Ma 551 - Advanced Probability

Problem Set \#2 - Due October 20, 2009
Prof. Sawyer - Washington University

Problems in text are from Patrick Billingsley, Probability and Measure, 3rd edn, John Wiley \& Sons, 1995. The abbreviation i.r.v means independent random variables and i.i.d means independent and identically distributed (random variables).

Six problems on two pages.

1. (Like Problem 21.14 page 281) Assume $E(|X+Y|)<\infty$ for i.r.v. X, Y. Show that $E(|X|)<\infty$ and $E(|Y|)<\infty$. Also show by counterexample that the conclusion may be false if X, Y are not independent.
2. Let $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ be i.i.d. Show that $X_{n}=O(n)$ a.s. if and only if $E\left(\left|X_{1}\right|\right)<\infty$. (Hint: $X(n)=O(n)$ a.s. means that, with probability one, there exists a constant $C(\omega)<\infty$ such that $\left|X_{n}(\omega)\right| \leq C(\omega) n$ for $n \geq n_{0}$, where $n_{0}<\infty$ can also depend on ω. Consider Problem 1 of HW1 with $r=1$.)
3. (Problem 22.1 page 294) Let $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ be i.r.v. Let Y be a random variable that is \mathcal{T}-measurable where \mathcal{T} is the σ-algebra

$$
\mathcal{T}=\bigcap_{n=1}^{\infty} \mathcal{B}\left(X_{n}, X_{n+1}, \ldots, X_{n+m}, \ldots\right)
$$

Prove that there exists a constant a such that $Y=a$ a.s.
4. (Problem 22.7 page 295) Let $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ be i.i.d. with $E\left(\left|X_{1}\right|\right)=\infty$. Conclude that $\sup _{n} \frac{\left|X_{n}\right|}{n}=\infty$ a.s. Use this to show

$$
\limsup _{n \rightarrow \infty}\left|\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}\right|=\infty \text { a.s. }
$$

(Hint: If $S_{n}=X_{1}+\ldots+X_{n}$, find a relation between $S_{n} / n, X_{n} / n$, and $S_{n-1} /(n-1)$.)
5. (Like Problem 22.8 page 295) Let X_{1}, X_{2}, \ldots be i.i.d. with $E\left(\left|X_{i}\right|\right)<\infty$ and $E\left(X_{i}\right)=\mu$. A stopping time for X_{1}, X_{2}, \ldots is an integer valued random variable $\tau \geq 1$ such that $\{\tau=n\} \in \mathcal{B}\left(X_{1}, \ldots, X_{n}\right)$ for all $1 \leq n<\infty$. Set $S_{n}=X_{1}+X_{2}+$ $\ldots+X_{n}$.

Ma 551- Advanced Probability - October 20, 2009
(a) Let

$$
\tau_{1}=\min \left\{n: \sum_{j=1}^{n} X_{j}^{2} \geq 4\right\} \quad \text { and } \quad \tau_{2}=\min \left\{n:\left|S_{n}\right| \geq 17\right\}
$$

with the convention $\min \{\phi\}=\infty$, so that $\tau_{1}=\infty$ or $\tau_{2}=\infty$ if the event never occurs. Show that τ_{1} and τ_{2} are stopping times.
(b) Prove Wald's Lemma: If τ is any stopping time with $E(\tau)<\infty$, then

$$
E\left(S_{\tau}\right)=E(\tau) E\left(X_{1}\right)
$$

where $S_{\tau}(\omega)=\sum_{j=1}^{\tau(\omega)} X_{j}(\omega)$. (Hint: If τ is a stopping time, then $\{\tau \leq n\}=$ $\bigcup_{j=1}^{n}\{\tau=j\} \in \mathcal{B}\left(X_{1}, \ldots, X_{n}\right)$ but $\{\tau \geq n\}=\{\tau \leq n-1\}^{c} \in \mathcal{B}\left(X_{1}, \ldots, X_{n-1}\right)$.
(c) Suppose that each X_{n} is ± 1 with $P\left(X_{n}=1\right)=p$ and $P\left(X_{n}=-1\right)=q$ for $p+q=1$. For $p>q$, let τ be the first n such that either $S_{n} \leq-A$ (viewed as losing what you initially were willing to risk in a favorable game) or $S_{n} \geq B$ (viewed as breaking the bank) for integers $A, B \geq 1$.

Show that $E(\tau)<\infty$. Use Wald's lemma and the estimate $S_{\tau} \leq B$ to give an upper bound of the expected length of the game $E(\tau)$. (Hints: (i) If τ is a stopping time, show that $\tau_{n}=\min \{\tau, n\}$ is also a stopping time. (ii) This is the classical Gambler's Ruin problem. See Section 7 pages $92-94$ for this problem and the rest of Section 7 for a series of increasing desperate strategies to make greater profits. Formulas in Section 7 would allow you to find $E\left(S_{\tau}\right)$ exactly, but that is not needed here.)
6. (Problem 23.10 page 310) (a) Let $X_{1}, X_{2}, \ldots, X_{m}, \ldots$ be i.i.d. with $X_{i}>0$ a.s. and $E\left(X_{i}\right)=\mu<\infty$. Thus $S_{n} / n \rightarrow \mu$ a.s. Define

$$
N_{t}(\omega)=\sup \left\{n: S_{n}(\omega) \leq t\right\}
$$

as in equation (23.5) page 298. (If X_{i} represent the times to failure for a succession of light bulbs that are immediately replaced when they burn out, then N_{t} is the number of light bulbs that have burned out by time t.) Prove that $\lim _{t \rightarrow \infty} N_{t} / t=1 / \mu$ a.s.
(b) Let X_{1}, X_{2}, \ldots be i.i.d. with $X_{i}>0$ a.s. and $E\left(X_{i}\right)=\infty$. Prove that $\lim _{t \rightarrow \infty} N_{t} / t=0$ a.s.

