Ma 5051 — Real Variables and Functional Analysis Solutions for Problem Set #8 due November 12, 2009

Prof. Sawyer — Washington University (With Matt Wallace)

1. Let $E \in \mathcal{M}_1 \otimes \mathcal{M}_2$, where $\mathcal{M}_1 \otimes \mathcal{M}_2$ is the product σ -algebra. By assumption, $\nu_1(A) = \int_A g_1(x)\mu_1(dx)$ for $A \in \mathcal{M}_1$ and $\nu_2(B) = \int_B g_2(y)\mu_2(dy)$ for $B \in \mathcal{M}_1$ where $g_1(x) = (d\nu_1/d\mu_1)(x) \ge 0$ a.e. (μ_1) and $g_2(y) = (d\nu_1/d\mu_2)(y) \ge 0$ a.e. (μ_2) since $\nu_1, \nu_2, \mu_1, \mu_2$ are positive measures. Thus by Tonelli's Theorem (page 67)

$$(\nu_{1} \times \nu_{2})(E) = \int_{X_{1} \times X_{2}} I_{E}(x_{1}, x_{2}) d(\nu_{1} \times \nu_{2})(x_{1}, x_{2})$$
(1)
$$= \int_{X_{1}} \left(\int_{X_{2}} I_{E}(x_{1}, x_{2}) d\nu_{2}(x_{2}) \right) d\nu_{1}(x_{1})$$

$$= \int_{X_{1}} \left(\int_{X_{2}} I_{E}(x_{1}, x_{2}) g_{2}(x_{2}) d\mu_{2}(x_{2}) \right) g_{1}(x_{1}) d\mu_{1}(x_{1})$$

$$= \int_{X_{1}} \left(\int_{X_{2}} I_{E}(x_{1}, x_{2}) g_{1}(x_{1}) g_{2}(x_{2}) d\mu_{2}(x_{2}) \right) d\mu_{1}(x_{1})$$

and by Tonelli's Theorem a second time

$$(\nu_1 \times \nu_2)(E) = \int_{X_1 \times X_2} I_E(x_1, x_2) g_1(x_1) g_2(x_2) d(\mu_1 \times \mu_2)(x_1, x_2)$$

=
$$\int_E g_1(x_1) g_2(x_2) d(\mu_1 \times \mu_2)(x_1, x_2)$$
(2)

This implies that $(\nu_1 \times \nu_2) \ll (\mu_1 \times \mu_2)$ and the Radon-Nikodym derivative is $d(\nu_1 \times \nu_2)/d(\mu_1 \times \mu_2) = g_1(x_1)g_2(x_2) = (d\nu_1/d\mu_1)(x_1)(d\nu_2/d\mu_2)(x_2).$

Remark. Since all these measures are σ -finite, it is sufficient to verify (2) on a generating semi-ring of sets E. Since the set of measurable rectangles { $A \times B$: $A \in \mathcal{M}_1, B \in \mathcal{M}_2$ } is a generating semi-ring for $\mathcal{M}_1 \otimes \mathcal{M}_2$, it is sufficient to assume that $E = A \times B$ in (1) is a measurable rectangle. This simplifies the proof slightly.

2. (a) If $\lambda(E) = \nu(E) + \mu(E) = 0$, then $\nu(E) = \mu(E) = 0$ and $\nu \ll \lambda$. If $\mu(E) = 0$, then $\nu(E) = 0$ since $\nu \ll \mu$ and hence $\lambda(E) = \nu(E) + \mu(E) = 0$, which implies $\lambda \ll \mu$.

(b) Assume $\nu(E) = \int_E g \, d\mu$. Since ν and μ are positive and σ -finite, $0 \leq g(x) < \infty$ a.e. μ . Then $\lambda(E) = \int_E (1+g) \, d\mu$. Hence $\int h \, d\lambda = \int h(1+g) \, d\mu$ for all measurable $h(x) \geq 0$. Setting $h = (1+g)^{-1} I_E$, $\mu(E) = \int_E (1+g)^{-1} \, d\lambda$ and

$$\nu(E) = \int_E g \, d\mu = \int_E \frac{g}{1+g} \, d\lambda = \int_E f \, d\lambda$$

for
$$f = d\nu/d\lambda = g/(1+g)$$
. Since $0 \le g < \infty$, $0 \le f(x) < 1$ a.e. μ .
(c) $f = g/(1+g)$ implies $f + fg = g$ and $g = f/(1-f)$, so $d\nu/d\mu = g = f/(1-f)$.

3. Here μ, ν are finite positive measures on (X, \mathcal{M}) with $\nu(E) = \int f d\mu$ for some \mathcal{M} -measurable functions $f(x) \geq 0$. Restrict both measures μ, ν to (X, \mathcal{A}) for a σ -algebra $\mathcal{A} \subseteq \mathcal{M}$. It may not be true that $\nu(E) = \int_E f d\mu$ for $f \in L^1(X, \mathcal{A}, \mu)$, but $\mu(E) = 0$ for $E \in \mathcal{A}$ still implies $\nu(E) = 0$ since $\mathcal{A} \subseteq \mathcal{M}$. It then follows from the Radon-Nikodym theorem that $\mu(E) = \int_E g d\mu$ for $E \in \mathcal{A}$ and $g \in L^1(X, \mathcal{A}, \mu)$, where now we are guaranteed that g(x) is \mathcal{A} -measurable.

If $\mu(E) = \int_E g_1 d\mu = \int_E g_2 d\mu$ for all $E \in \mathcal{A}$ and $g_1, g_2 \in L^1(X, \mathcal{A}, \mu)$, then $\int_E (g_1 - g_2) d\mu = 0$ for all $E \in \mathcal{A}$ and by standard arguments for $(X, \mathcal{A}, \mu), g_1(x) = g_2(x)$ a.e. μ .

4. Assume $d\nu = fd\mu$ for some positive measure μ where $f \in L^1(X, \mathcal{M}, \mu)$. Then (by definition) $d|\nu| = |f|d\mu$ and $\nu(X) = \int f(x) d\mu = |\nu|(X) = \int |f(x)| d\mu = 0$. Thus $\int (|f(x)| - f(x)) d\mu = 0$ and

$$\operatorname{Re} \int \left(|f(x)| - f(x) \right) d\mu = \int \left(|f(x)| - \operatorname{Re} f(x) \right) d\mu = 0$$

In general, $\int g(x) d\mu(x) = 0$ for $g(x) \ge 0$ and a positive measure μ implies g(x) = 0a.e. μ . Since $g(x) = |f(x)| - \operatorname{Re} f(x) \ge 0$ for all x, it follows that $\operatorname{Re} f(x) = |f(x)|$ a.e. μ . Since $|f(x)| = |\operatorname{Re} f(x) + i \operatorname{Im} f(x)|$, this also implies $\operatorname{Im} f(x) = 0$ a.e. μ . Thus f(x) = |f(x)| a.e. μ . and $\nu = |\nu|$.

5. Assume $\nu(E) = \int_E g(x) d\mu$ for complex $g \in L^1(X, \mathcal{M}, \mu)$. Then (by definition) $|\nu|(E) = \int_E |g(x)| d\mu$ and it is sufficient to prove

$$\int_{E} |g| d\mu = \sup \left\{ \left| \int_{E} f(x)g(x) d\mu \right| : |f(x)| \le 1 \text{ on } E \right\}$$
(3)

Since $|\int_E fg \, d\mu \leq \int_E |fg| \, d\mu \leq \int_E |g| \, d\mu$ for complex functions f, g with $|f(x)| \leq 1$, the right-hand side of (3) is less than or equal to the left-hand side. Define f(x) = |g(x)|/g(x) if $g(x) \neq 0$ and f(x) = 0 if g(x) = 0. Then $\int_E f(x)g(x) \, d\mu = \int_E |g(x)| \, d\mu$ and the two sides of (3) are identical.