Ma 5051 - Real Variables and Functional Analysis

Take-Home Midterm - Due October 22, 2009
Prof. Sawyer - Washington University
Let (X, \mathcal{M}, μ) be a measure space. Recall $\int_{A} f(x) d \mu=\int I_{A}(x) f(x) d \mu$ for $A \in \mathcal{M}$ and $f \in L^{+}$, where $I_{A}(x)$ is the indicator function of A.

1. (a) Evaluate the limit and justify the calculation:

$$
\lim _{n \rightarrow \infty} \int_{0}^{n} x^{k}\left(1-n^{-1} x\right)^{n} d x
$$

(b) Evaluate the limit and justify the calculation:

$$
\lim _{n \rightarrow \infty} \sqrt{n} \int_{0}^{1}\left(1+n x^{2}\right)\left(1+x^{2}\right)^{-n} d x
$$

2. Expand the following as a power series in a and justify any interchange of integrals and sums:

$$
\int_{0}^{\infty} e^{-y^{2}} \sin (a y) d y
$$

3. (Like Problem 33 page 63) If $f_{n}(x) \geq 0$ are measurable and $f_{n} \rightarrow f$ in measure for a measure μ, show that $\int f(x) d \mu \leq \liminf _{n \rightarrow \infty} \int f_{n}(x) d \mu$.
4. For $X=[0,1]$, let $\mu=m+2 \delta_{a}$ for some $a \in(0,1)$ where m is Lebesgue measure and δ_{a} is the delta measure based at a. (That is, $\delta_{a}(E)=1$ if $a \in E$ and $\delta_{a}(E)=0$ if $a \notin E$.) Thus $\mu(X)=3$. Evaluate the following limit and justify your calculations:

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \int_{0}^{1} e^{-n(x-y)^{2}} d \mu(x) d \mu(y)
$$

(Warning: The measure $\mu(A)$ may have atoms.)
5. (Like Problem 50 page 69) Assume that (X, \mathcal{M}, μ) is a σ-finite measure and assume $f \in L^{+}(X, \mathcal{M})$. Let m be Lebesgue measure on $R^{+}=[0, \infty)$ and set

$$
G_{f}=\{(x, y) \in(X \times[0, \infty)): 0 \leq y<f(x)\}
$$

Use Theorem 2.10 page 47 to show that $G_{f} \in \mathcal{M} \otimes \mathcal{B}\left(R^{+}\right)$. Also, show that

$$
(\mu \times m)\left(G_{f}\right)=\int_{X} f(x) d \mu=\int_{0}^{\infty} \mu(\{f>y\}) d y
$$

(This shows that the integral can be viewed as " the area under the curve ".)
6. (Like Problem 51 page 69) Let $\left(X, \mathcal{M}_{1}, \mu\right)$ and $\left(Y, \mathcal{M}_{2}, \beta\right)$ be two arbitrary measure spaces, not necessarily σ-finite (so that you cannot apply Fubini's theorem directly). Show
(a) If $f: X \rightarrow R$ is \mathcal{M}_{1}-measurable and $g: Y \rightarrow R$ is \mathcal{M}_{2}-measurable for the real numbers R, then $h(x, y)=f(x) g(y)$ is $\left(\mathcal{M}_{1} \otimes \mathcal{M}_{2}\right)$-measurable.
(b) If $f \in L^{1}(\mu)$ and $g \in L^{1}(\beta)$, then $h \in L^{1}(\mu \times \beta)$ and

$$
\int h(z) d(\mu \times \beta)(z)=\left(\int f(x) d \mu(x)\right)\left(\int g(y) d \beta(y)\right)
$$

7. (Like Problem 54 page 77) Theorem 2.44 has four statements about invertible $n \times n$ matrices T. Replacing " Lebesgue measurable function " by " Borel function " and \mathcal{L}^{n} by $\mathcal{B}\left(R^{n}\right)$, which of the four statements are true or false if T is not invertible?
8. (Like Problem 61 page 77) Define

$$
I_{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{0}^{x}(x-y)^{\alpha-1} f(y) d y
$$

for $\alpha>0, x \in(0, \infty)$, and $f(x)$ continuous on $[0, \infty)$. The functional $I_{\alpha} f(x)$ is called the $\alpha^{\text {th }}$ fractional integral of $f(x)$. Show that
(a) $I_{\alpha+\beta} f(x)=I_{\alpha}\left(I_{\beta} f\right)(x)$ for all $\alpha, \beta>0$ and $x>0$. (You can use the identity in Problem 60 page 77 in the text.)
(b) If n is an integer with $n \geq 1$, then $(d / d x)^{n} I_{n} f(x)=f(x)$ for $x>0$. (In this sense, $I_{n} f(x)$ is an n-fold integral of $f(x)$.)

