Ma 5051 — Real Variables and Functional Analysis
Solutions for Take-Home Midterm

Prof. Sawyer — Washington University

Let (X, M, i) be a measure space. Recall [, f(z)dp = [I4(z)f(x)dp for A e M
and f € LJr where [ 4(x) is the indicator function of A.

1. (a) The problem is to show that the integrand is dominated by an integrable
function. Since 1 —e™* = fox e Ydy < fox dy = x, it follows that 1 — z < e™%,
1—(1/n)x < e ®/" and (1 — (1/n)m)n < e~ . Thus the integrand is dominated by

xFe~* which is integrable on (0,c0). Then by the dominated convergence theorem

lim 2" (1 - n_lx)n dx = / lim (g, (z) 2" (1 — n_lx)n dx
0

n—oo 0 n—oo

= / e dx = k!
0

(b) The substitution x — x/y/n changes the integral to

B vn 1+ a2
I(m) = /0 (1+ (1/n)z2)" e

By the binomial theorem (see also the model solutions for Problem 4a of HW5),

2\ 2 1 2\2 1
(1+1'_> Zl_,_nx__{_M(x_) >1+§x4
n

n 2 n

for > 0 and n > 3. Thus the integrand of I(n) is dominated by 3(1+22)/(3+z%),
which is integrable on (0,00). Then by the dominated convergence theorem

e 1+ a2
lim I(n) = lim I
n— oo ( ) /(; n— oo (0, ﬂ (]_ —+ ]_/TL I‘Q)

— / +x / —a? dr + / —y (2.%6_302) dz
0 0 0o 2

:§/ —@"d_§\/_
0 4

2
2. The integral is

n 2n+1 2n—|—l

I(a):/o eysmaydy—/ eyz 2n+1 dy
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The partial sums of the integrand of I(a) are dominated for fixed a > 0 by
2n+1 2n+1

(e @] o0 n.n
eV’ E e—y2§ :a vy _ eV’ oy
2n+1 - n!
n=0

where the second series is formed from the first by adding in the even terms
a®my?m/(2n)!. Since the last expression above is integrable on (0,00), dominated
convergence allows us to interchange the integral and sum in /(a) and conclude

o (=1)ma?nt? /oo g 2n = (—1)"a? /°° .
I a) = —_— e y n+ d = —_— = e mwn dl‘
(a) nz_% Cn+ Dl J, v nz_% Cn+ 1! 2,

©° ( 1)n 2n—|—1

) a —a?/2)
_ ;0 o O = 22 i 2n—1)---(3)(1)

since 2"n! = (2n)(2n —2)...2.

One can use complex-variable techniques to show I(a) = [;° e~V sin(ay) dy =
—a*/4 0a/2 v dx, but that is not required.
See the Appendix for two derivations of this identity using complex-variable

methods, one based on analytic continuation and one using Cauchy’s theorem.

(&

3. Let A=liminf, .o [ fn(z)dp. Then there exists a sequence ny T oo such that
limg oo [ fn, dpp = A. Since f,,, — f in measure, there exists a further subsequence
{fnkj } such that lim;_, o fr, (x) = f(z) a.e. u. Since f,,(x) > 0, this implies

[ f@dn < tmint [, @ du = Jin [ o @) di = tmint [ fu(o)do

and [ f(z)dp <liminf, o [ fo(x)dp

4. Since p is a finite measure on X = [0, 1], by the dominated convergence theorem

nligr;o// @ () dply) = // (, y)dp(x)dp(y)

where J(z,z) = 1 and J(x,y) = 0 for y # x. The inner integral in I above, as a
function of y, is

1 1
/ J(@, y)du(z) = / J(a,y)(dm(z) + 2d8.(2)) = 2J(a,y)
0 0
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since, for fixed y, J(x,y) = 0 (Lebesgue) a.e. Thus the double integral is

1= [ 20aduts) = [ 27(a)dn) + 208,(0) = 1(a,0) =4
0 0

5. (a) Show that Gy = {(z,y) : 0 < y < f(z)} is measurable in the product
o-algebra (that is, Gy € M @ B(R™)).

Proof I of (a): By Proposition 2.10, there exist simple functions f,(x) such
that 0 < f,(x) T f(x) for all z. If h(z) = ZJ 1 ¢ila,(x) is a nonnegative simple
function with disjoint A; € M, then G}, = UJ: (A; x [0,¢;)) is a finite disjoint
union of measurable rectangles and so is product measurable. Since Gy, T G if
0 < fu(x) T f(x) for all x, the set G is also product measurable.

Proof II of (a): The functions Fi(z,y) = f(x) and Fy(z,y) = y are both
measurable in the product o-algebra, since in each case { (z,y) : Fj(z,y) < A}isa
measurable rectangle. Thus F(x,y) = Fi(x,y) — Fa(x,y) = f(z) —y is also product
measurable, by Proposition 2.6 (page 45) in the text. Finally, Gy = {(z,y) :
F(z,y) >0}.

(b) By the Fubini-Tonelli theorem for the product measure of p on (X, M)
and Lebesgue measure m on R = [0, 00),

(1 x m)(Gy) // I, (z,y) dm(y)dp(z //Igfacydu z)dm(y)

} = [0, f(z)), so that the inner
) dm(y ) f(z). Thus the first

For fixed z, the section (Gf), = {y : y < f(z)
integral of the first integral above is fooo Ig,(z,y
iterated integral equals [ f(z)dpu.

For fixed y, the section (Gy)Y = {z: f(z) >y}, so that [ Ig,(z,y)dm(y) =
F(y) = p({z : f(z) > y}) and the second integral above is [~ F(y)dy. Thus the
two expressions are the same, and are also the same as (1 x m)(Gy).

It is sufficient to assume f(x) > 0 and g(y) > 0, since otherwise we can write
= fT — f  and g = g* — ¢g~. Define simple functions f, (), gm(y) such that
< fal(@) T f(z) for all 2 and 0 < gim(y) T g(y) for all y.

(a) If fo(z) = 2200 ajla,(x) and gn(y) = D22 b;lp,(y) for fixed n and
disjoint sets { A; } in X and { By } in Y, then { A; x By } are disjoint subsets of
X xY and

{(@,9): fa@)gn(y) <A} = [JUJ{A4) x B s ajbr, <A}

6.
f
0

is a finite union of measurable rectangles for each A\. Thus the functions f,(x)g, (y)
are product measurable.
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Since 0 < fu(2)gn(y) T h(z,y) = f(x)g(y) for all x and y, it follows that
h(z,y) is product measurable. (You can also argue directly from Proposition 2.6 as
in Proof II of Problem 5a.)

(b) Proof I. Since f € L'(u) and g € L'(3), the sets X1 = {z : f(z) > 0}
and Y7 = {y: g(y) > 0} are o-finite. The function h(x,y) = 0 for (z,y) ¢ X7 x Y7.
By the definition of integrals as the supremum of simple functions underneath,
Jxxy Pz, y)dv = [ |y h(z,y)dv. Thus part (b) follows from Tonelli’s theorem
restricted to X7 x Y7.

Proof I1. By definition, (ux3)(Ax B) = u(A)B(B) for A € M; and B € M.
If fi(z) = >0, ¢jla;(z) for disjoint A; € My and gi(y) = D22, dilp, (y) for
disjoint By € M, then

n

[ h@a e s) = 33" e (nx )y x B

_ gcjumj) (édkm&)) = ([ @) ([owa)

Thus the identity is true for nonnegative simple functions. Since 0 < f,,(x)g,(y) 1
h(z,y) = f(z,y) for all z and y, it follows from the increasing limits theorem that
it is true for h(zx,y) as well.

7. (a) “If f is Borel measurable on R", then so is f o 77 This is true even if T is
not invertible, since, since by the definition of a measurable function on page 43, a
Borel function of a Borel-measurable function is always Borel measurable.

(b) (Equation (2.45)) If T'is not invertible and (for example) f(x) = exp(—||z|?),
then det(T) = 0 and [ f(T'(z)) dz = 0. The equation is false unless you have a
very specific convention about the product 0 x oco.

(c) “If E € B(R™), then T(F) € B(R™)” This is true if T is invertible since
both T and 7! are measurable. For non-invertible T, it is equivalent to whether
or not an orthogonal projection of a Borel set onto a lower-dimensional subspace
is always a Borel set. Unfortunately, this is apparently false even for n = 2 by a
theorem of Suslin, but Lebesgue apparently gave a false proof of this result. Thus
you are in good company if you believed that it was true. (Part (c) not counted for
grade on Problem 7.)

(d) “m(T(F)) = |det(T)|m(E)” is true, in a sense, if T' is not invertible, since
(i) the range of T is a lower-dimensional subspace of R™ and (ii) det(7") = 0. Thus
T(FE) is a Lebesgue null set even if it is not a Borel set.

8. (a) If f(x) is continuous on [0,00) and a > 0, then by dominated convergence
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g(x) = I, f(z) is also continuous on [0, c0) with g(0) = 0. If z > 0,

Ia(Iﬁf>(~T) = ﬁ/{)w(x—y)a_llﬁ(f)(y)dy
1 x o Yy
= T(@T(B) / (x =y / (y = 2)° " f(2)dzdy
- a—)lp / / It (yy0sa<y<a} (U, 2) (@ — )"y — 2)° 7 f(2)dzdy

= — z x—y)* ! p-1 2

_ F(a)l“(ﬁ)/o f( >/z< 9"y — 2)°dyd
1 T T—z ol Bt

- T / £(2) / (- 2 — 5)° 'y Ly dz

1
_ OK);F/ f . Oz—i—ﬁ 1/ (1_y)a—1yﬁ—ldydz
_ _ a B-1 _
- ) (Hﬁ / e s = Loy f(x)
by the identity fo 1 x)b= 1dx =T'(a)I'(b)/T'(a+b) (see Problem 60 on page 77).
(b) If n = 1, Ilf = [y f(y)dy and (d/dx)I, f(z) = f(z). If n > 1, then
Inf(x) = Il( n— 1f fO n— lf dy by part (a ( ) and (d/d:E)Inf(m) = n—lf(x)'

Thus (d/dx)" I, f(x) = f( ) by induction.

Appendix: We now show how to derive

00 a/2
I(a) = / eV’ sin(ay) dy = e_a2/4/ e dx (%)
0 0

by using either analytic continuation or Cauchy’s theorem. Both cases depend on
the useful identity e'*¥ = cos(ay) + i sin(ay).

By Analytic Continuation: By completing a square,

/ooe y ay dy _ /OO e—(y—a/2)2ea2/4 dy _ /OO €_y2 dy ea2/4
0 0 —a/2

and thus

o0 2 Yy _ e~y 2 1 a/2 2 2 a/2 2
[ (2 iy e (L[ ) = o [y
0 2 2 —a/2 0

()
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In general, if two functions

fila) = Z bpa™ and  fa(a) = chan
; =

J=0

(i) equal power-series expansions that converge for all complex a and (ii) satisfy
fi(a) = fa(a) for all real a > 0, then fi(a) = f2(a) for all complex a. This is
because b, = ¢, = ((d"/da™)f1)(0)/n! where the derivatives can be calculated for
a > 0 only, so that the power series are identical. (In fact, it is only necessary that
fi(a) = f2(a) on a sequence a, — 0.) Thus, using sin(ay) = (e'®¥ — e*¥)/(2i),
replacing a by ia in (**) yields

o) ) 274 ia/2 ) 2/, ia/2 )
/ eV sin(ay)dy = ie/ / eV dy = ie”®/ / e ¥ dy
0 0 0

(In this case, we say that we have analytically continued (**) from real a to
z =1a/2.) The last integral above may look odd if you are not used to integrals
in the complex plane, but stands for a path integral along any path y = y(t) for
0 <t <1 with y(0) =0 and y(1) = ia/2. In particular we can use the substitution
y — iy in the integral to obtain (*).

By Cauchy’s Theorem: Cauchy’s theorem implies that [ f(z)dz = 0 for any
closed path C' and function f(z) that is analytic in the plane (that is, equals a
power-series expansion that converges for all z). By completing a square in the
exponent

J(a) = / e~V giay dy = e_a2/4/ e~ (w—ia/2)® dy
0 0

Consider a closed path C consisting of four line segments: I (7)) is a straight line
from —ia/2 to (T — ia/2) oriented from left to right, I5(7T") from (T' —ia/2) to T,
I5(T) from T to 0 oriented from right to left, and I4(7T") from 0 to —ia/2. By
Cauchy’s theorem, the sum of the integrals of f(z) = e=*" over the four paths is
equal to zero. As T — oo, the integrals over I1(T) — I;(c0), I2(T) — 0, and
I3(T) — I3(0c0). Thus the sum of the integrals of f(z) over I;(o0), I3(o0) (oriented

from right to left), and I, is equal to zero. This implies
J(a) = e_a2/4I1(oo) = —e_a2/413(oo) — e/,

Now —I3(00) =[5 e~ dr = /7/2 and

—ia/2 ) a/2 )
—14:—/ e ” dz:i/ e* dz
0 0
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by making the substitution z — —iz. This implies
00 ) a/2
J(a) = / eV el dy = ¢ /4 (@ + z/ e” dm)
0 0

Taking real and imaginary parts in the equation above leads to

/ e cos(ay)dy = /YT
0

o a/2
/ eV’ sin(ay) dy = e_“2/4/ e dz
0 0



