Ma 5051 — Real Variables and Functional Analysis Take-Home Midterm — Due October 22, 2009

Prof. Sawyer — Washington University

Let (X, \mathcal{M}, μ) be a measure space. Recall $\int_A f(x)d\mu = \int I_A(x)f(x)d\mu$ for $A \in \mathcal{M}$ and $f \in L^+$, where $I_A(x)$ is the indicator function of A.

1. (a) Evaluate the limit and justify the calculation:

$$\lim_{n \to \infty} \int_0^n x^k (1 - n^{-1}x)^n \, dx$$

(b) Evaluate the limit and justify the calculation:

$$\lim_{n \to \infty} \sqrt{n} \int_0^1 (1 + nx^2) (1 + x^2)^{-n} \, dx$$

2. Expand the following as a power series in a and justify any interchange of integrals and sums:

$$\int_0^\infty e^{-y^2} \sin(ay) \, dy$$

3. (Like Problem 33 page 63) If $f_n(x) \ge 0$ are measurable and $f_n \to f$ in measure for a measure μ , show that $\int f(x) d\mu \le \liminf_{n\to\infty} \int f_n(x) d\mu$.

4. For X = [0, 1], let $\mu = m + 2\delta_a$ for some $a \in (0, 1)$ where *m* is Lebesgue measure and δ_a is the delta measure based at *a*. (That is, $\delta_a(E) = 1$ if $a \in E$ and $\delta_a(E) = 0$ if $a \notin E$.) Thus $\mu(X) = 3$. Evaluate the following limit and justify your calculations:

$$\lim_{n \to \infty} \int_0^1 \int_0^1 e^{-n(x-y)^2} d\mu(x) d\mu(y)$$

(*Warning*: The measure $\mu(A)$ may have atoms.)

5. (Like Problem 50 page 69) Assume that (X, \mathcal{M}, μ) is a σ -finite measure and assume $f \in L^+(X, \mathcal{M})$. Let m be Lebesgue measure on $R^+ = [0, \infty)$ and set

$$G_f = \{ (x, y) \in (X \times [0, \infty)) : 0 \le y < f(x) \}$$

Use Theorem 2.10 page 47 to show that $G_f \in \mathcal{M} \otimes \mathcal{B}(\mathbb{R}^+)$. Also, show that

$$(\mu \times m)(G_f) = \int_X f(x) \, d\mu = \int_0^\infty \mu(\{f > y\}) \, dy$$

(This shows that the integral can be viewed as " the area under the curve ".)

6. (Like Problem 51 page 69) Let (X, \mathcal{M}_1, μ) and $(Y, \mathcal{M}_2, \beta)$ be two arbitrary measure spaces, not necessarily σ -finite (so that you cannot apply Fubini's theorem directly). Show

(a) If $f: X \to R$ is \mathcal{M}_1 -measurable and $g: Y \to R$ is \mathcal{M}_2 -measurable for the real numbers R, then h(x, y) = f(x)g(y) is $(\mathcal{M}_1 \otimes \mathcal{M}_2)$ -measurable.

(b) If $f \in L^1(\mu)$ and $g \in L^1(\beta)$, then $h \in L^1(\mu \times \beta)$ and

$$\int h(z)d(\mu \times \beta)(z) = \left(\int f(x)d\mu(x)\right)\left(\int g(y)d\beta(y)\right)$$

7. (Like Problem 54 page 77) Theorem 2.44 has four statements about invertible $n \times n$ matrices T. Replacing "Lebesgue measurable function" by "Borel function" and \mathcal{L}^n by $\mathcal{B}(\mathbb{R}^n)$, which of the four statements are true or false if T is not invertible?

8. (Like Problem 61 page 77) Define

$$I_{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_0^x (x-y)^{\alpha-1} f(y) \, dy$$

for $\alpha > 0$, $x \in (0, \infty)$, and f(x) continuous on $[0, \infty)$. The functional $I_{\alpha}f(x)$ is called the α^{th} fractional integral of f(x). Show that

(a) $I_{\alpha+\beta}f(x) = I_{\alpha}(I_{\beta}f)(x)$ for all $\alpha, \beta > 0$ and x > 0. (You can use the identity in Problem 60 page 77 in the text.)

(b) If n is an integer with $n \ge 1$, then $(d/dx)^n I_n f(x) = f(x)$ for x > 0. (In this sense, $I_n f(x)$ is an n-fold integral of f(x).)