Ma 551 — Advanced Probability

Problem Set #3 — Due November 17, 2009

Prof. Sawyer — Washington University

Problems in text are from Patrick Billingsley, *Probability and Measure*, 3rd edn, John Wiley & Sons, 1995. Here i.r.v. means independent random variables and i.i.d. means independent and identically distributed (random variables).

Six problems on two pages.

1. Let X_1, X_2, \ldots be r.v.s with $F_n(y) = P(X_n \leq y)$. Assume $\sup_n E(h(X_n)) = C < \infty$ where $h(y) \geq 0$ and $\lim_{y \to \pm \infty} h(y) = \infty$. Prove that the family $\{F_n(y)\}$ is tight.

2. Let X_n, Y_n be random variables such that (a) $P(X_n \leq y) \to F(y)$ at all points of continuity of the d.f. F(y)(b) The family $\{G_n(y)\}$ for $G_n(y) = P(Y_n \leq y)$ is tight. Assume $h_n \to 0$ as $n \to \infty$. Then show

$$P(X_n + h_n Y_n \le y) \to F(y)$$

at all points of continuity y of F(y).

3. Let $M, X_1, X_2, \ldots, X_n, \ldots$ be i.r.v.s such that $P(X_k \leq y) = F_X(y)$ for all y and k. (That is, the X_k are i.d.) Assume that M has the Poisson distribution $P(M = n) = e^{-\mu} \mu^n / n!$ for $n = 0, 1, 2, \ldots$ and let $Y = \sum_{j=1}^M X_j$. (That is, Y is the sum of a random number of i.i.d. with distribution $F_X(y)$.) Prove that

$$E(e^{i\theta Y}) = \exp\left[\mu\int (e^{i\theta y} - 1)F_X(dy)\right]$$

4. (Problem 14.5, p198) Define

$$\rho(F,G) = \inf\{\epsilon > 0: \text{ for all } x, F(x-\epsilon) - \epsilon \le G(x) \le F(x+\epsilon) + \epsilon\}$$

for d.f.s F, G. Prove that

- (a) ρ is a metric on d.f.s
- (b) For d.f.s $F_n, F, F_n(y) \to F(y)$ weakly if and only if $\rho(F_n, F) \to 0$.

(For distributions on R, $\rho(F, G)$ is called the *Lévy distance* between F and G. The analog of ρ for distributions on a Banach space is called the *Skorokhod metric*. Among other things, this shows that the topology of weak convergence of d.f.s on R is a metric topology.) 5. (Like Problem 27.11, p368) Let $X_1, X_2, \ldots, X_n, \ldots$ be i.i.d. with density $f(x) = 1/|x|^3$ for $|x| \ge 1$ and f(x) = 0 for |x| < 1. Prove that

(a) $E(|X_k|^{2-\delta}) < \infty$ for all $\delta > 0$, $E(X_k) = 0$, but $E(X_k^2) = \infty$.

(b) Find a constant c > 0 such that for all real y

$$\lim_{n \to \infty} P\left(\frac{X_1 + X_2 + \dots + X_n}{c\sqrt{n \log n}} \le y\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^y e^{-(1/2)x^2} dx$$

(*Hint*: Let $\varphi_n(\theta) = E(e^{i\theta S_n})$ for $S_n = (X_1 + \dots + X_n)/a_n$ for appropriate a_n . Since $\varphi(\theta) = E(e^{i\theta X_k})$ is real and $|1-\varphi(\theta)| < 1/2$ for $|\theta| < \delta$, you can take logarithms with a clear conscience. This gives an example of a central limit theorem for summands of infinite variance but with a larger denominator.)

6. Let X_k be i.r.v. with

$$P(X_k = +\sqrt{k}) = 1/(2k)$$

$$P(X_k = 0) = 1 - (1/k)$$

$$P(X_k = -\sqrt{k}) = 1/(2k)$$

for $k = 1, 2, \ldots$ Note that $E(X_k) = 0$ and $E(X_k^2) = 1$ for all k, but that X_k are not i.i.d. Let $S_n = (X_1 + \cdots + X_n)/\sqrt{n}$. Prove that (a) For all θ ,

$$\varphi_n(\theta) = E(e^{i\theta S_n}) \to \exp\left(2\int_0^1 \frac{\cos(\theta y) - 1}{y} \, dy\right)$$
$$= \exp\left(\int_{-1}^1 (e^{i\theta y} - 1)\frac{dy}{|y|}\right)$$

(b) For all points of continuity y of some d.f. F(y)

$$P\left(\frac{X_1 + \dots + X_n}{\sqrt{n}} \le y\right) \to F(y)$$

but F(y) is not normal. (In particular, F(y) is not the d.f. of $\mu + \sigma Z$ for any constants μ, σ where $Z \approx N(0, 1)$.)

Note the similarity between the characteristic function above and the characteristic function in Problem 3, although here the analog of $F_X(dy)$ is not normalizable.