Ma 5051 - Real Variables and Functional Analysis

Take-Home Final - Due December 17, 2009
Prof. Sawyer - Washington University
Problems in text are from G. B. Folland, Real Analysis: Modern techniques and their applications. Eight problems on two pages.

1. Let $\nu=\mu_{1} \times \mu_{2}=\left(X_{1} \times X_{2}, \mathcal{M}_{1} \otimes \mathcal{M}_{2}, \mu_{1} \times \mu_{2}\right)$ be the product measure of two σ-finite measures $\left(X_{i}, \mathcal{M}_{i}, \mu_{i}\right)(i=1,2)$. Let $E \in \mathcal{M}_{1} \otimes \mathcal{M}_{2}$ be a measurable subset of $X_{1} \times X_{2}$ with $\nu(E)>0$. Prove that, for any constant θ with $0<\theta<1$, there exists a measurable rectangle $B=A_{1} \times A_{2} \in \mathcal{M}_{1} \times \mathcal{M}_{2}$ such that $\nu(B)<\infty$ and $\nu(E \cap B)>\theta \nu(B)$.
2. Let $T f(x)=\int_{0}^{1} K(x, y) f(y) d y$ for $(x, y) \in R \times I$ for $I=[0,1], f \in L^{1}(I, \mathcal{B}, m)$ for Lebesgue measure $m(m(d y)=d y)$, and $|K(x, y)| \leq C e^{-|x-y|}$ for all (x, y) for some constant $C<\infty$.

Assume $\lim _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}(x)-f(x)\right| d x=0$ for $f_{n}, f \in L^{1}(I)$ and set $g_{n}(x)=$ $T f_{n}(x)$ and $g(x)=T f(x)$. Prove that
(a) $g_{n}(x) \rightarrow g(x)$ for all $x \in R$
(b) $\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty}\left|g_{n}(y)-g(y)\right| d y=0$.
3. Define $f(x, y)$ on R^{2} by $f(x, y)=\sin (x-y)$ for x, y in the strip $S=\{(x, y)$: $y \leq x \leq y+2 \pi\}$ and $f(x, y)=0$ for $(x, y) \notin S$. Calculate the two iterated integrals $I_{1}=\int_{0}^{\infty} \int_{0}^{\infty} f(x, y) d x d y$ and $I_{2}=\int_{0}^{\infty} \int_{0}^{\infty} f(x, y) d y d x$. If you conclude $I_{1} \neq I_{2}$, explain how this is possible since Lebesgue measure on $[0, \infty)$ is σ-finite. Justify your reasoning.
4. Let $f_{1}(x), f_{2}(x)$ be two measurable functions on a measurable space (X, \mathcal{M}). Let $\mathcal{A}=\mathcal{B}\left(f_{1}, f_{2}\right)$ be the smallest σ-algebra $\mathcal{A} \subseteq \mathcal{M}$ with respect to which both $f_{1}(x)$ and $f_{2}(x)$ are measurable. (That is, \mathcal{A} is the σ-algebra generated by the sets $\left\{x: f_{i}(x) \leq \lambda_{i}\right\} \subseteq X$ for $\lambda_{i} \in R$ and $i=1,2$.)

Show that any nonnegative \mathcal{A}-measurable function $g(x)$ on X can be written $g(x)=\phi\left(f_{1}(x), f_{2}(x)\right)$ for some Borel function $\phi\left(y_{1}, y_{2}\right)$ on R^{2}. (Hint: Prove this first for $g(x)=I_{E}(x)$ for $E \in \mathcal{A}$ and approximate a general \mathcal{A}-measurable function $g(x)$ by simple functions. Show that $h(x)=\left(f_{1}(x), f_{2}(x)\right): X \rightarrow R^{2}$ is a measurable mapping in the sense of Section 2.1 in the text.)
5. Define

$$
\|f\|_{\alpha}=\sup _{x \in X}|f(x)|+\sup _{x, y \in X, y \neq x} \frac{|f(y)-f(x)|}{d(x, y)^{\alpha}}
$$

where (X, d) is a compact metric space and $0<\alpha<1$. (An earlier version of this problem used the symbol ρ for both metrics.)
(a) (1/4) Prove that $\rho(f, g)=\|f-g\|_{\alpha}$ is a metric on the space

$$
C^{\alpha}(X)=\left\{f \in C(X):\|f\|_{\alpha}<\infty\right\}
$$

(b) (1/4) Prove that if $f_{n}, f \in C(X)$ satisfy $f_{n}(x) \rightarrow f(x)$ uniformly on X, then

$$
\|f\|_{\alpha} \leq \liminf _{n \rightarrow \infty}\left\|f_{n}\right\|_{\alpha}
$$

(c) $(1 / 2)$ Let $K=\left\{f \in C(X):\|f\|_{\alpha} \leq M\right\}$ for a constant $M<\infty$. Prove that K is a compact subset of $C(X)$.
6. Let $\left\{X_{\alpha}: \alpha \in A\right\}$ be a family of Hausdorff topological spaces $X_{\alpha}=\left(X_{\alpha}, \mathcal{T}_{\alpha}\right)$ for which infinitely many of the spaces X_{α} are not compact. Prove that every compact subset K of the product space $X=\prod\left\{X_{\alpha}: \alpha \in A\right\}$ is nowhere dense in the product topology.
7. Let $X=(X, \mathcal{T})$ be a topological space that is not Hausdorff. Prove that there exists a net $\left\{x_{i}: i \in I\right\}$ in X that converges to two distinct points. (Hint: Try $I=\mathcal{N}(x) \times \mathcal{N}(y)$ for points $x, y \in X$ where $\mathcal{N}(x), \mathcal{N}(y)$ are neighborhood bases for x and y, respectively. Be sure to specify the partial ordering on I and show that it is directed.)
8. Let $X=(X, \mathcal{T})$ be a topological space. Let $\left\{x_{i}: i \in I\right\}$ be a net in X, and let $\left\{y_{j}: j \in J\right\}$ be a subnet of $\left\{x_{i}\right\}$.
(a) Prove that, for all $i_{0} \in I$, there exists $J_{0} \in J$ such that

$$
\left\{y_{j}: j \in J, j \geq j_{0}\right\} \subseteq\left\{x_{i}: i \in I, i \geq i_{0}\right\}
$$

(Hint: This was proven in class, but give a (short) proof.)
(b) Prove that any cluster point of $\left\{y_{j}: j \in J\right\}$ is also a cluster point of $\left\{x_{i}: i \in I\right\}$.
(Hint: You can use the result of Problem 33 p 127 in the text, which was proven as a theorem in class.)
(c) Prove that if $x_{i} \rightarrow x$ for some $x \in X$, then also $y_{j} \rightarrow x$.

