
Ma5051 — Real Variables and Functional Analysis
Solutions for Take-Home Midterm

Prof. Sawyer — Washington University

Let (X,M, µ) be a measure space. Recall
∫

A
f(x)dµ =

∫
IA(x)f(x)dµ for A ∈ M

and f ∈ L+, where IA(x) is the indicator function of A.

1. (a) The problem is to show that the integrand is dominated by an integrable
function. Since 1 − e−x =

∫ x

0
e−ydy ≤ ∫ x

0
dy = x, it follows that 1 − x ≤ e−x,

1− (1/n)x ≤ e−x/n, and
(
1− (1/n)x

)n ≤ e−x. Thus the integrand is dominated by
xke−x, which is integrable on (0,∞). Then by the dominated convergence theorem

lim
n→∞

∫ n

0

xk
(
1− n−1x

)n
dx =

∫ ∞

0

lim
n→∞

I(0,n](x) xk
(
1− n−1x

)n
dx

=
∫ ∞

0

xke−x dx = k!

(b) The substitution x → x/
√

n changes the integral to

I(n) =
∫ √

n

0

1 + x2

(
1 + (1/n)x2

)n dx

By the binomial theorem (see also the model solutions for Problem 4a of HW5),

(
1 +

x2

n

)n

≥ 1 + n
x2

n
+

n(n− 1)
2

(
x2

n

)2

≥ 1 +
1
3
x4

for x > 0 and n ≥ 3. Thus the integrand of I(n) is dominated by 3(1+x2)/(3+x4),
which is integrable on (0,∞). Then by the dominated convergence theorem

lim
n→∞

I(n) =
∫ ∞

0

lim
n→∞

I(0,
√

n](x)
1 + x2

(
1 + (1/n)x2

)n dx

=
∫ ∞

0

1 + x2

ex2 dx =
∫ ∞

0

e−x2
dx +

∫ ∞

0

1
2
x

(
2xe−x2

)
dx

=
3
2

∫ ∞

0

e−x2
dx =

3
4
√

π

2. The integral is

I(a) =
∫ ∞

0

e−y2
sin(ay) dy =

∫ ∞

0

e−y2
∞∑

n=0

(−1)na2n+1y2n+1

(2n + 1)!
dy



Ma5051– Real Variables and Functional Analysis– Take-Home Midterm . . . . . . . . .2

The partial sums of the integrand of I(a) are dominated for fixed a > 0 by

e−y2
∞∑

n=0

a2n+1y2n+1

(2n + 1)!
≤ e−y2

∞∑
n=0

anyn

n!
= e−y2

eay

where the second series is formed from the first by adding in the even terms
a2ny2n/(2n)!. Since the last expression above is integrable on (0,∞), dominated
convergence allows us to interchange the integral and sum in I(a) and conclude

I(a) =
∞∑

n=0

(−1)na2n+1

(2n + 1)!

∫ ∞

0

e−y2
y2n+1 dy =

∞∑
n=0

(−1)na2n+1

(2n + 1)!
1
2

∫ ∞

0

e−xxn dx

=
∞∑

n=0

(−1)na2n+1 n!
2(2n + 1)!

=
a

2

∞∑
n=0

(−a2/2)n

(2n + 1)(2n− 1) . . . (3)(1)

since 2nn! = (2n)(2n− 2) . . . 2.
One can use complex-variable techniques to show I(a) =

∫∞
0

e−y2
sin(ay) dy =

e−a2/4
∫ a/2

0
ex2

dx, but that is not required.
See the Appendix for two derivations of this identity using complex-variable

methods, one based on analytic continuation and one using Cauchy’s theorem.

3. Let A = lim infn→∞
∫

fn(x) dµ. Then there exists a sequence nk ↑ ∞ such that
limk→∞

∫
fnk

dµ = A. Since fnk
→ f in measure, there exists a further subsequence

{ fnkj
} such that limj→∞ fnkj

(x) = f(x) a.e. µ. Since fn(x) ≥ 0, this implies

∫
f(x) dµ ≤ lim inf

j→∞

∫
fnkj

(x) dµ = lim
k→∞

∫
fnk

(x) dµ = lim inf
n→∞

∫
fn(x) dµ

and
∫

f(x) dµ ≤ lim infn→∞
∫

fn(x) dµ.

4. Since µ is a finite measure on X = [0, 1], by the dominated convergence theorem

lim
n→∞

∫ 1

0

∫ 1

0

e−n(x−y)2dµ(x)dµ(y) = I =
∫ 1

0

∫ 1

0

J(x, y)dµ(x)dµ(y)

where J(x, x) = 1 and J(x, y) = 0 for y 6= x. The inner integral in I above, as a
function of y, is

∫ 1

0

J(x, y)dµ(x) =
∫ 1

0

J(x, y)(dm(x) + 2dδa(x)) = 2J(a, y)
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since, for fixed y, J(x, y) = 0 (Lebesgue) a.e. Thus the double integral is

I =
∫ 1

0

2J(a, y)dµ(y) =
∫ 1

0

2J(a, y)(dm(y) + 2dδa(y)) = 4J(a, a) = 4

5. (a) Show that Gf = { (x, y) : 0 ≤ y < f(x) } is measurable in the product
σ-algebra (that is, Gf ∈M⊗B(R+)).

Proof I of (a): By Proposition 2.10, there exist simple functions fn(x) such
that 0 ≤ fn(x) ↑ f(x) for all x. If h(x) =

∑m
j=1 cjIAj

(x) is a nonnegative simple
function with disjoint Aj ∈ M, then Gh =

⋃m
j=1

(
Aj × [0, cj)

)
is a finite disjoint

union of measurable rectangles and so is product measurable. Since Gfn ↑ Gf if
0 ≤ fn(x) ↑ f(x) for all x, the set Gf is also product measurable.

Proof II of (a): The functions F1(x, y) = f(x) and F2(x, y) = y are both
measurable in the product σ-algebra, since in each case { (x, y) : Fj(x, y) ≤ λ } is a
measurable rectangle. Thus F (x, y) = F1(x, y)−F2(x, y) = f(x)−y is also product
measurable, by Proposition 2.6 (page 45) in the text. Finally, Gf = { (x, y) :
F (x, y) > 0 }.

(b) By the Fubini-Tonelli theorem for the product measure of µ on (X,M)
and Lebesgue measure m on R+ = [0,∞),

(µ×m)(Gf ) =
∫

X

∫ ∞

0

IGf
(x, y) dm(y)dµ(x) =

∫ ∞

0

∫

X

IGf
(x, y) dµ(x)dm(y)

For fixed x, the section (Gf )x = { y : y < f(x) } = [0, f(x)), so that the inner
integral of the first integral above is

∫∞
0

IGf
(x, y) dm(y) = f(x). Thus the first

iterated integral equals
∫

X
f(x) dµ.

For fixed y, the section (Gf )y = {x : f(x) > y }, so that
∫

X
IGf

(x, y) dm(y) =
F (y) = µ({x : f(x) > y }) and the second integral above is

∫∞
0

F (y) dy. Thus the
two expressions are the same, and are also the same as (µ×m)(Gf ).

6. It is sufficient to assume f(x) ≥ 0 and g(y) ≥ 0, since otherwise we can write
f = f+ − f− and g = g+ − g−. Define simple functions fn(x), gm(y) such that
0 ≤ fn(x) ↑ f(x) for all x and 0 ≤ gm(y) ↑ g(y) for all y.

(a) If fn(x) =
∑m1

j=1 ajIAj (x) and gn(y) =
∑m2

k=1 bjIBj (y) for fixed n and
disjoint sets {Aj } in X and {Bk } in Y , then {Aj × Bk } are disjoint subsets of
X × Y and

{ (x, y) : fn(x)gn(y) ≤ λ } =
⋃⋃

{Aj ×Bk : ajbk ≤ λ }

is a finite union of measurable rectangles for each λ. Thus the functions fn(x)gn(y)
are product measurable.
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Since 0 ≤ fn(x)gn(y) ↑ h(x, y) = f(x)g(y) for all x and y, it follows that
h(x, y) is product measurable. (You can also argue directly from Proposition 2.6 as
in Proof II of Problem 5a.)

(b) Proof I. Since f ∈ L1(µ) and g ∈ L1(β), the sets X1 = {x : f(x) > 0 }
and Y1 = { y : g(y) > 0 } are σ-finite. The function h(x, y) = 0 for (x, y) /∈ X1×Y1.
By the definition of integrals as the supremum of simple functions underneath,∫

X×Y
h(x, y)dν =

∫
X1×Y1

h(x, y)dν. Thus part (b) follows from Tonelli’s theorem
restricted to X1 × Y1.

Proof II. By definition, (µ×β)(A×B) = µ(A)β(B) for A ∈M1 and B ∈M2.
If f1(x) =

∑n
j=1 cjIAj

(x) for disjoint Aj ∈ M1 and g1(y) =
∑m

k=1 dkIBk
(y) for

disjoint Bk ∈M2, then

∫
f1(x)g1(y) d(µ× β) =

n∑

j=1

m∑

k=1

cjdk (µ× β)(Aj ×Bk)

=




n∑

j=1

cjµ(Aj)




(
m∑

k=1

dkβ(Bk)

)
=

(∫
f1(x) dµ

)(∫
g1(y) dβ

)

Thus the identity is true for nonnegative simple functions. Since 0 ≤ fn(x)gn(y) ↑
h(x, y) = f(x, y) for all x and y, it follows from the increasing limits theorem that
it is true for h(x, y) as well.

7. (a) “If f is Borel measurable on Rn, then so is f ◦ T” This is true even if T is
not invertible, since, since by the definition of a measurable function on page 43, a
Borel function of a Borel-measurable function is always Borel measurable.

(b) (Equation (2.45)) If T is not invertible and (for example) f(x) = exp(−‖x‖2),
then det(T ) = 0 and

∫
f
(
T (x)

)
dx = ∞. The equation is false unless you have a

very specific convention about the product 0×∞.
(c) “If E ∈ B(Rn), then T (E) ∈ B(Rn)” This is true if T is invertible since

both T and T−1 are measurable. For non-invertible T , it is equivalent to whether
or not an orthogonal projection of a Borel set onto a lower-dimensional subspace
is always a Borel set. Unfortunately, this is apparently false even for n = 2 by a
theorem of Suslin, but Lebesgue apparently gave a false proof of this result. Thus
you are in good company if you believed that it was true. (Part (c) not counted for
grade on Problem 7.)

(d) “m(T (E)) = | det(T )|m(E)” is true, in a sense, if T is not invertible, since
(i) the range of T is a lower-dimensional subspace of Rn and (ii) det(T ) = 0. Thus
T (E) is a Lebesgue null set even if it is not a Borel set.

8. (a) If f(x) is continuous on [0,∞) and α > 0, then by dominated convergence
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g(x) = Iαf(x) is also continuous on [0,∞) with g(0) = 0. If x > 0,

Iα

(
Iβf

)
(x) =

1
Γ(α)

∫ x

0

(x− y)α−1Iβ(f)(y)dy

=
1

Γ(α)Γ(β)

∫ x

0

(x− y)α−1

∫ y

0

(y − z)β−1f(z)dzdy

=
1

Γ(α)Γ(β)

∫ x

0

∫ x

0

I{ (y,z):0≤z≤y≤x }(y, z)(x− y)α−1(y − z)β−1f(z)dzdy

=
1

Γ(α)Γ(β)

∫ x

0

f(z)
∫ x

z

(x− y)α−1(y − z)β−1dy dz

=
1

Γ(α)Γ(β)

∫ x

0

f(z)
∫ x−z

0

(x− z − y)α−1yβ−1dy dz

=
1

Γ(α)Γ(β)

∫ x

0

f(z)(x− z)α+β−1

∫ 1

0

(1− y)α−1yβ−1dy dz

=
1

Γ(α)Γ(β)
Γ(α)Γ(β)
Γ(α + β)

∫ x

0

f(z)(x− z)α+β−1dz = Iα+βf(x)

by the identity
∫ 1

0
xa−1(1−x)b−1dx = Γ(a)Γ(b)/Γ(a+b) (see Problem 60 on page 77).

(b) If n = 1, I1f(x) =
∫ x

0
f(y)dy and (d/dx)I1f(x) = f(x). If n > 1, then

Inf(x) = I1(In−1f)(x) =
∫ x

0
In−1f(y)dy by part (a) and (d/dx)Inf(x) = In−1f(x).

Thus (d/dx)nInf(x) = f(x) by induction.

Appendix: We now show how to derive

I(a) =
∫ ∞

0

e−y2
sin(ay) dy = e−a2/4

∫ a/2

0

ex2
dx (∗)

by using either analytic continuation or Cauchy’s theorem. Both cases depend on
the useful identity eiay = cos(ay) + i sin(ay).

By Analytic Continuation: By completing a square,

∫ ∞

0

e−y2
eay dy =

∫ ∞

0

e−(y−a/2)2ea2/4 dy =

(∫ ∞

−a/2

e−y2
dy

)
ea2/4

and thus

∫ ∞

0

e−y2
(

eay − e−ay

2

)
dy = ea2/4

(
1
2

∫ a/2

−a/2

e−y2
dy

)
= ea2/4

∫ a/2

0

e−y2
dy

(∗∗)
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In general, if two functions

f1(a) =
∞∑

j=0

bnan and f2(a) =
∞∑

j=0

cnan

(i) equal power-series expansions that converge for all complex a and (ii) satisfy
f1(a) = f2(a) for all real a > 0, then f1(a) = f2(a) for all complex a. This is
because bn = cn = ((dn/dan)f1)(0)/n! where the derivatives can be calculated for
a > 0 only, so that the power series are identical. (In fact, it is only necessary that
f1(a) = f2(a) on a sequence an → 0.) Thus, using sin(ay) = (eiay − e−iay)/(2i),
replacing a by ia in (**) yields

∫ ∞

0

e−y2
sin(ay) dy = i e(ia)2/4

∫ ia/2

0

e−y2
dy = i e−a2/4

∫ ia/2

0

e−y2
dy

(In this case, we say that we have analytically continued (**) from real a to
z = ia/2.) The last integral above may look odd if you are not used to integrals
in the complex plane, but stands for a path integral along any path y = y(t) for
0 ≤ t ≤ 1 with y(0) = 0 and y(1) = ia/2. In particular we can use the substitution
y → iy in the integral to obtain (*).

By Cauchy’s Theorem: Cauchy’s theorem implies that
∫

C
f(z)dz = 0 for any

closed path C and function f(z) that is analytic in the plane (that is, equals a
power-series expansion that converges for all z). By completing a square in the
exponent

J(a) =
∫ ∞

0

e−y2
eiay dy = e−a2/4

∫ ∞

0

e−(y−ia/2)2 dy

Consider a closed path C consisting of four line segments: I1(T ) is a straight line
from −ia/2 to (T − ia/2) oriented from left to right, I2(T ) from (T − ia/2) to T ,
I3(T ) from T to 0 oriented from right to left, and I4(T ) from 0 to −ia/2. By
Cauchy’s theorem, the sum of the integrals of f(z) = e−z2

over the four paths is
equal to zero. As T → ∞, the integrals over I1(T ) → I1(∞), I2(T ) → 0, and
I3(T ) → I3(∞). Thus the sum of the integrals of f(z) over I1(∞), I3(∞) (oriented
from right to left), and I4 is equal to zero. This implies

J(a) = e−a2/4I1(∞) = −e−a2/4I3(∞) − e−a2/4I4

Now −I3(∞) =
∫∞
0

e−x2
dx =

√
π/2 and

−I4 = −
∫ −ia/2

0

e−z2
dz = i

∫ a/2

0

ez2
dz
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by making the substitution z → −iz. This implies

J(a) =
∫ ∞

0

e−y2
eiay dy = e−a2/4

(√
π

2
+ i

∫ a/2

0

ex2
dx

)

Taking real and imaginary parts in the equation above leads to

∫ ∞

0

e−y2
cos(ay) dy = e−a2/4

√
π

2
∫ ∞

0

e−y2
sin(ay) dy = e−a2/4

∫ a/2

0

ex2
dx


