Ma 551 — Advanced Probability

Problem Set #2 — Due October 20, 2009

Prof. Sawyer — Washington University

Problems in text are from Patrick Billingsley, *Probability and Measure*, 3rd edn, John Wiley & Sons, 1995. The abbreviation i.r.v means independent random variables and i.i.d means independent and identically distributed (random variables).

Six problems on two pages.

1. (Like Problem 21.14 page 281) Assume $E(|X + Y|) < \infty$ for i.r.v. X, Y. Show that $E(|X|) < \infty$ and $E(|Y|) < \infty$. Also show by counterexample that the conclusion may be false if X, Y are not independent.

2. Let $X_1, X_2, \ldots, X_n, \ldots$ be i.i.d. Show that $X_n = O(n)$ a.s. if and only if $E(|X_1|) < \infty$. (*Hint*: X(n) = O(n) a.s. means that, with probability one, there exists a constant $C(\omega) < \infty$ such that $|X_n(\omega)| \le C(\omega)n$ for $n \ge n_0$, where $n_0 < \infty$ can also depend on ω . Consider Problem 1 of HW1 with r = 1.)

3. (Problem 22.1 page 294) Let $X_1, X_2, \ldots, X_n, \ldots$ be i.r.v. Let Y be a random variable that is \mathcal{T} -measurable where \mathcal{T} is the σ -algebra

$$\mathcal{T} = \bigcap_{n=1}^{\infty} \mathcal{B}(X_n, X_{n+1}, \dots, X_{n+m}, \dots)$$

Prove that there exists a constant a such that Y = a a.s.

4. (Problem 22.7 page 295) Let $X_1, X_2, \ldots, X_n, \ldots$ be i.i.d. with $E(|X_1|) = \infty$. Conclude that $\sup_n \frac{|X_n|}{n} = \infty$ a.s. Use this to show

$$\limsup_{n \to \infty} \left| \frac{X_1 + X_2 + \ldots + X_n}{n} \right| = \infty \text{ a.s.}$$

(*Hint*: If $S_n = X_1 + \ldots + X_n$, find a relation between S_n/n , X_n/n , and $S_{n-1}/(n-1)$.)

5. (Like Problem 22.8 page 295) Let X_1, X_2, \ldots be i.i.d. with $E(|X_i|) < \infty$ and $E(X_i) = \mu$. A stopping time for X_1, X_2, \ldots is an integer valued random variable $\tau \ge 1$ such that $\{\tau = n\} \in \mathcal{B}(X_1, \ldots, X_n)$ for all $1 \le n < \infty$. Set $S_n = X_1 + X_2 + \ldots + X_n$.

(a) Let

$$\tau_1 = \min\{n : \sum_{j=1}^n X_j^2 \ge 4\} \text{ and } \tau_2 = \min\{n : |S_n| \ge 17\}$$

with the convention $\min\{\phi\} = \infty$, so that $\tau_1 = \infty$ or $\tau_2 = \infty$ if the event never occurs. Show that τ_1 and τ_2 are stopping times.

(b) Prove Wald's Lemma: If τ is any stopping time with $E(\tau) < \infty$, then

$$E(S_{\tau}) = E(\tau)E(X_1)$$

where $S_{\tau}(\omega) = \sum_{j=1}^{\tau(\omega)} X_j(\omega)$. (*Hint*: If τ is a stopping time, then $\{\tau \leq n\} = \bigcup_{j=1}^{n} \{\tau = j\} \in \mathcal{B}(X_1, \dots, X_n)$ but $\{\tau \geq n\} = \{\tau \leq n-1\}^c \in \mathcal{B}(X_1, \dots, X_{n-1})$.)

(c) Suppose that each X_n is ± 1 with $P(X_n = 1) = p$ and $P(X_n = -1) = q$ for p + q = 1. For p > q, let τ be the first n such that either $S_n \leq -A$ (viewed as losing what you initially were willing to risk in a favorable game) or $S_n \geq B$ (viewed as breaking the bank) for integers $A, B \geq 1$.

Show that $E(\tau) < \infty$. Use Wald's lemma and the estimate $S_{\tau} \leq B$ to give an upper bound of the expected length of the game $E(\tau)$. (*Hints*: (i) If τ is a stopping time, show that $\tau_n = \min\{\tau, n\}$ is also a stopping time. (ii) This is the classical Gambler's Ruin problem. See Section 7 pages 92–94 for this problem and the rest of Section 7 for a series of increasing desperate strategies to make greater profits. Formulas in Section 7 would allow you to find $E(S_{\tau})$ exactly, but that is not needed here.)

6. (Problem 23.10 page 310) (a) Let $X_1, X_2, \ldots, X_m, \ldots$ be i.i.d. with $X_i > 0$ a.s. and $E(X_i) = \mu < \infty$. Thus $S_n/n \to \mu$ a.s. Define

$$N_t(\omega) = \sup\{n : S_n(\omega) \le t\}$$

as in equation (23.5) page 298. (If X_i represent the times to failure for a succession of light bulbs that are immediately replaced when they burn out, then N_t is the number of light bulbs that have burned out by time t.) Prove that $\lim_{t\to\infty} N_t/t = 1/\mu$ a.s.

(b) Let X_1, X_2, \ldots be i.i.d. with $X_i > 0$ a.s. and $E(X_i) = \infty$. Prove that $\lim_{t\to\infty} N_t/t = 0$ a.s.