
Ma551 — Advanced Probability
Problem Set #2 — Due October 20, 2009

Prof. Sawyer — Washington University

Problems in text are from Patrick Billingsley, Probability and Measure, 3rd edn,
John Wiley & Sons, 1995. The abbreviation i.r.v means independent random vari-
ables and i.i.d means independent and identically distributed (random variables).

Six problems on two pages.

1. (Like Problem 21.14 page 281) Assume E(|X + Y |) < ∞ for i.r.v. X, Y . Show
that E(|X|) < ∞ and E(|Y |) < ∞. Also show by counterexample that the conclu-
sion may be false if X, Y are not independent.

2. Let X1, X2, . . . , Xn, . . . be i.i.d. Show that Xn = O(n) a.s. if and only if
E(|X1|) < ∞. (Hint : X(n) = O(n) a.s. means that, with probability one, there
exists a constant C(ω) < ∞ such that |Xn(ω)| ≤ C(ω)n for n ≥ n0, where n0 < ∞
can also depend on ω. Consider Problem 1 of HW1 with r = 1.)

3. (Problem 22.1 page 294) Let X1, X2, . . . , Xn, . . . be i.r.v. Let Y be a random
variable that is T -measurable where T is the σ-algebra

T =
∞⋂

n=1

B(Xn, Xn+1, . . . , Xn+m, . . .)

Prove that there exists a constant a such that Y = a a.s.

4. (Problem 22.7 page 295) Let X1, X2, . . . , Xn, . . . be i.i.d. with E(|X1|) = ∞.
Conclude that supn

|Xn|
n = ∞ a.s. Use this to show

lim sup
n→∞

∣∣∣∣
X1 + X2 + . . . + Xn

n

∣∣∣∣ = ∞ a.s.

(Hint : If Sn = X1+. . .+Xn, find a relation between Sn/n, Xn/n, and Sn−1/(n−1).)

5. (Like Problem 22.8 page 295) Let X1, X2, . . . be i.i.d. with E(|Xi|) < ∞ and
E(Xi) = µ. A stopping time for X1, X2, . . . is an integer valued random variable
τ ≥ 1 such that { τ = n } ∈ B(X1, . . . , Xn) for all 1 ≤ n < ∞. Set Sn = X1 + X2 +
. . . + Xn.
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(a) Let

τ1 = min{n :
n∑

j=1

X2
j ≥ 4 } and τ2 = min{n : |Sn| ≥ 17 }

with the convention min{φ } = ∞, so that τ1 = ∞ or τ2 = ∞ if the event never
occurs. Show that τ1 and τ2 are stopping times.

(b) Prove Wald’s Lemma: If τ is any stopping time with E(τ) < ∞, then

E(Sτ ) = E(τ)E(X1)

where Sτ (ω) =
∑τ(ω)

j=1 Xj(ω). (Hint : If τ is a stopping time, then { τ ≤ n } =⋃n
j=1{ τ = j } ∈ B(X1, . . . , Xn) but { τ ≥ n } = { τ ≤ n− 1 }c ∈ B(X1, . . . , Xn−1).)

(c) Suppose that each Xn is ±1 with P (Xn = 1) = p and P (Xn = −1) = q for
p+ q = 1. For p > q, let τ be the first n such that either Sn ≤ −A (viewed as losing
what you initially were willing to risk in a favorable game) or Sn ≥ B (viewed as
breaking the bank) for integers A,B ≥ 1.

Show that E(τ) < ∞. Use Wald’s lemma and the estimate Sτ ≤ B to give an
upper bound of the expected length of the game E(τ). (Hints: (i) If τ is a stopping
time, show that τn = min{ τ, n } is also a stopping time. (ii) This is the classical
Gambler’s Ruin problem. See Section 7 pages 92–94 for this problem and the rest
of Section 7 for a series of increasing desperate strategies to make greater profits.
Formulas in Section 7 would allow you to find E(Sτ ) exactly, but that is not needed
here.)

6. (Problem 23.10 page 310) (a) Let X1, X2, . . . , Xm, . . . be i.i.d. with Xi > 0 a.s.
and E(Xi) = µ < ∞. Thus Sn/n → µ a.s. Define

Nt(ω) = sup{n : Sn(ω) ≤ t }

as in equation (23.5) page 298. (If Xi represent the times to failure for a succession of
light bulbs that are immediately replaced when they burn out, then Nt is the number
of light bulbs that have burned out by time t.) Prove that limt→∞Nt/t = 1/µ a.s.

(b) Let X1, X2, . . . be i.i.d. with Xi > 0 a.s. and E(Xi) = ∞. Prove that
limt→∞Nt/t = 0 a.s.


