
Ma551 — Advanced Probability

Take-Home Final — Due December 16, 2009

Prof. Sawyer — Washington University

A fixed probability space (Ω,F , P ) is assumed in many of the problems. Here r.v.
means random variable, i.r.v. means independent r.v.s, and i.i.d. means independent
and identically distributed (random variables). Problems in text are from Patrick
Billingsley, Probability and Measure, 3rd edn, John Wiley & Sons, 1995. Feel free
to use results from one problem as theorems for other problems.

Eight problems on three pages.

1. Suppose Xn =
∏n

j=1 Yj where {Yj } are i.r.v.s with Yj > 0 a.s. and E(Yj) = 1.
(a) Find σ-algebras Fn ↑ such that { (Xn,Fn) } is a martingale. Show that

limn→∞Xn = X a.s. where X ≥ 0 a.s. and E(X) ≤ 1.
(b) Assume Yj are i.i.d. with Yj ≈ U(0, 2). (That is, Yj is uniformly distributed

in (0, 2).) Thus E(Yj) = 1 and Yj > 0 a.s. Prove that Xn → 0 a.s.
(Hint : Consider taking logarithms.)

2. Let { (Xn,Fn) } be a submartingale with E(Xn) = E(X1) for all n ≥ 1. Prove
that { (Xn,Fn) } is a martingale.

3. Let Bn = B(X1, . . . , Xn) for r.v.s X1, . . . .Xn be the smallest σ-algebra with
respect to which X1, . . . , Xn are measurable. Show that any Bn-measurable r.v. Y
can be written

Y (ω) = φ
(
X1(ω), . . . , Xn(ω)

)
(1)

for some Borel function φ(y) on Rn.
(Hints: Prove this first for Y = IE for events E ∈ Bn and then approxi-

mate Y by simple r.v.s Y1 =
∑m

k=1 ckIEk
. To prove (1) for Y = IE , note that

H = (X1, . . . , Xn) : Ω → Rn is measurable in the sense that, given λi for 1 ≤ i ≤ n,
{ω : Xi(ω) ≤ λi for 1 ≤ i ≤ n } ∈ Bn. If C is the class of all sets A ∈ B(Rn) such
that H−1(A) = {ω : H(ω) ∈ A } ∈ Bn, show that C = B(Rn) and H−1(C) = Bn.
Put all of this together to conclude (1).)

Remark. Let Z,X1, . . . , Xn be r.v.s with E(|Z|) < ∞. Since E(Z | Bn) is Bn-
measurable,

E
(
Z | B(X1, . . . , Xn)

)
= φ(X1, . . . , Xn) a.s. (2)

for some Borel function φ(y) on Rn.
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4. Let Fn ↑ F be σ-algebras Fn ⊆ F for the probability space (Ω,F , P ). Let
Zn = E(f | Fn) for f ∈ L1(Ω,F , P ). Prove that Zn → f a.s.

(Hint : By definition, Γ = (set union) ∪ Fn is a generating semi-ring for F .
Prove first for f = IE and approximate by simple r.v.s.)

Remarks. In Bayesian statistics, F (y) = P (f ≤ y) can be viewed as the “prior
distribution” of an unknown parameter f(ω). If Fn = B(X1, . . . , Xn) for r.v.s Xk,
then, by the preceding problem, Zn = E(f | B(X1, . . . , Xn)) = φn(X1, . . . , Xn) for
some Borel function φn(y) on Rn.

The conditional expectations Zn are the orthogonal projections of f onto
L2(Fn), or equivalently onto the linear space of all L2 r.v.s of the form φ(X1, . . . , Xn).
This projection called the Bayes estimator of f (for a quadratic loss function) given
the finite sample X1, . . . , Xn. In this context, Zn → f a.s. is called the asymptotic
consistency of the Bayes estimator of f for the sample {X1, X2, . . . }, and shows
that the true value f(ω) of f can be retrieved from {X1, X2, . . . } with probability
one.

5. Let X, Y be two r.v. such that

P (Y ≤ λ, X ≤ µ) = FY,X(λ, µ) =
∫ λ

−∞

∫ µ

−∞
f(z, w) dzdw

for all λ, µ, where f(x, y) ≥ 0 and
∫∫

R2 f(z, w)dzdw = 1. Assume E(|Y |) < ∞
(I forgot to include this condition earlier). Find the Borel function φ(x) on R
corresponding to E(Y | B(X)) = φ(X) in (2) in terms of f(x, y). Verify your result.

6. Let Xi be i.i.d. with φ(θ) = E
(
eθXi

)
< ∞ for all real θ, E(Xi) < 0, and

P (Xi > 0) > 0. Let Sn = X1 + X2 + . . . + Xn.
(a) Set Zn(θ) = exp(θSn)φ(θ)−n for θ ∈ R. Show that { (Zn(θ),Fn) } is a

martingale for some set of σ-algebras Fn ↑ (and say what your Fn are).
(b) Prove that there exists a value θ0 > 0 such that

Pr
(

max
1≤n<∞

Sn ≥ λ

)
≤ e−θ0λ (3)

for all λ > 0. (Hint : Consider φ′(0) and limθ→∞ φ(θ).)

Remark. Since E(Xi) < 0, limn→∞ Sn = −∞ a.s. by the strong law of large
numbers. Equation (3) gives an upper bound on the largest positive value that Sn

can attain before converging to −∞, and can be used to estimate your probability
of going broke before massively winning in a favorable gambling game.
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7. Suppose that pij ≥ 0 for integers −∞ < i, j < ∞ with
∑

k pik = 1 and pii < 1
for all i. Let {Xn } be integer-valued r.v.s such that X0 = 0 and

P (Xn+1 = j | B(X1, X2, . . . , Xn)) = P (Xn+1 = j | Xn = i) = pij a.s.

for i = Xn(ω), n ≥ 0, and all j ∈ J where J is the set of integers. (The stochastic
process Xn is called the Markov chain generated by pij with X0 = 0. That such
r.v.s exist follows easily from the Kolmogorov Consistency Theorem.)

A function φ(i) on J is called p-harmonic if φ(i) =
∑∞

k=−∞ p(i, k)φ(k) for
all i ∈ J . Suppose that there exists a p-harmonic function φ(i) ≥ 0 on J that is
strictly increasing and unbounded on J . (That is, φ(i) < φ(i + 1) for all i and
supi φ(i) = ∞.) Prove that

lim
n→∞

Xn(ω) = −∞ a.s.

This shows that there is a connection between the harmonic functions of an infi-
nite matrix pij and the sample behavior of Xn. (Hint : Is φ(Xn) a martingale or
submartingale for appropriate σ-algebras Fn?)

Remarks. Suppose pi,i−1 = pi, pii = qi, and pi,i+1 = ri where pi, qi, ri > 0 and
pi + qi + ri = 1. The resulting Markov chain is called variously a nearest-neighbor
random walk or a birth and death process.

In this case, φ(i) = piφ(i − 1) + qiφ(i) + riφ(i + 1) implies φ(i + 1) − φ(i) =
(pi/ri)

(
φ(i) − φ(i − 1)

)
. If φ(1) − φ(0) > 0, then φ(i) is strictly increasing. If Xn

has a bias to go to the left (that is, pi > ri), then φ(i) is convex. This suggests (but
does not prove — that is up to you) a possible connection between φ(i) ≥ 0 and
φ(i) ↑ ∞ and a strong tendency for Xn to go to the left.

8. Let { (Xn,Fn) } be a nonnegative submartingale. Prove that we can write

Xn = Yn + Zn (4)

where { (Yn,Fn) } is a martingale, 0 ≤ Zn ↑ a.s., and Zn is predictable — that is,
Fn−1-measurable. Show that the decomposition (4) is a.s. unique given Y0 = 0 a.s.
for martingales Yn and predictable processes Zn.

(Hint : Consider ∆X,n = Xn −Xn−1.)

Remarks. Since E(∆X,n | Fn−1) = ∆Z,n = Zn − Zn−1, the latter r.v. is the
minimum-variance unbiased predictable estimator of Fn-measurable Xn − Xn−1,
with Yn viewed as a sum of errors. Equation (4) is a discrete version of what is
called the Doob-Meyer decomposition. Counting-process theory in survival analysis,
as well as some forms of optimal control theory in Engineering, are based on this
decomposition.


