Ma 551 - Advanced Probability

Take-Home Final - Due December 16, 2009
Prof. Sawyer - Washington University

A fixed probability space (Ω, \mathcal{F}, P) is assumed in many of the problems. Here r.v. means random variable, i.r.v. means independent r.v.s, and i.i.d. means independent and identically distributed (random variables). Problems in text are from Patrick Billingsley, Probability and Measure, 3rd edn, John Wiley \& Sons, 1995. Feel free to use results from one problem as theorems for other problems.

Eight problems on three pages.

1. Suppose $X_{n}=\prod_{j=1}^{n} Y_{j}$ where $\left\{Y_{j}\right\}$ are i.r.v.s with $Y_{j}>0$ a.s. and $E\left(Y_{j}\right)=1$.
(a) Find σ-algebras $\mathcal{F}_{n} \uparrow$ such that $\left\{\left(X_{n}, \mathcal{F}_{n}\right)\right\}$ is a martingale. Show that $\lim _{n \rightarrow \infty} X_{n}=X$ a.s. where $X \geq 0$ a.s. and $E(X) \leq 1$.
(b) Assume Y_{j} are i.i.d. with $Y_{j} \approx U(0,2)$. (That is, Y_{j} is uniformly distributed in (0,2).) Thus $E\left(Y_{j}\right)=1$ and $Y_{j}>0$ a.s. Prove that $X_{n} \rightarrow 0$ a.s.
(Hint: Consider taking logarithms.)
2. Let $\left\{\left(X_{n}, \mathcal{F}_{n}\right)\right\}$ be a submartingale with $E\left(X_{n}\right)=E\left(X_{1}\right)$ for all $n \geq 1$. Prove that $\left\{\left(X_{n}, \mathcal{F}_{n}\right)\right\}$ is a martingale.
3. Let $\mathcal{B}_{n}=\mathcal{B}\left(X_{1}, \ldots, X_{n}\right)$ for r.v.s $X_{1}, \ldots X_{n}$ be the smallest σ-algebra with respect to which X_{1}, \ldots, X_{n} are measurable. Show that any \mathcal{B}_{n}-measurable r.v. Y can be written

$$
\begin{equation*}
Y(\omega)=\phi\left(X_{1}(\omega), \ldots, X_{n}(\omega)\right) \tag{1}
\end{equation*}
$$

for some Borel function $\phi(y)$ on R^{n}.
(Hints: Prove this first for $Y=I_{E}$ for events $E \in \mathcal{B}_{n}$ and then approximate Y by simple r.v.s $Y_{1}=\sum_{k=1}^{m} c_{k} I_{E_{k}}$. To prove (1) for $Y=I_{E}$, note that $H=\left(X_{1}, \ldots, X_{n}\right): \Omega \rightarrow R^{n}$ is measurable in the sense that, given λ_{i} for $1 \leq i \leq n$, $\left\{\omega: X_{i}(\omega) \leq \lambda_{i}\right.$ for $\left.1 \leq i \leq n\right\} \in \mathcal{B}_{n}$. If \mathcal{C} is the class of all sets $A \in \mathcal{B}\left(R^{n}\right)$ such that $H^{-1}(A)=\{\omega: H(\omega) \in A\} \in \mathcal{B}_{n}$, show that $\mathcal{C}=\mathcal{B}\left(R^{n}\right)$ and $H^{-1}(\mathcal{C})=\mathcal{B}_{n}$. Put all of this together to conclude (1).)

Remark. Let Z, X_{1}, \ldots, X_{n} be r.v.s with $E(|Z|)<\infty$. Since $E\left(Z \mid \mathcal{B}_{n}\right)$ is $\mathcal{B}_{n^{-}}$ measurable,

$$
\begin{equation*}
E\left(Z \mid \mathcal{B}\left(X_{1}, \ldots, X_{n}\right)\right)=\phi\left(X_{1}, \ldots, X_{n}\right) \text { a.s. } \tag{2}
\end{equation*}
$$

for some Borel function $\phi(y)$ on R^{n}.
4. Let $\mathcal{F}_{n} \uparrow \mathcal{F}$ be σ-algebras $\mathcal{F}_{n} \subseteq \mathcal{F}$ for the probability space (Ω, \mathcal{F}, P). Let $Z_{n}=E\left(f \mid \mathcal{F}_{n}\right)$ for $f \in L^{1}(\Omega, \mathcal{F}, P)$. Prove that $Z_{n} \rightarrow f$ a.s.
(Hint: By definition, $\Gamma=$ (set union) $\cup \mathcal{F}_{n}$ is a generating semi-ring for \mathcal{F}. Prove first for $f=I_{E}$ and approximate by simple r.v.s.)

Remarks. In Bayesian statistics, $F(y)=P(f \leq y)$ can be viewed as the "prior distribution" of an unknown parameter $f(\omega)$. If $\mathcal{F}_{n}=\mathcal{B}\left(X_{1}, \ldots, X_{n}\right)$ for r.v.s X_{k}, then, by the preceding problem, $Z_{n}=E\left(f \mid \mathcal{B}\left(X_{1}, \ldots, X_{n}\right)\right)=\phi_{n}\left(X_{1}, \ldots, X_{n}\right)$ for some Borel function $\phi_{n}(y)$ on R^{n}.

The conditional expectations Z_{n} are the orthogonal projections of f onto $L^{2}\left(\mathcal{F}_{n}\right)$, or equivalently onto the linear space of all L^{2} r.v.s of the form $\phi\left(X_{1}, \ldots, X_{n}\right)$. This projection called the Bayes estimator of f (for a quadratic loss function) given the finite sample X_{1}, \ldots, X_{n}. In this context, $Z_{n} \rightarrow f$ a.s. is called the asymptotic consistency of the Bayes estimator of f for the sample $\left\{X_{1}, X_{2}, \ldots\right\}$, and shows that the true value $f(\omega)$ of f can be retrieved from $\left\{X_{1}, X_{2}, \ldots\right\}$ with probability one.
5. Let X, Y be two r.v. such that

$$
P(Y \leq \lambda, X \leq \mu)=F_{Y, X}(\lambda, \mu)=\int_{-\infty}^{\lambda} \int_{-\infty}^{\mu} f(z, w) d z d w
$$

for all λ, μ, where $f(x, y) \geq 0$ and $\iint_{R^{2}} f(z, w) d z d w=1$. Assume $E(|Y|)<\infty$ (I forgot to include this condition earlier). Find the Borel function $\phi(x)$ on R corresponding to $E(Y \mid \mathcal{B}(X))=\phi(X)$ in (2) in terms of $f(x, y)$. Verify your result.
6. Let X_{i} be i.i.d. with $\phi(\theta)=E\left(e^{\theta X_{i}}\right)<\infty$ for all real $\theta, E\left(X_{i}\right)<0$, and $P\left(X_{i}>0\right)>0$. Let $S_{n}=X_{1}+X_{2}+\ldots+X_{n}$.
(a) Set $Z_{n}(\theta)=\exp \left(\theta S_{n}\right) \phi(\theta)^{-n}$ for $\theta \in R$. Show that $\left\{\left(Z_{n}(\theta), \mathcal{F}_{n}\right)\right\}$ is a martingale for some set of σ-algebras $\mathcal{F}_{n} \uparrow$ (and say what your \mathcal{F}_{n} are).
(b) Prove that there exists a value $\theta_{0}>0$ such that

$$
\begin{equation*}
\operatorname{Pr}\left(\max _{1 \leq n<\infty} S_{n} \geq \lambda\right) \leq e^{-\theta_{0} \lambda} \tag{3}
\end{equation*}
$$

for all $\lambda>0$. (Hint: Consider $\phi^{\prime}(0)$ and $\lim _{\theta \rightarrow \infty} \phi(\theta)$.)
Remark. Since $E\left(X_{i}\right)<0, \lim _{n \rightarrow \infty} S_{n}=-\infty$ a.s. by the strong law of large numbers. Equation (3) gives an upper bound on the largest positive value that S_{n} can attain before converging to $-\infty$, and can be used to estimate your probability of going broke before massively winning in a favorable gambling game.
7. Suppose that $p_{i j} \geq 0$ for integers $-\infty<i, j<\infty$ with $\sum_{k} p_{i k}=1$ and $p_{i i}<1$ for all i. Let $\left\{X_{n}\right\}$ be integer-valued r.v.s such that $X_{0}=0$ and

$$
P\left(X_{n+1}=j \mid \mathcal{B}\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right)=P\left(X_{n+1}=j \mid X_{n}=i\right)=p_{i j} \text { a.s. }
$$

for $i=X_{n}(\omega), n \geq 0$, and all $j \in J$ where J is the set of integers. (The stochastic process X_{n} is called the Markov chain generated by $p_{i j}$ with $X_{0}=0$. That such r.v.s exist follows easily from the Kolmogorov Consistency Theorem.)

A function $\phi(i)$ on J is called p-harmonic if $\phi(i)=\sum_{k=-\infty}^{\infty} p(i, k) \phi(k)$ for all $i \in J$. Suppose that there exists a p-harmonic function $\phi(i) \geq 0$ on J that is strictly increasing and unbounded on J. (That is, $\phi(i)<\phi(i+1)$ for all i and $\sup _{i} \phi(i)=\infty$.) Prove that

$$
\lim _{n \rightarrow \infty} X_{n}(\omega)=-\infty \quad \text { a.s. }
$$

This shows that there is a connection between the harmonic functions of an infinite matrix $p_{i j}$ and the sample behavior of X_{n}. (Hint: Is $\phi\left(X_{n}\right)$ a martingale or submartingale for appropriate σ-algebras \mathcal{F}_{n} ?)
Remarks. Suppose $p_{i, i-1}=p_{i}, p_{i i}=q_{i}$, and $p_{i, i+1}=r_{i}$ where $p_{i}, q_{i}, r_{i}>0$ and $p_{i}+q_{i}+r_{i}=1$. The resulting Markov chain is called variously a nearest-neighbor random walk or a birth and death process.

In this case, $\phi(i)=p_{i} \phi(i-1)+q_{i} \phi(i)+r_{i} \phi(i+1)$ implies $\phi(i+1)-\phi(i)=$ $\left(p_{i} / r_{i}\right)(\phi(i)-\phi(i-1))$. If $\phi(1)-\phi(0)>0$, then $\phi(i)$ is strictly increasing. If X_{n} has a bias to go to the left (that is, $p_{i}>r_{i}$), then $\phi(i)$ is convex. This suggests (but does not prove - that is up to you) a possible connection between $\phi(i) \geq 0$ and $\phi(i) \uparrow \infty$ and a strong tendency for X_{n} to go to the left.
8. Let $\left\{\left(X_{n}, \mathcal{F}_{n}\right)\right\}$ be a nonnegative submartingale. Prove that we can write

$$
\begin{equation*}
X_{n}=Y_{n}+Z_{n} \tag{4}
\end{equation*}
$$

where $\left\{\left(Y_{n}, \mathcal{F}_{n}\right)\right\}$ is a martingale, $0 \leq Z_{n} \uparrow$ a.s., and Z_{n} is predictable - that is, \mathcal{F}_{n-1}-measurable. Show that the decomposition (4) is a.s. unique given $Y_{0}=0$ a.s. for martingales Y_{n} and predictable processes Z_{n}.
(Hint: Consider $\Delta_{X, n}=X_{n}-X_{n-1}$.)
Remarks. Since $E\left(\Delta_{X, n} \mid \mathcal{F}_{n-1}\right)=\Delta_{Z, n}=Z_{n}-Z_{n-1}$, the latter r.v. is the minimum-variance unbiased predictable estimator of \mathcal{F}_{n}-measurable $X_{n}-X_{n-1}$, with Y_{n} viewed as a sum of errors. Equation (4) is a discrete version of what is called the Doob-Meyer decomposition. Counting-process theory in survival analysis, as well as some forms of optimal control theory in Engineering, are based on this decomposition.

