \frac{|g-h|}{1+|f-g|+|g-h|} \, d\mu \\ &\leq \ \int_X \frac{|f-g|}{1+|f-g|} \, d\mu \ &+ \ \int_X \frac{|g-h|}{1+|g-h|} \, d\mu \ &= \ \rho(f,g) + \rho(g,h) \end{split}$$

Thus $\rho(f, g)$ satisfies the triangle inequality and is hence a metric.

(b) Assume $\rho(f_n, f) \to 0$. If $|f_n(x) - f(x)| > \epsilon$, then $\epsilon/(1+\epsilon) \le A/(1+A)$ for $A = |f_n(x) - f(x)|$. Hence for all $\epsilon > 0$

$$\mu\left(\left\{x:|f_n(x)-f(x)|>\epsilon\right\}\right) \leq \frac{1+\epsilon}{\epsilon} \int_{\left\{|f_n-f|>\epsilon\right\}} \frac{|f_n-f|}{1+|f_n-f|} d\mu$$
$$\leq \frac{1+\epsilon}{\epsilon} \int_X \frac{|f_n-f|}{1+|f_n-f|} d\mu = \frac{1+\epsilon}{\epsilon} \rho(f_n,f) \to 0$$

(c) Assume $\mu(\{|f_n - f| > \epsilon\}) \to 0$ for all $\epsilon > 0$. Then

$$\int_{X} \frac{|f_n - f|}{1 + |f_n - f|} d\mu$$

= $\int_{X \cap \{|f_n - f| > \epsilon\}} \frac{|f_n - f|}{1 + |f_n - f|} d\mu + \int_{X \cap \{|f_n - f| \le \epsilon\}} \frac{|f_n - f|}{1 + |f_n - f|} d\mu$
 $\leq \mu (\{|f_n - f| > \epsilon\}) + \frac{\epsilon}{1 + \epsilon} \mu(X)$

Thus $\limsup_{n\to\infty} \rho(f_n, f) \leq \epsilon \mu(X)$ for all $\epsilon > 0$ and $\rho(f_n, f) \to 0$.

2. Since $\left|\int f_n d\mu - \int f d\mu\right| = \left|\int (f_n - f) d\mu\right| \le \int |f_n - f| d\mu$, part (a) follows from part (b). Thus it is sufficient to prove (b).

Assume $\limsup_{n\to\infty} \int |f_n - f| d\mu = A \ge 0$. If A = 0, then $\int |f_n - f| d\mu \to 0$. If A > 0, there exists a sequence $n_k \uparrow \infty$ such that $\lim_{k\to\infty} \int |f_{n_k} - f| d\mu = A > 0$.

Since $\{f_{n_k}\}$ is a subsequence of $\{f_n\}$, $\mu\{|f_{n_k} - f| > \epsilon\} \to 0$ for all $\epsilon > 0$. Hence there exists a sequence $k_j \uparrow \infty$ such that $\lim_{j\to\infty} f_{n_{k_j}}(x) = f(x)$ a.e. Since $|f_{n_{k_j}}(x)| \leq g(x)$, we conclude $|f(x)| \leq g(x)$ and $|f_{n_{k_j}}(x) - f(x)| \leq 2g(x)$. Then, by dominated convergence, $\lim_{j\to\infty} \int |f_{n_{k_j}} - f| d\mu = 0$. Since $\{f_{n_{k_j}}\}$ is a subsequence of $\{f_{n_k}\}$ and $\lim_{k\to\infty} \int |f_{n_k} - f| d\mu = A$, this implies A = 0. Hence $\int |f_n - f| d\mu \to 0$.

3. Since $f_n(x) \to f(x)$ a.e., then $|f(x)| \leq g(x)$ and $\sup_{n\geq 1} |f_n(x) - f(x)| \leq 2g(x)$. As in the proof of Egoroff's theorem, let $A_n(\epsilon) = \{\sup_{m\geq n} |f_m - f| > \epsilon\}$. Then $A_n(\epsilon) \downarrow \phi$ for fixed $\epsilon > 0$ and

$$\mu(A_1(\epsilon)) \leq \mu\{2g > \epsilon\} \leq \frac{2}{\epsilon} \int g(x) \, d\mu < \infty$$

If $\mu(A_1(\epsilon)) < \infty$, $A_n(\epsilon) \downarrow \phi$ implies $\mu(A_n(\epsilon)) \downarrow 0$ for each $\epsilon > 0$. Thus, as in the proof of Egoroff's theorem in the text, can choose $n_k \uparrow \infty$ such that $\mu(A_{n_k}(1/k)) < \epsilon/2^k$. Then $A = \bigcup_{k=1}^{\infty} A_{n_k}(1/k)$ implies $\mu(A) < \epsilon$ and $f_n(x) \to f(x)$ uniformly on A^c .

4. By Proposition 2.26, there exist continuous functions $\phi_n(x)$ on [a, b] such that $\int |f(x) - \phi_n(x)| d\mu < 1/2^n$. Then

$$\int_{a}^{b} \sum_{n=1}^{\infty} |f(x) - \phi_{n}(x)| \, dx = \sum_{n=1}^{\infty} \int_{a}^{b} |f(x) - \phi_{n}(x)| \, dx < 1$$

Since integrable functions are finite a.e., this implies $\phi_n(x) \to f(x)$ a.e. Hence by Egoroff's theorem, there exists a measurable set E with $m(E^c) < \epsilon/2$ such that $\phi_n(x) \to f(x)$ uniformly on E. By Proposition 1.20, we can choose a compact set $K \subseteq E$ such that $m(E - K) < \epsilon/2$. Since $K^c = (E - K) \cup E^c$, we conclude $m(K^c) < \epsilon$ and $\phi_n(x) \to f(x)$ uniformly on K.

5. Here μ is Lebesgue measure and β is counting measure on [0,1]. Since, for fixed y, $I_D(x,y) = 0$ except for x = y, $\int_X I_D(x,y)d\mu(x) = \mu(\{y\}) = 0$ for all y, and $B = \int_Y \left(\int_X I_D(x,y)d\mu(x)\right) d\beta(y) = 0$. Similarly, for fixed x, $\int_Y I_D(x,y)d\beta(y) = \beta(\{x\}) = 1$ and $C = \int_X \left(\int_Y I_D(x,y)d\beta\right) d\mu = 1$.

Finally, $\int I_D(z)d(\mu \times \beta)(z) = (\mu \times \beta)(D)$ where, by definition,

$$(\mu \times \beta)(D) = \inf \left\{ \sum_{k=1}^{\infty} \mu(A_k) \beta(B_k) : D \subseteq \bigcup_{k=1}^{\infty} (A_k \times B_k), A_k \in \mathcal{B}(R), B_k \subseteq [0,1] \right\}$$

(Remark: The σ -algebra \mathcal{M}_2 on which counting measure β is defined is ambiguous. As defined on page 25 in the text, \mathcal{M}_2 is the set of all countable or co-countable (complements of countable) sets in [0, 1]. If it helps your proof, you can assume $B_k \in \mathcal{M}_2$ above.)

Let $D \subseteq \bigcup_{k=1}^{\infty} (A_k \times B_k)$ be one of the coverings above. If we can show that this implies that $\mu(A_k) > 0$ and $\beta(B_k) = \infty$ for at least one value of k, then $(\mu \times \beta)(D) = \infty$ and $A = \iint_Z I_D(z)(\mu \times \beta)(dz) = \infty$.

For each $x \in [0, 1]$, $(x, x) \in A_k \times B_k$ for at least one value of k. Let K_1 be the union of the A_k with $\mu(A_k) = 0$. Since the union is countable, $\mu(K_1) = 0$. Let K_2 be the union of the B_k with $\beta(B_k) < \infty$; i.e., such that B_k is finite. Then K_2 is countable and $\mu(K_2) = 0$. Since $\mu([0, 1] - (K_1 \cup K_2)) = 1 - \mu(K_1 \cup K_2) = 1$, there exists at least one value $x \notin K_1 \cup K_2$.

For this x, assume $(x, x) \in A_k \times B_k$, so that $x \in A_k$ and $x \in B_k$. Since $x \notin K_1$ (that is, x is not in the union of the A_k with $\mu(A_k) = 0$), $\mu(A_k) > 0$. Since $x \notin K_2$ (that is, x is not in the union of the B_k with $\beta(B_k) < \infty$), $\beta(B_k) = \infty$. Thus $\mu(A_k)\beta(B_k) = \infty$, which completes the proof of $(\mu \times \beta)(D) = \infty$ and $A = \iint_Z I_D(z)(\mu \times \beta)(dz) = \infty$. In particular, the values A, B, C are $\infty, 0, 1$.