Ma 5051 - Real Variables and Functional Analysis

Problem Set \#9 - Due November 19, 2009
Prof. Sawyer - Washington University
The measure $m(E)$ below is Lebesgue measure on $\mathcal{B}\left(R^{n}\right)$.

1. (Like Problem 22, page 100) Let $H f(x)$ be the Hardy-Littlewood maximal function for $f \in L^{1}\left(R^{n}\right)$ with $\int_{R^{n}}|f(y)| d m>0$. Prove that there exists $C>0$ and $R<\infty$ such that $H f(x) \geq C /|x|^{n}$ for $|x|>R$.

Use this to show that $m[\{x: H f(x)>\alpha\}] \geq C_{1} / \alpha$ for some $C_{1}>0$ and $\alpha<\alpha_{0}$ for some $\alpha_{0}>0$, and hence the rate of decay in α in the Hardy-Littlewood maximal theorem (Theorem 3.17) is sharp.
(Hint: You can use the results for polar coordinates in Section 2.7.)
2. (Problem 24, page 100) Assume $f \in L_{l o c}^{1}\left(R^{n}\right)$ and f is continuous at x. Show that x is in the Lebesgue set of f.
3. (Like Problem 25, page 100) Let E be a Borel subset of R^{n}. The density of E at a point x is defined by

$$
D_{E}(x)=\lim _{r \rightarrow 0} \frac{m(E \cap B(r, x))}{m(B(r, x))}
$$

whenever the limit exists.
(a) Show that $D_{E}(x)=1$ a.e. for $x \in E$ and $D_{E}(x)=0$ a.e. for $x \in E^{c}$.
(b) Find an example of $E \subseteq R^{2}$ and $x \in R^{2}$ such that $D_{E}(x)=1 / 4$.
4. (Like Problem 32, page 108) Assume $F_{n} \in B V(R)$. Assume $F_{n}(x) \rightarrow F(x)$ for all $x \in R$ for some function $F(y)$. Prove that for all $y \in R$

$$
V_{F}(y) \leq \liminf _{n \rightarrow \infty} V_{F_{n}}(y)
$$

($V_{F}(y)$ is called $T_{F}(y)$ in the text.)
5. (Problem 33, page 108) Suppose $F(y): R \rightarrow R$ is increasing. Prove that $F(b)-F(a) \geq \int_{a}^{b} F^{\prime}(x) d x$.

