Ma 5051 — Real Variables and Functional Analysis Problem Set #9 — Due November 19, 2009

Prof. Sawyer — Washington University

The measure m(E) below is Lebesgue measure on $\mathcal{B}(\mathbb{R}^n)$.

1. (Like Problem 22, page 100) Let Hf(x) be the Hardy-Littlewood maximal function for $f \in L^1(\mathbb{R}^n)$ with $\int_{\mathbb{R}^n} |f(y)| dm > 0$. Prove that there exists C > 0 and $R < \infty$ such that $Hf(x) \ge C/|x|^n$ for |x| > R.

Use this to show that $m[\{x : Hf(x) > \alpha\}] \ge C_1/\alpha$ for some $C_1 > 0$ and $\alpha < \alpha_0$ for some $\alpha_0 > 0$, and hence the rate of decay in α in the Hardy-Littlewood maximal theorem (Theorem 3.17) is sharp.

(*Hint*: You can use the results for polar coordinates in Section 2.7.)

2. (Problem 24, page 100) Assume $f \in L^1_{loc}(\mathbb{R}^n)$ and f is continuous at x. Show that x is in the Lebesgue set of f.

3. (Like Problem 25, page 100) Let E be a Borel subset of \mathbb{R}^n . The *density* of E at a point x is defined by

$$D_E(x) = \lim_{r \to 0} \frac{m(E \cap B(r, x))}{m(B(r, x))}$$

whenever the limit exists.

- (a) Show that $D_E(x) = 1$ a.e. for $x \in E$ and $D_E(x) = 0$ a.e. for $x \in E^c$.
- (b) Find an example of $E \subseteq \mathbb{R}^2$ and $x \in \mathbb{R}^2$ such that $D_E(x) = 1/4$.

4. (Like Problem 32, page 108) Assume $F_n \in BV(R)$. Assume $F_n(x) \to F(x)$ for all $x \in R$ for some function F(y). Prove that for all $y \in R$

$$V_F(y) \leq \liminf_{n \to \infty} V_{F_n}(y)$$

 $(V_F(y) \text{ is called } T_F(y) \text{ in the text.})$

5. (Problem 33, page 108) Suppose $F(y) : R \to R$ is increasing. Prove that $F(b) - F(a) \ge \int_a^b F'(x) dx$.