Ma 551 - Advanced Probability

Solutions for Problem Set \#3 due November 17, 2009

Prof. Sawyer - Washington University

Six problems. See the Math 551 Web site for the statement of problems.

1. For each $\epsilon>0$, there exists $K=K_{\epsilon}$ such that $|h(y)| \geq 2 C / \epsilon$ for $|y| \geq K$. Then $P\left(\left|X_{n}\right| \geq K\right) \leq P\left(\left|h\left(X_{n}\right)\right| \geq 2 C / \epsilon\right) \leq(\epsilon /(2 C)) E\left(\left|h\left(X_{n}\right)\right|\right)<\epsilon$ for all $n \geq 1$, or equivalently $P\left(X_{n} \in[-K, K]\right) \geq 1-\epsilon$ for all n.
2. Let $H_{n}(y)=P\left(X_{n}+h_{n} Y_{n} \leq y\right)$. For each $\epsilon>0$, there exists $K=K_{\epsilon}$ such that $P\left(\left|Y_{n}\right| \geq K\right)<\epsilon$. Chose n_{0} such that $\left|h_{n}\right|<\epsilon / K$ for $n \geq n_{0}$. Then, if $n \geq n_{0}$, $P\left(\left|h_{n} Y_{n}\right|>\epsilon\right)=P\left(\left|Y_{n}\right|>\epsilon / h_{n}\right) \leq P\left(\left|Y_{n}\right|>K\right)<\epsilon$. This implies

$$
\begin{aligned}
H_{n}(y) & =P\left(X_{n} \leq y-h_{n} Y_{n}\right) \leq P\left(X_{n} \leq y+\epsilon\right)+\epsilon \\
& \geq P\left(X_{n} \leq y-\epsilon\right)-\epsilon
\end{aligned}
$$

(Remark: This implies $\rho\left(H_{n}, F_{n}\right) \rightarrow 0$ for the Lévy metric $\rho(F, G)$ defined in Problem 4. Since $\rho\left(F_{n}, F\right) \rightarrow 0$ and ρ satisfies the triangle inequality, $\rho\left(H_{n}, F\right) \rightarrow 0$ and we are done. The rest of the proof is for those who have not yet done Problem 4.)

Assume that y and $y \pm \epsilon$ are points of continuity of $F(y)$. Then $P\left(X_{n} \leq\right.$ $y \pm \epsilon) \rightarrow F(y \pm \epsilon)$ and

$$
F(y-\epsilon)-\epsilon \leq \liminf _{n \rightarrow \infty} H_{n}(y) \leq \limsup _{n \rightarrow \infty} H_{n}(y) \leq F(y+\epsilon)+\epsilon
$$

Since y is a point of continuity of $F(y)$, and since the above holds for a sequence $\epsilon=\epsilon_{m} \rightarrow 0$, it follows that $H_{n}(y) \rightarrow F(y)$.
3. Let $\phi(\theta)=E\left(e^{i \theta X_{1}}\right)=\int_{-\infty}^{\infty} e^{i \theta y} F_{X}(d y)$. Then

$$
E\left(e^{i \theta Y}\right)=\sum_{n=0}^{\infty} E\left(e^{i \theta Y} I_{[M=n]}\right)=\sum_{n=0}^{\infty} E\left(\prod_{k=1}^{n} e^{i \theta X_{k}} I_{[M=n]}\right)
$$

Since the $\left\{M, X_{1}, \ldots\right\}$ are independent,

$$
E\left(e^{i \theta Y}\right)=\sum_{n=0}^{\infty} \phi(\theta)^{n} P(M=n)=e^{-\mu} \sum_{n=0}^{\infty} \mu^{n} \phi(\theta)^{n} / n!=\exp (\mu(\phi(\theta)-1))
$$

which implies the desired result.
4. (a) (i) $\rho(F, F)=0$, and, since $F(x)$ and $G(x)$ are right continuous, $\rho(F, G) \neq 0$ if $F \neq G$. (ii) Note $F(x-\epsilon)-\epsilon \leq G(x)$ and $G(x) \leq F(x+\epsilon)+\epsilon$ for all x implies $G(x-\epsilon)-\epsilon \leq F(x)$ and $F(x) \leq G(x+\epsilon)+\epsilon$ for all x. Thus $\rho(F, G)=\rho(G, F)$. (iii) Suppose that $\rho(F, G)<\epsilon_{1}$ and $\rho(G, H)<\epsilon_{2}$. Then, for all x,

$$
H\left(x-\epsilon_{1}-\epsilon_{2}\right)-\epsilon_{1}-\epsilon_{2} \leq G\left(x-\epsilon_{1}\right)-\epsilon_{1} \leq F(x)
$$

with similar upper inequalities. Thus $\rho(F, H)<\epsilon_{1}+\epsilon_{2}$ and ρ satisfies the triangle inequality.
(b) If $\rho\left(F_{n}, F\right) \rightarrow 0$, then

$$
\begin{equation*}
F(y-\epsilon)-\epsilon \leq F_{n}(y) \leq F(y+\epsilon)+\epsilon \tag{1}
\end{equation*}
$$

for $n \geq n_{0}(\epsilon)$ and all y. Thus $F_{n}(y) \rightarrow F(y)$ at all points of continuity y of $F(y)$. Now assume $F_{n} \rightarrow F$ in distribution. If $\rho\left(F_{n}, F\right)$ does not converge to zero, there exists a subsequence (while we also call $\left\{F_{n}\right\}$) and a value $\epsilon>0$ such that $\rho\left(F_{n}, F\right) \geq 2 \epsilon>0$, and thus real values y_{n} such that

$$
\begin{equation*}
F\left(y_{n}-\epsilon\right)-\epsilon \geq F_{n}\left(y_{n}\right) \quad \text { or } \quad F_{n}\left(y_{n}\right) \geq F\left(y_{n}+\epsilon\right)+\epsilon \tag{2}
\end{equation*}
$$

with, choosing a further subsequence if necessary, one of the two inequalities in (2) holding for all n. Since F_{n}, F are distribution functions, there cannot exist a subsequence $y_{n_{k}} \rightarrow \infty$ or $y_{n_{k}} \rightarrow-\infty$, so that y_{n} are bounded. Hence there exists a further subsequence (which we also call F_{n}, y_{n}) such that $y_{n} \rightarrow y$ for $y \in R$. Recall that if $F_{n} \rightarrow F$ and $y_{n} \rightarrow y$, then

$$
F(y-) \leq \liminf _{n \rightarrow \infty} F_{n}\left(y_{n}\right) \leq \limsup _{n \rightarrow \infty} F_{n}\left(y_{n}\right)=F(y)
$$

Then by (2)

$$
F(y-\epsilon)-\epsilon \geq F(y-) \quad \text { or } \quad F(y) \geq F((y+\epsilon)-)+\epsilon
$$

for some $\epsilon>0$, either of which provides a contradiction.
5. (a) $E\left(\left|X_{k}\right|^{2-\delta}\right)=2 \int_{1}^{\infty} y^{2-\delta} y^{-3} d y<\infty$ for $\delta>0$ but not for $\delta \leq 0$, etc.
(b) Set $S_{n}=\left(X_{1}+X_{2}+\ldots+X_{n}\right) / a_{n}$ for $a_{n}=c \sqrt{n \log n}$ for some constant $c>0$. Then $E\left(e^{i \theta S_{n}}\right)=\phi\left(\theta / a_{n}\right)^{n}$ for $\phi(\theta)=E\left(e^{i \theta X_{1}}\right)$. Since the X_{k} are symmetrically distributed, $\phi(\theta)=\phi(-\theta)$ and, for $\theta>0$,

$$
\begin{aligned}
1-\phi(\theta) & =\int_{|y| \geq 1}\left(1-e^{i \theta y}\right) \frac{d y}{|y|^{3}}=2 \int_{1}^{\infty}(1-\cos (\theta y)) \frac{d y}{y^{3}} \\
& =2 \theta^{2} \int_{\theta}^{\infty}(1-\cos y) \frac{d y}{y^{3}}
\end{aligned}
$$

By L'Hopital's rule (or otherwise), $\lim _{\theta \rightarrow 0} \int_{\theta}^{\infty}(1-\cos y) y^{-3} d y / \log (1 / \theta)=1 / 2$, so that

$$
\lim _{\theta \rightarrow 0} \frac{1-\phi(\theta)}{\theta^{2} \log (1 / \theta)}=1
$$

In particular, for fixed $\theta>0$,

$$
\begin{aligned}
1-\phi\left(\theta / a_{n}\right) & \sim \frac{\theta^{2}}{a_{n}^{2}} \log \left(\frac{a_{n}}{\theta}\right)=\frac{\theta^{2}}{c^{2} n \log n} \log \left(\frac{c \sqrt{n \log n}}{\theta}\right) \\
& =\frac{\theta^{2}}{2 c^{2} n \log n}(\log n+\log \log n+2 \log (c / \theta)) \sim \frac{\theta^{2}}{2 c^{2} n}
\end{aligned}
$$

as $n \rightarrow \infty$. Thus

$$
\log \phi\left(\theta / a_{n}\right)=\log \left(1-\left(1-\phi\left(\theta / a_{n}\right)\right)\right)=-\left(1-\phi\left(\theta / a_{n}\right)\right)+O\left(1 / n^{2}\right)
$$

and

$$
\log \left(E\left(e^{i \theta S_{n}}\right)\right)=n \log \phi\left(\theta / a_{n}\right)=-n\left(1-\phi\left(\theta / a_{n}\right)\right)+O(1 / n) \rightarrow-\frac{\theta^{2}}{2 c^{2}}
$$

Thus $E\left(e^{i \theta S_{n}}\right) \rightarrow \exp \left(-\theta^{2} / 2\right)$ for all θ for $c=1$, which implies that S_{n} converges in distribution to a standard normal distribution.
6. (a) Here $S_{n}=\left(X_{1}+X_{2}+\ldots+X_{n}\right) / \sqrt{n}$ where

$$
\begin{equation*}
\phi_{k}(\theta)=E\left(e^{i \theta X_{k}}\right)=\frac{e^{i \theta \sqrt{k}}}{2 k}+\left(1-\frac{1}{k}\right)+\frac{e^{-i \theta \sqrt{k}}}{2 k}=1-\frac{1-\cos (\theta \sqrt{k})}{k} \tag{1}
\end{equation*}
$$

Then $E\left(e^{i \theta S_{n}}\right)=\prod_{k=1}^{n} \phi_{k}(\theta / \sqrt{n})$. We give two proofs of part (a), the first using Theorem 28.3 in the text, which was proven in class, and the second arguing directly from $\Phi_{n}(\theta)=E\left(e^{i \theta S_{n}}\right)$.

Proof I. Thus $S_{n}=\sum_{k=1}^{n} X_{n k}$ for $X_{n k}=X_{k} / \sqrt{n}$. Since $E\left(X_{n k}\right)=0$, $E\left(X_{n k}^{2}\right)=E\left(X_{k}^{2}\right) / n=1 / n$, and $E\left(S_{n}^{2}\right)=1$, the S_{n} are the row sums of a triangular array in the sense of page 272 of the text. Thus by Theorem 28.3

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(E\left(e^{i \theta S_{n}}\right)-\exp \left(\sum_{k=1}^{n}\left(\phi_{k}\left(\frac{\theta}{\sqrt{n}}\right)-1\right)\right)\right)=0 \tag{2}
\end{equation*}
$$

for all θ. By (1)

$$
\sum_{k=1}^{n}\left(\phi_{k}\left(\frac{\theta}{\sqrt{n}}\right)-1\right)=-\sum_{k=1}^{n} \frac{1-\cos (\theta \sqrt{k / n})}{k}=-\frac{1}{n} \sum_{k=1}^{n}\left(\frac{1-\cos (\theta \sqrt{k / n})}{k / n}\right)
$$

Since $1-\cos (y) \leq(1 / 2) y^{2}$ for all y, the term within the last set of parentheses in the display is uniformly bounded for fixed θ and $1 \leq k \leq n$. Hence for all θ

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\phi_{k}\left(\frac{\theta}{\sqrt{n}}\right)-1\right)=-\int_{0}^{1} \frac{1-\cos (\theta \sqrt{y})}{y} d y=-2 \int_{0}^{1} \frac{1-\cos (\theta y)}{y} d y
$$

Hence by (2)

$$
\begin{align*}
\lim _{n \rightarrow \infty} E\left(e^{i \theta S_{n}}\right) & =\psi(\theta)=\exp \left(-2 \int_{0}^{1} \frac{1-\cos (\theta y)}{y} d y\right) \tag{3}\\
& =\exp \left(-2 \int_{0}^{\theta} \frac{1-\cos (y)}{y} d y\right)
\end{align*}
$$

Proof II. Since $1-\cos (y) \leq(1 / 2) y^{2}$ for all y, it follows from (1) that

$$
1-\phi_{k}\left(\frac{\theta}{\sqrt{n}}\right)=\frac{1}{n}\left(\frac{1-\cos (\theta \sqrt{k / n})}{k / n}\right)=O(1 / n)
$$

uniformly for $1 \leq k \leq n$ and

$$
\log \phi_{k}\left(\frac{\theta}{\sqrt{n}}\right)=\log \left(1-\left(1-\phi_{k}\left(\frac{\theta}{\sqrt{n}}\right)\right)\right)=-\left(1-\phi_{k}\left(\frac{\theta}{\sqrt{n}}\right)\right)+O\left(\frac{1}{n^{2}}\right)
$$

where the error term is uniform for $1 \leq k \leq n$. Hence the logarithms below exist and

$$
\begin{aligned}
\log \left(E\left(e^{i \theta S_{n}}\right)\right) & =\sum_{k=1}^{n} \log \phi_{k}\left(\frac{\theta}{\sqrt{n}}\right)=-\sum_{k=1}^{n}\left(1-\phi_{k}\left(\frac{\theta}{\sqrt{n}}\right)+O\left(\frac{1}{n^{2}}\right)\right) \\
& =\left(-\frac{1}{n} \sum_{k=1}^{n}\left(\frac{1-\cos (\theta \sqrt{k / n})}{k / n}\right)\right)+O\left(\frac{1}{n}\right) \\
& \rightarrow-\int_{0}^{1} \frac{1-\cos (\theta \sqrt{y})}{y} d y=-2 \int_{0}^{1} \frac{1-\cos (\theta y)}{y} d y
\end{aligned}
$$

and (3) follows as above.
(b) The function $\psi(\theta)$ is continuous in θ and $\lim _{\theta \rightarrow 0} \psi(\theta)=1$. Thus, by the Lévy continuity theorem, there exists a distribution function $F(y)$ such that $F_{n}(y)=P\left(S_{n} \leq y\right) \rightarrow F(y)$ at all continuity points of $F(y)$ and $\psi(\theta)=\int e^{i \theta y} F(d y)$.

If $F(y)$ were normal, then $\psi(\theta)=\psi_{N}(\theta)=\exp \left(i \mu \theta-(1 / 2) \sigma^{2} \theta^{2}\right)$ for some choice of real constants μ and σ. However

$$
\frac{d}{d \theta} \log \psi(\theta)=-2 \frac{1-\cos \theta}{\theta} \quad \text { and } \quad \frac{d}{d \theta} \log \psi_{N}(\theta)=i \mu-\sigma^{2} \theta
$$

Note that $(d / d \theta) \log \psi(\theta)=0$ if and only if $\theta=2 n \pi$ for some $n \neq 0$, which is not true for $(d / d \theta) \log \psi_{N}(\theta)$ for any values of μ and σ. Thus $F(y)$ cannot be a normal distribution.

