Ma 5051 - Real Variables and Functional Analysis

Solutions for Problem Set \#8 due November 12, 2009

Prof. Sawyer - Washington University
(With Matt Wallace)

1. Let $E \in \mathcal{M}_{1} \otimes \mathcal{M}_{2}$, where $\mathcal{M}_{1} \otimes \mathcal{M}_{2}$ is the product σ-algebra. By assumption, $\nu_{1}(A)=\int_{A} g_{1}(x) \mu_{1}(d x)$ for $A \in \mathcal{M}_{1}$ and $\nu_{2}(B)=\int_{B} g_{2}(y) \mu_{2}(d y)$ for $B \in \mathcal{M}_{1}$ where $g_{1}(x)=\left(d \nu_{1} / d \mu_{1}\right)(x) \geq 0$ a.e. $\left(\mu_{1}\right)$ and $g_{2}(y)=\left(d \nu_{1} / d \mu_{2}\right)(y) \geq 0$ a.e. $\left(\mu_{2}\right)$ since $\nu_{1}, \nu_{2}, \mu_{1}, \mu_{2}$ are positive measures. Thus by Tonelli's Theorem (page 67)

$$
\begin{align*}
\left(\nu_{1} \times \nu_{2}\right)(E) & =\int_{X_{1} \times X_{2}} I_{E}\left(x_{1}, x_{2}\right) d\left(\nu_{1} \times \nu_{2}\right)\left(x_{1}, x_{2}\right) \tag{1}\\
& =\int_{X_{1}}\left(\int_{X_{2}} I_{E}\left(x_{1}, x_{2}\right) d \nu_{2}\left(x_{2}\right)\right) d \nu_{1}\left(x_{1}\right) \\
& =\int_{X_{1}}\left(\int_{X_{2}} I_{E}\left(x_{1}, x_{2}\right) g_{2}\left(x_{2}\right) d \mu_{2}\left(x_{2}\right)\right) g_{1}\left(x_{1}\right) d \mu_{1}\left(x_{1}\right) \\
& =\int_{X_{1}}\left(\int_{X_{2}} I_{E}\left(x_{1}, x_{2}\right) g_{1}\left(x_{1}\right) g_{2}\left(x_{2}\right) d \mu_{2}\left(x_{2}\right)\right) d \mu_{1}\left(x_{1}\right)
\end{align*}
$$

and by Tonelli's Theorem a second time

$$
\begin{align*}
\left(\nu_{1} \times \nu_{2}\right)(E) & =\int_{X_{1} \times X_{2}} I_{E}\left(x_{1}, x_{2}\right) g_{1}\left(x_{1}\right) g_{2}\left(x_{2}\right) d\left(\mu_{1} \times \mu_{2}\right)\left(x_{1}, x_{2}\right) \\
& =\int_{E} g_{1}\left(x_{1}\right) g_{2}\left(x_{2}\right) d\left(\mu_{1} \times \mu_{2}\right)\left(x_{1}, x_{2}\right) \tag{2}
\end{align*}
$$

This implies that $\left(\nu_{1} \times \nu_{2}\right) \ll\left(\mu_{1} \times \mu_{2}\right)$ and the Radon-Nikodym derivative is $d\left(\nu_{1} \times \nu_{2}\right) / d\left(\mu_{1} \times \mu_{2}\right)=g_{1}\left(x_{1}\right) g_{2}\left(x_{2}\right)=\left(d \nu_{1} / d \mu_{1}\right)\left(x_{1}\right)\left(d \nu_{2} / d \mu_{2}\right)\left(x_{2}\right)$.

Remark. Since all these measures are σ-finite, it is sufficient to verify (2) on a generating semi-ring of sets E. Since the set of measurable rectangles $\{A \times B$: $\left.A \in \mathcal{M}_{1}, B \in \mathcal{M}_{2}\right\}$ is a generating semi-ring for $\mathcal{M}_{1} \otimes \mathcal{M}_{2}$, it is sufficient to assume that $E=A \times B$ in (1) is a measurable rectangle. This simplifies the proof slightly.
2. (a) If $\lambda(E)=\nu(E)+\mu(E)=0$, then $\nu(E)=\mu(E)=0$ and $\nu \ll \lambda$. If $\mu(E)=0$, then $\nu(E)=0$ since $\nu \ll \mu$ and hence $\lambda(E)=\nu(E)+\mu(E)=0$, which implies $\lambda \ll \mu$.
(b) Assume $\nu(E)=\int_{E} g d \mu$. Since ν and μ are positive and σ-finite, $0 \leq$ $g(x)<\infty$ a.e. μ. Then $\lambda(E)=\int_{E}(1+g) d \mu$. Hence $\int h d \lambda=\int h(1+g) d \mu$ for all measurable $h(x) \geq 0$. Setting $h=(1+g)^{-1} I_{E}, \mu(E)=\int_{E}(1+g)^{-1} d \lambda$ and

$$
\nu(E)=\int_{E} g d \mu=\int_{E} \frac{g}{1+g} d \lambda=\int_{E} f d \lambda
$$

for $f=d \nu / d \lambda=g /(1+g)$. Since $0 \leq g<\infty, 0 \leq f(x)<1$ a.e. μ.
(c) $f=g /(1+g)$ implies $f+f g=g$ and $g=f /(1-f)$, so $d \nu / d \mu=g=f /(1-f)$.
3. Here μ, ν are finite positive measures on (X, \mathcal{M}) with $\nu(E)=\int f d \mu$ for some \mathcal{M}-measurable functions $f(x) \geq 0$. Restrict both measures μ, ν to (X, \mathcal{A}) for a σ-algebra $\mathcal{A} \subseteq \mathcal{M}$. It may not be true that $\nu(E)=\int_{E} f d \mu$ for $f \in L^{1}(X, \mathcal{A}, \mu)$, but $\mu(E)=0$ for $E \in \mathcal{A}$ still implies $\nu(E)=0$ since $\mathcal{A} \subseteq \mathcal{M}$. It then follows from the Radon-Nikodym theorem that $\mu(E)=\int_{E} g d \mu$ for $E \in \mathcal{A}$ and $g \in L^{1}(X, \mathcal{A}, \mu)$, where now we are guaranteed that $g(x)$ is \mathcal{A}-measurable.

If $\mu(E)=\int_{E} g_{1} d \mu=\int_{E} g_{2} d \mu$ for all $E \in \mathcal{A}$ and $g_{1}, g_{2} \in L^{1}(X, \mathcal{A}, \mu)$, then $\int_{E}\left(g_{1}-g_{2}\right) d \mu=0$ for all $E \in \mathcal{A}$ and by standard arguments for $(X, \mathcal{A}, \mu), g_{1}(x)=$ $g_{2}(x)$ a.e. μ.
4. Assume $d \nu=f d \mu$ for some positive measure μ where $f \in L^{1}(X, \mathcal{M}, \mu)$. Then (by definition) $d|\nu|=|f| d \mu$ and $\nu(X)=\int f(x) d \mu=|\nu|(X)=\int|f(x)| d \mu=0$. Thus $\int(|f(x)|-f(x)) d \mu=0$ and

$$
\operatorname{Re} \int(|f(x)|-f(x)) d \mu=\int(|f(x)|-\operatorname{Re} f(x)) d \mu=0
$$

In general, $\int g(x) d \mu(x)=0$ for $g(x) \geq 0$ and a positive measure μ implies $g(x)=0$ a.e. μ. Since $g(x)=|f(x)|-\operatorname{Re} f(x) \geq 0$ for all x, it follows that $\operatorname{Re} f(x)=|f(x)|$ a.e. μ. Since $|f(x)|=|\operatorname{Re} f(x)+i \operatorname{Im} f(x)|$, this also implies $\operatorname{Im} f(x)=0$ a.e. μ. Thus $f(x)=|f(x)|$ a.e. μ. and $\nu=|\nu|$.
5. Assume $\nu(E)=\int_{E} g(x) d \mu$ for complex $g \in L^{1}(X, \mathcal{M}, \mu)$. Then (by definition) $|\nu|(E)=\int_{E}|g(x)| d \mu$ and it is sufficient to prove

$$
\begin{equation*}
\int_{E}|g| d \mu=\sup \left\{\left|\int_{E} f(x) g(x) d \mu\right|:|f(x)| \leq 1 \text { on } E\right\} \tag{3}
\end{equation*}
$$

Since $\left|\int_{E} f g d \mu \leq \int_{E}\right| f g\left|d \mu \leq \int_{E}\right| g \mid d \mu$ for complex functions f, g with $|f(x)| \leq 1$, the right-hand side of (3) is less than or equal to the left-hand side. Define $f(x)=$ $|g(x)| / g(x)$ if $g(x) \neq 0$ and $f(x)=0$ if $g(x)=0$. Then $\int_{E} f(x) g(x) d \mu=\int_{E}|g(x)| d \mu$ and the two sides of (3) are identical.

