Ma 5051 — Real Variables and Functional Analysis Take-Home Final — Due December 17, 2009

Prof. Sawyer — Washington University

Problems in text are from G. B. Folland, *Real Analysis: Modern techniques and their applications*. Eight problems on two pages.

1. Let $\nu = \mu_1 \times \mu_2 = (X_1 \times X_2, \mathcal{M}_1 \otimes \mathcal{M}_2, \mu_1 \times \mu_2)$ be the product measure of two σ -finite measures $(X_i, \mathcal{M}_i, \mu_i)$ (i = 1, 2). Let $E \in \mathcal{M}_1 \otimes \mathcal{M}_2$ be a measurable subset of $X_1 \times X_2$ with $\nu(E) > 0$. Prove that, for any constant θ with $0 < \theta < 1$, there exists a measurable rectangle $B = A_1 \times A_2 \in \mathcal{M}_1 \times \mathcal{M}_2$ such that $\nu(B) < \infty$ and $\nu(E \cap B) > \theta\nu(B)$.

2. Let $Tf(x) = \int_0^1 K(x, y) f(y) dy$ for $(x, y) \in R \times I$ for I = [0, 1], $f \in L^1(I, \mathcal{B}, m)$ for Lebesgue measure m (m(dy) = dy), and $|K(x, y)| \leq Ce^{-|x-y|}$ for all (x, y) for some constant $C < \infty$.

Assume $\lim_{n\to\infty} \int_0^1 |f_n(x) - f(x)| dx = 0$ for $f_n, f \in L^1(I)$ and set $g_n(x) = Tf_n(x)$ and g(x) = Tf(x). Prove that

(a) $g_n(x) \to g(x)$ for all $x \in R$ (b) $\lim_{n\to\infty} \int_{-\infty}^{\infty} |g_n(y) - g(y)| dy = 0.$

3. Define f(x, y) on R^2 by $f(x, y) = \sin(x - y)$ for x, y in the strip $S = \{(x, y) : y \le x \le y + 2\pi\}$ and f(x, y) = 0 for $(x, y) \notin S$. Calculate the two iterated integrals $I_1 = \int_0^\infty \int_0^\infty f(x, y) dx dy$ and $I_2 = \int_0^\infty \int_0^\infty f(x, y) dy dx$. If you conclude $I_1 \neq I_2$, explain how this is possible since Lebesgue measure on $[0, \infty)$ is σ -finite. Justify your reasoning.

4. Let $f_1(x), f_2(x)$ be two measurable functions on a measurable space (X, \mathcal{M}) . Let $\mathcal{A} = \mathcal{B}(f_1, f_2)$ be the smallest σ -algebra $\mathcal{A} \subseteq \mathcal{M}$ with respect to which both $f_1(x)$ and $f_2(x)$ are measurable. (That is, \mathcal{A} is the σ -algebra generated by the sets $\{x : f_i(x) \leq \lambda_i\} \subseteq X$ for $\lambda_i \in R$ and i = 1, 2.)

Show that any nonnegative \mathcal{A} -measurable function g(x) on X can be written $g(x) = \phi(f_1(x), f_2(x))$ for some Borel function $\phi(y_1, y_2)$ on \mathbb{R}^2 . (*Hint*: Prove this first for $g(x) = I_E(x)$ for $E \in \mathcal{A}$ and approximate a general \mathcal{A} -measurable function g(x) by simple functions. Show that $h(x) = (f_1(x), f_2(x)) : X \to \mathbb{R}^2$ is a measurable mapping in the sense of Section 2.1 in the text.)

5. Define

$$||f||_{\alpha} = \sup_{x \in X} |f(x)| + \sup_{x,y \in X, y \neq x} \frac{|f(y) - f(x)|}{d(x,y)^{\alpha}}$$

where (X, d) is a compact metric space and $0 < \alpha < 1$. (An earlier version of this problem used the symbol ρ for both metrics.)

(a) (1/4) Prove that $\rho(f,g) = ||f - g||_{\alpha}$ is a metric on the space

$$C^{\alpha}(X) = \{ f \in C(X) : \|f\|_{\alpha} < \infty \}$$

(b) (1/4) Prove that if $f_n, f \in C(X)$ satisfy $f_n(x) \to f(x)$ uniformly on X, then

$$||f||_{\alpha} \leq \liminf_{n \to \infty} ||f_n||_{\alpha}$$

(c) (1/2) Let $K = \{ f \in C(X) : ||f||_{\alpha} \leq M \}$ for a constant $M < \infty$. Prove that K is a compact subset of C(X).

6. Let $\{X_{\alpha} : \alpha \in A\}$ be a family of Hausdorff topological spaces $X_{\alpha} = (X_{\alpha}, \mathcal{T}_{\alpha})$ for which infinitely many of the spaces X_{α} are not compact. Prove that every compact subset K of the product space $X = \prod \{X_{\alpha} : \alpha \in A\}$ is nowhere dense in the product topology.

7. Let $X = (X, \mathcal{T})$ be a topological space that is not Hausdorff. Prove that there exists a net $\{x_i : i \in I\}$ in X that converges to two distinct points. (*Hint*: Try $I = \mathcal{N}(x) \times \mathcal{N}(y)$ for points $x, y \in X$ where $\mathcal{N}(x), \mathcal{N}(y)$ are neighborhood bases for x and y, respectively. Be sure to specify the partial ordering on I and show that it is directed.)

8. Let $X = (X, \mathcal{T})$ be a topological space. Let $\{x_i : i \in I\}$ be a net in X, and let $\{y_j : j \in J\}$ be a subnet of $\{x_i\}$.

(a) Prove that, for all $i_0 \in I$, there exists $J_0 \in J$ such that

$$\{ y_j : j \in J, j \ge j_0 \} \subseteq \{ x_i : i \in I, i \ge i_0 \}$$

(*Hint*: This was proven in class, but give a (short) proof.)

(b) Prove that any cluster point of $\{y_j : j \in J\}$ is also a cluster point of $\{x_i : i \in I\}$.

(*Hint*: You can use the result of Problem 33 p127 in the text, which was proven as a theorem in class.)

(c) Prove that if $x_i \to x$ for some $x \in X$, then also $y_j \to x$.