
Ma551 — Advanced Probability
Problem Set #3 — Due November 17, 2009

Prof. Sawyer — Washington University

Problems in text are from Patrick Billingsley, Probability and Measure, 3rd edn,
John Wiley & Sons, 1995. Here i.r.v. means independent random variables and
i.i.d. means independent and identically distributed (random variables).

Six problems on two pages.

1. Let X1, X2, . . . be r.v.s with Fn(y) = P (Xn ≤ y). Assume supn E
(
h(Xn)

)
=

C < ∞ where h(y) ≥ 0 and limy→±∞ h(y) = ∞. Prove that the family {Fn(y) } is
tight.

2. Let Xn, Yn be random variables such that
(a) P (Xn ≤ y) → F (y) at all points of continuity of the d.f. F (y)
(b) The family {Gn(y) } for Gn(y) = P (Yn ≤ y) is tight.
Assume hn → 0 as n →∞. Then show

P (Xn + hnYn ≤ y) → F (y)

at all points of continuity y of F (y).

3. Let M, X1, X2, . . . , Xn, . . . be i.r.v.s such that P (Xk ≤ y) = FX(y) for all y
and k. (That is, the Xk are i.d.) Assume that M has the Poisson distribution
P (M = n) = e−µµn/n! for n = 0, 1, 2, . . . and let Y =

∑M
j=1 Xj . (That is, Y is the

sum of a random number of i.i.d. with distribution FX(y).) Prove that

E
(
eiθY

)
= exp

[
µ

∫ (
eiθy − 1

)
FX(dy)

]

4. (Problem 14.5, p198) Define

ρ(F, G) = inf{ ε > 0 : for all x, F (x− ε)− ε ≤ G(x) ≤ F (x + ε) + ε }

for d.f.s F, G. Prove that
(a) ρ is a metric on d.f.s
(b) For d.f.s Fn, F , Fn(y) → F (y) weakly if and only if ρ(Fn, F ) → 0.
(For distributions on R, ρ(F, G) is called the Lévy distance between F and G.

The analog of ρ for distributions on a Banach space is called the Skorokhod metric.
Among other things, this shows that the topology of weak convergence of d.f.s on R
is a metric topology.)
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5. (Like Problem 27.11, p368) Let X1, X2, . . . , Xn, . . . be i.i.d. with density f(x) =
1/|x|3 for |x| ≥ 1 and f(x) = 0 for |x| < 1. Prove that

(a) E
(|Xk|2−δ

)
< ∞ for all δ > 0, E(Xk) = 0, but E(X2

k) = ∞.
(b) Find a constant c > 0 such that for all real y

lim
n→∞

P

(
X1 + X2 + · · ·+ Xn

c
√

n log n
≤ y

)
=

1√
2π

∫ y

−∞
e−(1/2)x2

dx

(Hint : Let ϕn(θ) = E
(
eiθSn

)
for Sn = (X1 + · · ·+Xn)/an for appropriate an. Since

ϕ(θ) = E
(
eiθXk

)
is real and |1−ϕ(θ)| < 1/2 for |θ| < δ, you can take logarithms with

a clear conscience. This gives an example of a central limit theorem for summands
of infinite variance but with a larger denominator.)

6. Let Xk be i.r.v. with

P (Xk = +
√

k) = 1/(2k)
P (Xk = 0) = 1− (1/k)
P (Xk = −

√
k) = 1/(2k)

for k = 1, 2, . . .. Note that E(Xk) = 0 and E(X2
k) = 1 for all k, but that Xk are

not i.i.d. Let Sn = (X1 + · · ·+ Xn)/
√

n. Prove that
(a) For all θ,

ϕn(θ) = E
(
eiθSn

) → exp
(

2
∫ 1

0

cos(θy)− 1
y

dy

)

= exp
(∫ 1

−1

(
eiθy − 1

)dy

|y|
)

(b) For all points of continuity y of some d.f. F (y)

P

(
X1 + · · ·+ Xn√

n
≤ y

)
→ F (y)

but F (y) is not normal. (In particular, F (y) is not the d.f. of µ + σZ for any
constants µ, σ where Z ≈ N(0, 1).)

Note the similarity between the characteristic function above and the character-
istic function in Problem 3, although here the analog of FX(dy) is not normalizable.


