Ma 5051 — Real Variables and Functional Analysis Solutions for Problem Set #9 due November 19, 2009

Prof. Sawyer — Washington University

The measure m(E) below is Lebesgue measure on $\mathcal{B}(\mathbb{R}^n)$.

1. (a) Choose a constant K such that $\int_{|x| \leq K} |f(y)| dm \geq (1/2) \int_{\mathbb{R}^n} |f(y)| dm$. Recall that $m(B(r,x)) = C_n r^n$ for $B(r,x) \subseteq \mathbb{R}^n$. If $|x| \geq K$ and $K_x = |x| + K$, the ball $B(K_x, x) \supseteq B(K, 0)$ and

$$Hf(x) \geq \frac{1}{m(B(K_x,x))} \int_{B(K_x,x)} |f(y)| dm \geq \frac{1}{C_n (K_x)^n} \int_{B(K,0)} |f(y)| dm$$

$$\geq \frac{C_1}{|x|^n} \left(\frac{|x|}{|x|+K}\right)^n (1/2) \int_{R^n} |f(y)| dm \geq C/|x|^n$$

for some C > 0, since $|x|/(|x| + K) \ge 1/2$ if $|x| \ge K$.

(b) By part (a), $Hf(x) > \alpha$ whenever $|x| \ge K$ and $C/|x|^n > \alpha$, or when $K \le |x|$ and $|x| < (C/\alpha)^{1/n}$. Thus

$$m\left[\left\{x:Hf(x)>\alpha\right\}\right] \geq m\left[\left\{x:K\leq |x|\leq (C/\alpha)^{1/n}\right\}\right]$$
$$= C_n\left((C/\alpha)-K^n\right) = C_n(C/\alpha)\left(1-\frac{K^n}{C/\alpha}\right) \geq C_2/\alpha$$

for $C_2 = C_n C/2$ provided that α is sufficiently small so that $C/\alpha > (2K)^n$, or so that $\alpha < \alpha_0 = C/(2K)^n$.

2. By definition, $x \in L_f$ if

$$\lim_{r \to 0} \frac{1}{m(B(r,x))} \int_{B(r,x)} |f(y) - f(x)| dy = 0$$

If $|f(y) - f(x)| < \epsilon$ whenever $|y - x| < r_0$, then the integral above is bounded by $\epsilon m(B(r, x))$ for $r < r_0$ and the expression inside the limit is less than ϵ . Thus $\lim_{y \to x} f(y) = f(x)$ implies $x \in L_f$.

3. By the Lebesgue differentiation theorem in the form Theorem 3.18,

$$D_E(x) = \lim_{r \to 0} \frac{1}{m(B(r,x))} \int_{B(r,x)} I_E(y) dy = \lim_{r \to 0} \frac{m(E \cap B(r,x))}{m(B(r,x))} = I_E(x) \text{ a.e.}$$

In particular, $D_E(x) = 1$ a.e. for $x \in E$ and $D_E(x) = 0$ a.e. for $x \in E^c$.

Let $E = [0,1] \times [0,1] = \{(x,y) : 0 \le x, y \le 1\}$ and set $x_0 = 0$. Then $m(E \cap B(r,0)) = (1/4)m(B(r,0))$ whenever r < 1 and $D_E(x_0) = 1/4$.

Ma 5051– Real Variables and Functional Analysis— November 19, 2009 2

4. Define

$$V_F(y, \pi(y)) = \sum_{j=1}^k |F(x_j) - F(x_{j-1})|$$

for partitions $\pi(y) = \{x_j : 0 \le j \le k, -\infty < x_0 < x_1 < \ldots < x_k = y\}$. Then $V_F(y) = T_F(y) = \sup_{\pi(y)} V_F(y, \pi(y))$. By assumption, $F_n(x) \to F(x)$ for all x, so that, for each fixed partition $\pi(y)$, $V_{F_n}(y, \pi(y)) \to V_F(y, \pi(y))$. Since $V_{F_n}(y) = \sup_{\pi(y)} V_{F_n}(y, \pi(y))$ for each n,

$$V_F(y,\pi(y)) = \lim_{n \to \infty} V_{F_n}(y,\pi(y)) \leq \liminf_{n \to \infty} V_{F_n}(y)$$

Since this holds for all partitions $\pi(y)$, $V_F(y) \leq \liminf_{n \to \infty} V_{F_n}(y)$.

5. Let G(y) = F(y+) is increasing and right-continuous (see Theorem 3.23 on page 101). Thus there exists a Borel measure μ_G such that $\mu_G((a, b]) = G(b) - G(a)$ for all $a, b \in R$, a < b.

By the Lebesgue-Radon-Nikodym Theorem (page 90), $d\mu_G = d\lambda + g(x)dx$ where $\lambda \ge 0$, $d\lambda \perp dx$, $g(x) \ge 0$ a.e., and dx is one-dimensional Lebesgue measure. In particular

$$G(b) - G(a) = \mu_G((a, b]) = \lambda((a, b]) + \int_a^b g(x) dx \ge \int_a^b g(x) dx$$

By the general Lebesgue differentiation theorem (Thm 3.33, page 98), G'(x) = g(x)a.e. (and $\lambda'(x) = 0$ a.e.), so that

$$G(b) - G(a) \ge \int_a^b G'(x) dx$$

In general, if G(y) is any increasing function such that $G(y) \ge h(y)$ where h(y) is a continuous function, then, by considering points of continuity y of G(y) and then taking increasing and decreasing limits, $G(y\pm) \ge h(y)$ for all y. By Theorem 3.23 (page 101), F'(x) = G'(x) a.e. Putting this together

$$G(b\pm) - G(a\pm) \geq G(b-) - G(a+) \geq \int_a^b F'(x) dx$$

Finally, since $G(b-) \leq F(b) \leq G(b)$ and $G(a-) \leq F(a) \leq G(a)$, we conclude for all a < b that

$$F(b) - F(a) \ge G(b-) - G(a) \ge \int_a^b F'(x) dx$$

Remark: You can also use step functions based on difference quotients, Fatou's lemma, and Theorem 3.23 to conclude $F(b) - F(a) \ge \int_a^b F'(x) dx$. Indeed, from this point of view, the use of the Radom-Nikodym theorem plus the Lebesgue differention theorem is overkill.