Ma 5051 - Real Variables and Functional Analysis

Solutions for Problem Set \#9 due November 19, 2009

Prof. Sawyer - Washington University
The measure $m(E)$ below is Lebesgue measure on $\mathcal{B}\left(R^{n}\right)$.

1. (a) Choose a constant K such that $\int_{|x| \leq K}|f(y)| d m \geq(1 / 2) \int_{R^{n}}|f(y)| d m$. Recall that $m(B(r, x))=C_{n} r^{n}$ for $B(r, x) \subseteq R^{n}$. If $|x| \geq K$ and $K_{x}=|x|+K$, the ball $B\left(K_{x}, x\right) \supseteq B(K, 0)$ and

$$
\begin{aligned}
H f(x) & \geq \frac{1}{m\left(B\left(K_{x}, x\right)\right)} \int_{B\left(K_{x}, x\right)}|f(y)| d m \geq \frac{1}{C_{n}\left(K_{x}\right)^{n}} \int_{B(K, 0)}|f(y)| d m \\
& \geq \frac{C_{1}}{|x|^{n}}\left(\frac{|x|}{|x|+K}\right)^{n}(1 / 2) \int_{R^{n}}|f(y)| d m \geq C /|x|^{n}
\end{aligned}
$$

for some $C>0$, since $|x| /(|x|+K) \geq 1 / 2$ if $|x| \geq K$.
(b) By part (a), $H f(x)>\alpha$ whenever $|x| \geq K$ and $C /|x|^{n}>\alpha$, or when $K \leq|x|$ and $|x|<(C / \alpha)^{1 / n}$. Thus

$$
\begin{aligned}
& m[\{x: H f(x)>\alpha\}] \geq m\left[\left\{x: K \leq|x| \leq(C / \alpha)^{1 / n}\right\}\right] \\
& \quad=C_{n}\left((C / \alpha)-K^{n}\right)=C_{n}(C / \alpha)\left(1-\frac{K^{n}}{C / \alpha}\right) \geq C_{2} / \alpha
\end{aligned}
$$

for $C_{2}=C_{n} C / 2$ provided that α is sufficiently small so that $C / \alpha>(2 K)^{n}$, or so that $\alpha<\alpha_{0}=C /(2 K)^{n}$.
2. By definition, $x \in L_{f}$ if

$$
\lim _{r \rightarrow 0} \frac{1}{m(B(r, x))} \int_{B(r, x)}|f(y)-f(x)| d y=0
$$

If $|f(y)-f(x)|<\epsilon$ whenever $|y-x|<r_{0}$, then the integral above is bounded by $\epsilon m(B(r, x))$ for $r<r_{0}$ and the expression inside the limit is less than ϵ. Thus $\lim _{y \rightarrow x} f(y)=f(x)$ implies $x \in L_{f}$.
3. By the Lebesgue differentiation theorem in the form Theorem 3.18,

$$
D_{E}(x)=\lim _{r \rightarrow 0} \frac{1}{m(B(r, x))} \int_{B(r, x)} I_{E}(y) d y=\lim _{r \rightarrow 0} \frac{m(E \cap B(r, x))}{m(B(r, x))}=I_{E}(x) \text { a.e. }
$$

In particular, $D_{E}(x)=1$ a.e. for $x \in E$ and $D_{E}(x)=0$ a.e. for $x \in E^{c}$.
Let $E=[0,1] \times[0,1]=\{(x, y): 0 \leq x, y \leq 1\}$ and set $x_{0}=0$. Then $m(E \cap B(r, 0))=(1 / 4) m(B(r, 0))$ whenever $r<1$ and $D_{E}\left(x_{0}\right)=1 / 4$.

Ma 5051- Real Variables and Functional Analysis- November 19, 2009
4. Define

$$
V_{F}(y, \pi(y))=\sum_{j=1}^{k}\left|F\left(x_{j}\right)-F\left(x_{j-1}\right)\right|
$$

for partitions $\pi(y)=\left\{x_{j}: 0 \leq j \leq k,-\infty<x_{0}<x_{1}<\ldots<x_{k}=y\right\}$. Then $V_{F}(y)=T_{F}(y)=\sup _{\pi(y)} V_{F}(y, \pi(y))$. By assumption, $F_{n}(x) \rightarrow F(x)$ for all x, so that, for each fixed partition $\pi(y), V_{F_{n}}(y, \pi(y)) \rightarrow V_{F}(y, \pi(y))$. Since $V_{F_{n}}(y)=\sup _{\pi(y)} V_{F_{n}}(y, \pi(y))$ for each n,

$$
V_{F}(y, \pi(y))=\lim _{n \rightarrow \infty} V_{F_{n}}(y, \pi(y)) \leq \liminf _{n \rightarrow \infty} V_{F_{n}}(y)
$$

Since this holds for all partitions $\pi(y), V_{F}(y) \leq \liminf _{n \rightarrow \infty} V_{F_{n}}(y)$.
5. Let $G(y)=F(y+)$ is increasing and right-continuous (see Theorem 3.23 on page 101). Thus there exists a Borel measure μ_{G} such that $\mu_{G}((a, b])=G(b)-G(a)$ for all $a, b \in R, a<b$.

By the Lebesgue-Radon-Nikodym Theorem (page 90), $d \mu_{G}=d \lambda+g(x) d x$ where $\lambda \geq 0, d \lambda \perp d x, g(x) \geq 0$ a.e., and $d x$ is one-dimensional Lebesgue measure. In particular

$$
G(b)-G(a)=\mu_{G}((a, b])=\lambda((a, b])+\int_{a}^{b} g(x) d x \geq \int_{a}^{b} g(x) d x
$$

By the general Lebesgue differentiation theorem (Thm 3.33, page 98), $G^{\prime}(x)=g(x)$ a.e. (and $\lambda^{\prime}(x)=0$ a.e.), so that

$$
G(b)-G(a) \geq \int_{a}^{b} G^{\prime}(x) d x
$$

In general, if $G(y)$ is any increasing function such that $G(y) \geq h(y)$ where $h(y)$ is a continuous function, then, by considering points of continuity y of $G(y)$ and then taking increasing and decreasing limits, $G(y \pm) \geq h(y)$ for all y. By Theorem 3.23 (page 101), $F^{\prime}(x)=G^{\prime}(x)$ a.e. Putting this together

$$
G(b \pm)-G(a \pm) \geq G(b-)-G(a+) \geq \int_{a}^{b} F^{\prime}(x) d x
$$

Finally, since $G(b-) \leq F(b) \leq G(b)$ and $G(a-) \leq F(a) \leq G(a)$, we conclude for all $a<b$ that

$$
F(b)-F(a) \geq G(b-)-G(a) \geq \int_{a}^{b} F^{\prime}(x) d x
$$

Remark: You can also use step functions based on difference quotients, Fatou's lemma, and Theorem 3.23 to conclude $F(b)-F(a) \geq \int_{a}^{b} F^{\prime}(x) d x$. Indeed, from this point of view, the use of the Radom-Nikodym theorem plus the Lebesgue differention theorem is overkill.

