Ma 551 - Advanced Probability

Problem Set \#1 - Due October 6, 2009
Prof. Sawyer - Washington University

Problems in text are from Patrick Billingsley, Probability and Measure, 3rd edn, John Wiley \& Sons, 1995.

1. Let $X \geq 0$ be a nonnegative random variable (r.v.) on a probability space (Ω, \mathcal{F}, P) and assume that $r>0$. Show that

$$
E\left(X^{r}\right)=\int_{0}^{\infty} r y^{r-1} P(X \geq y) d y
$$

Conclude that $E(X)<\infty$ if and only if

$$
\int_{0}^{\infty} P(X \geq y) d y<\infty
$$

(Hint: Write $E\left(X^{r}\right)=E\left(\int_{0}^{X^{r}} d u\right)$, express in terms of a product measure $\mu_{2}(d \omega d y)$ on $\Omega \times[0, \infty)$, and use Fubini's Theorem.)
2. Let X be a uniformly distributed r.v. on a probability space (Ω, \mathcal{F}, P). (That is, $P(X \leq x)=x$ for $0 \leq x \leq 1$.)
(i) Show that $E(\phi(X))=\int_{0}^{1} \phi(x) d x$ for all Borel functions $\phi(x) \geq 0$. (Hint: Use the first lifting theorem.)
(ii) Let $Y=r \log (1 / X)$ for some $r>0$. Prove that Y has a density function $f_{Y}(y)$ with respect to Lebesgue measure and find $f_{Y}(y)$. (Hint: This holds if and only if $E(\phi(Y))=\int_{0}^{\infty} \phi(y) \mu_{F_{Y}}(d y)=\int_{0}^{\infty} \phi(y) f_{Y}(y) d y$ for all bounded Borel functions $\phi(x) \geq 0$.)
3. Let $\left\{X_{n}\right\}$ be an independent and identically distributed sequence of random variables on a probability space (Ω, \mathcal{F}, P) such that $X_{n} \geq 0$ and $E\left(X_{n}\right)=\infty$. Use the strong law of large numbers for independent random variables with $E\left(X^{4}\right)<\infty$ to prove that

$$
\lim _{n \rightarrow \infty} \frac{X_{1}+X_{2}+\cdots+X_{n}}{n}=\infty \quad \text { a.s. }
$$

(Hint: Consider $X_{i}^{C}=\min \left\{X_{i}, C\right\}$ for $C>0$.)
4. Let X and Y be independent and identically distributed random variables. Find the limit

$$
\lim _{n \rightarrow \infty} E\left(e^{-n(X-Y)^{2}}\right)
$$

(Hint: Express the expectation in terms of the joint distribution function of X and Y. If you take a limit inside an integral, explain why it is valid. What happens if the distributions of X and Y have atoms? Be careful!)
5. Let X and Y be random variables on a probability space (Ω, \mathcal{F}, P). Assume that X has density $f(x)=f_{X}(x)$ on $R=R^{1}$ and Y has density $g(y)=f_{Y}(y)$. That is,

$$
\begin{array}{ll}
P(X \leq x)=F_{X}(x)=\int_{0}^{x} f(u) d u, & \text { all } x \\
P(Y \leq y)=F_{Y}(y)=\int_{0}^{y} g(v) d v, & \text { all } y
\end{array}
$$

Assume $g(y)>0$ for all $y \in R^{1}$ and define

$$
L_{R}(y)=\frac{f(y)}{g(y)}
$$

Prove that

$$
E\left(\phi(Y) L_{R}(Y)\right)=E(\phi(X))
$$

for all nonnegative Borel functions $\phi(y)$ on R. (Hint: Use the first lifting theorem.)

