Ma 551 — Advanced Probability

Problem Set #1 — Due October 6, 2009

Prof. Sawyer — Washington University

Problems in text are from Patrick Billingsley, *Probability and Measure*, 3rd edn, John Wiley & Sons, 1995.

1. Let $X \geq 0$ be a nonnegative random variable (r.v.) on a probability space (Ω, \mathcal{F}, P) and assume that r > 0. Show that

$$E(X^r) = \int_0^\infty ry^{r-1} P(X \ge y) \, dy$$

Conclude that $E(X) < \infty$ if and only if

$$\int_0^\infty P(X \ge y) \, dy < \infty$$

(*Hint*: Write $E(X^r) = E(\int_0^{X^r} du)$, express in terms of a product measure $\mu_2(d\omega dy)$ on $\Omega \times [0, \infty)$, and use Fubini's Theorem.)

- **2.** Let X be a uniformly distributed r.v. on a probability space (Ω, \mathcal{F}, P) . (That is, $P(X \le x) = x$ for $0 \le x \le 1$.)
- (i) Show that $E(\phi(X)) = \int_0^1 \phi(x) dx$ for all Borel functions $\phi(x) \ge 0$. (Hint: Use the first lifting theorem.)
- (ii) Let $Y = r \log(1/X)$ for some r > 0. Prove that Y has a density function $f_Y(y)$ with respect to Lebesgue measure and find $f_Y(y)$. (*Hint*: This holds if and only if $E(\phi(Y)) = \int_0^\infty \phi(y) \mu_{F_Y}(dy) = \int_0^\infty \phi(y) f_Y(y) dy$ for all bounded Borel functions $\phi(x) \geq 0$.)
- **3.** Let $\{X_n\}$ be an independent and identically distributed sequence of random variables on a probability space (Ω, \mathcal{F}, P) such that $X_n \geq 0$ and $E(X_n) = \infty$. Use the strong law of large numbers for independent random variables with $E(X^4) < \infty$ to prove that

$$\lim_{n \to \infty} \frac{X_1 + X_2 + \dots + X_n}{n} = \infty \quad \text{a.s.}$$

(*Hint*: Consider $X_i^C = \min\{X_i, C\}$ for C > 0.)

4. Let X and Y be independent and identically distributed random variables. Find the limit

$$\lim_{n \to \infty} E(e^{-n(X-Y)^2})$$

(*Hint*: Express the expectation in terms of the joint distribution function of X and Y. If you take a limit inside an integral, explain why it is valid. What happens if the distributions of X and Y have atoms? Be careful!)

5. Let X and Y be random variables on a probability space (Ω, \mathcal{F}, P) . Assume that X has density $f(x) = f_X(x)$ on $R = R^1$ and Y has density $g(y) = f_Y(y)$. That is,

$$P(X \le x) = F_X(x) = \int_0^x f(u)du, \quad \text{all } x$$
$$P(Y \le y) = F_Y(y) = \int_0^y g(v)dv, \quad \text{all } y$$

Assume g(y) > 0 for all $y \in R^1$ and define

$$L_R(y) = \frac{f(y)}{g(y)}$$

Prove that

$$E(\phi(Y)L_R(Y)) = E(\phi(X))$$

for all nonnegative Borel functions $\phi(y)$ on R. (Hint: Use the first lifting theorem.)