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How Can One Tell In What Direction
Evolution is Going?

Are most new mutations that are fixed in a population
deleterious or advantageous?

Some biologists feel that most evolutionary change is
due to the accidental fixation of weakly deleterious
mutations.

This is because most mutations are deleterious, and the
chance effects of who mates with whom may cause
some good genes to be lost.

Can one estimate the fraction of new mutations that
are being fixed that are beneficial, using only DNA
from current populations?
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Chromosomes can be thought of as long strings of
DNA, which in turn can be thought of as long strings
of nucleotides A, C, G, T.

A gene is a segment of a chromosome that looks some-
thing like

— (Reg)Code. . .(Intron). . .Code. . .(Intron). . .Code(End) —

“Reg” stands for regularity regions. Introns have
mostly no effect. In reading frames (“Code”) for a
gene, amino acids are coded by consecutive triples of
bases that are called codons, for example:

ATGGCAGAA GGC TTTAACTTC ATTGGT ACC · · ·
Met Ala Glu Gly Phe Asn Phe Ile Gly Thr · · ·

Proteins are built from strings of amino acids. There
are 20 amino acids and 64 codons. Base changes that
change the amino acid are called replacement. Changes
that do not are called silent.
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Most silent variation is in the 3rd nucleotide position,
and is mostly either one of

(GAT,GAC) = Asp (GAA,GAG) = Glu or

(GCT,GCC, GCA,GCG) = Ala

In most cases, any change in either of the first two
nucleotides changes is replacement (that is, it changes
the amino acid). For the four codons for Alanine above,
all 3rd position changes are silent.

Looking for clues: Suppose that we have m DNA se-
quences from one species at a particular gene and n
DNA sequences from another sequences, for example

Two species of Drosophila

Two species of Arabidopsis (a common weed)

Human beings and chimpanzees
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Suppose that we have samples of DNA sequences from
two closely-related species:

Species 1: . . . T. . . A. . . . . . A. . . C. . . C. . .
. . . T. . . T. . . . . . A. . . G. . . C. . .
. . . T. . . A. . . . . . A. . . C. . . C. . .

Species 2: . . . G. . . A. . . . . . C. . . T. . . T. . .
. . . G. . . A. . . . . . C. . . T. . . A. . .
. . . G. . . A. . . . . . C. . . T. . . T. . .

We then collect counts (McDonald-Kreitman table):

mono. at poly. in
diff. bases either sp. Sum

Replacement Mr Pr Tr

Silent Ms Ps Ts

(Sum) TM TP T

An excess of fixed replacements (Mr > TrTM

T , so

that Mr

T > Tr

T
TM

T ) suggests favorable mutation. Con-

versely, a deficit (Mr < TrTM

T ) suggests unfavorable
mutation.
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DNA changes at n gene loci are likely to be too sparse
for individual McDonald-Kreitman tables

mono. at poly. in
diff. bases either sp.

Replacement Mri Pri

Silent Msi Psi

at n loci to be statistically significant, with many small
cell values for different i. However, one can show (using
the Mantel-Haenszel strata test for 2× 2 tables):

Two Drosophila species (melanogaster and simulans):
n = 56 loci, Z = 6.35, P ≈ 2× 10−10

Two Arabidopsis species (thaliana and lyrata):
n = 12 loci, Z = −4.47, P ≈ 8× 10−6

Thus, evolution seems to be going uphill for the two
Drosophila species, but downhill for the two weeds.

However, can we make this quantitative? What are the
selection coefficients involved, per generation? How
long does it take?
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Random changes due to random choices of mates and
who survives happen on a time scale of N = Ne gen-
erations, where Ne is the effective population size, so
that it is natural to scale time in this way.

It is useful to consider five different kinds of mutations,
where s is the amount of selection (relative advantage)
per generation:

(i) s < 0, |sN | À 1 Evolutionary lethal

(ii) s < 0, |sN | = O(1) Weakly deleterious

(iii) s = 0 Neutral

(iv) s > 0, |sN | = O(1) Weakly advantageous

(v) s > 0, |sN | À 1 Hopeful monsters(?)

Evolutionary lethal mutations can be ignored since they
rapidly disappear in time scaled by N generations, and
hopeful monsters are never polymorphic in this time
scale.

We will restrict ourselves to weakly selected mutations,
(ii,iii,iv). This ignores the more interesting “hopeful
monsters” (v), but these are probably rare.
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PROBABILITY THEORY: Let Xk be the frequency of
the mutant base in generation k. Thus X0 = 1/N .
Most models for “random mating” are equivalent to

{Xk+1 | Xk = p} ≈ 1

N
Binom

(
N,

(1 + s)p

1− p + (1 + s)p

)

where s is the selective advantage (s > 0) or disadvan-
tage (s < 0) per generation. We assume Ns ≈ γ, so
that s → 0. Then if p1 = (1 + s)p/(1 + sp)

N E(Xk+1 − p | Xk = p) = N(p1 − p) → γp(1− p)

N Var(Xk+1 | Xk = p) = N
p1(1− p1)

N
→ p(1− p)

N E(|Xk+1 − p|3 | Xk = p) ≤ C/
√

N → 0

This means that, in the time scale t = k/N , XN (t) =
X[Nt] → X(t) for a Markov diffusion process X(t) with
infinitesimal generator

Lp =
1

2
p(1− p)

d2

dp2
+ γp(1− p)

d

dp
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This means that if

Pr(X(t) ∈ y + dy | X(0) = x) = q(t, x, y) dy

then (∂/∂t)q(t, x, y) = Lxq(t, x, y) for

Lx =
1

2
x(1− x)

∂2

∂x2
+ γx(1− x)

∂

∂x
By purely random forces, both the discrete processes
Xk and the diffusion process Xt are eventually trapped
at either p = 0 (the mutant is lost) or at p = 1 (the
mutant base becomes fixed in the population). From
this it follows that

φ(p) = Pr(Trapped at 1 | X0 = p)

=
1− exp(−2γp)

1− exp(−2γ)

Thus the probability that a particular mutant base is
successful should be

φ(1/N) ≈ 1

N

2γ

1− exp(−2γ)
≈ c(γ)

N

Thus most new mutant bases are lost even if γ > 0
and large, but a number that is proportional to c(γ)/N
survive to become fixed.
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Consider a flux of mutations at rate µ (= µr or = µs)
at various sites in the gene in various individuals in
the population:

Most new mutant alleles quickly go extinct by drift,
but a number survive to have appreciable base fre-
quencies in the population:

gene frequencies
x1 x2

population
site freqs → p2 p1

different sites 0 p 1

Each new mutant (located at some site x1) eventually
satisfies either p1 = 0 (goes extinct) or p1 = 1
(becomes fixed in the population).

Now view the population frequencies at those sites for
the non-extinct non-fixed mutant bases as a point
process of frequencies in (0, 1) with an equilibrium
distribution.

Assume that mutations are so rare that they don’t hap-
pen twice at the same site, and let N →∞.
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gene frequencies
x1 x2

population
site freqs → p2 p1

different sites 0 p 1

As N →∞, if we can assume that the processes Xt for
different sites at the same locus are independent,
the pi for polymorphic sites at a particular locus
form a Poisson random field .

This means that the numbers of pi with a < pi < b
have a Poisson distribution and are independent for
nonoverlapping intervals (a, b). The distributions of
Mr, Pr for replacement sites and Ms, Ps for silent
sites can be determined from this model, and turn
out also to be independent Poisson.

The parameters of the limiting model at each locus are:

At silent sites: θs = Nµs = silent mutation rate per
N generations

At replacement sites: θr = Nµr and γ = Ns: scaled
replacement mutation rate and selective advantage
or disadvantage per N generations.
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The model: We assume

• All new mutations occur at a new site. Silent poly-
morphisms are neutral. Each new mutant base is
subject to constant directional selection, with no
epistasis or dominance over sites.

• Sites are unlinked; that is, are statistically indepen-
dent. (Seems OK by simulation for applications for
two related species.)

• At the ith locus, each new replacement muta-
tion has selection coefficient γ ∈ N(γi, σ

2
w) for

some γi,

• The mean selection coefficient at the ith locus γi

satisfies γi ∈ N(µγ , σ2
b )

This means that the distribution of γs for new re-
placement mutations is that of a random-effects model
in statistics, with between-locus and within-locus vari-
ances σ2

b and σ2
w, respectively.
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STATISTICS: Under these assumptions, given data
Mri, Pri,Msi, Psi, we can write down a likelihood

L = L(Mri, Pri,Msi, Psi | µγ , σw, σb, θsi, θri, γi, tdiv)

for 1 ≤ i ≤ n, if we have data for n loci. Here tdiv

is the scaled divergence time between the two species.
If n = 56, there are 172 parameters, of which we are
primarily interested in µγ , σw, σb, γi.

The maximum likelihood method says that we should
guess those parameter values that maximize L given
our data, but we have far too many parameters for
numerical maximization methods to work well.

Instead, we will use a Bayesian technique called
MCMC, for Markov chain Monte Carlo. The first
step is to assume a “prior distribution” π0(θ) for
θ = (µγ , σw, σb, θsi, θri, γi, tdiv) that is a probability
distribution in those parameters.



13

Given our prior distribution π0(θ) for our parameters θ,
the expression π0(θ)L(Mri, Pri,Msi, Psi, θ) is then a
joint probability distribution for both our parameters θ
as well as our data Mri, Pri,Msi, Psi. We now consider
the conditional or posterior distribution

π1(θ) = C(M, P ) π0(θ)L(Mri, Pri, Msi, Psi | θ)
where

C(M, P ) = 1
/ ∫

π0(z)L(Mri, Pri,Msi, Psi | z) dz

If we have enough data, this distribution should be con-
centrated near the true value of θ, and the center of
the distribution should not depend on π0(θ).

Thus we want to find means or median values of various
components of π1(θ). This is a reasonably tractable
expression of θ except for the hideously complicated
normalizing constant C(M,P ), which is here a 172-
dimensional integral that does not simplify.
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A particular solution to this problem — of finding inte-
grals or median values of a moderately complicated ex-
pression π0(θ)L(Mri, Pri,Msi, Psi, θ) times an impos-
sibly complicated normalizing constant — was found by
Metropolis et al. (1953), and is based on three ideas.

The first idea is to look for a Markov chain Zn on θ-
space (here part of R172) that has π1(θ) as a stationary
measure. If the Markov chain is ergodic, we can esti-
mate the conditional distribution of the parameters θ
given our data by considering the sample distribution
of a single very long sample path of Zn.

The second idea is due to Metropolis (1953): Given any
Markov-chain transition function q(θ1, θ2) on θ-space
that is symmetric in θ1 and θ2, they show how to mod-
ify q(θ1, θ2) in a simple way to form a second Markov-
chain transition function q1(θ1, θ2) such that q1(θ1, θ2)
had π1(θ) as a stationary measure. Hastings (1970)
removed the condition of symmetry on q(θ1, θ2): The
resulting slightly more-complicated procedure is called
the Metropolis-Hasting algorithm.
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The third idea is, for parameters θ ∈ R172, is break up
each step of the Markov chain Zn ∈ R172 into a se-
quence of 172 single steps of one-dimensional Markov
chains for each component of θ. If each of the one-
dimensional Markov chains is ergodic in one dimen-
sion, then one can usually show that the resulting 172-
dimensional Markov chain is ergodic in R172.

Geman and Geman (1984) introduced the idea, for up-
dating the ith component of θ or Zn, of sampling from
the conditional distribution of that component given
the current value of all of the other components as
well as the data.

This idea, which is a special case of the Metropolis-
Hastings algorithm, carries the colorful name of Gibbs
Sampler . In practice, many MCMC algorithms are run
using Gibbs’ sampler steps for some components of
θ = Zn and Metropolis random-walk steps for other
components. In some cases, key components are so
highly correlated that this does not work. In that case,
groups of components can be updated together.
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Our procedure for the n = 56 Drosophila loci was,
first, to run Zn for 10,000 steps to burn in or “average
out” the 172 components of Zn. After the burnin,
a single long run of 1,000,000 steps was split into 10
consecutive blocks or subchains of 100,000 steps each.
The idea is that if parameter estimates from the 10
subchains are similar, then one has confidence that the
process has converged.

The process did converge under the additional condi-
tion that θri/(2θsi) = q was constant across loci. This
assumption is that the proportion of replacement sites
that are not “evolutionary lethal” was constant across
loci. Median and “95% credible intervals” (the middle
95% of the posterior distribution) for the final subchain
were

µγ : -5.74 (-20.67, -0.34)
σb : 5.41 ( 3.70, 8.46)
σw : 6.20 ( 2.87, 12.73)
σb/(σb + σw) : 0.47 ( 0.37, 0.61)
q = θri/2θsi : 0.14 ( 0.09, 0.32)
tdiv : 2.47 ( 2.18, 2.80)
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Under these conditions, averaging over all 56 loci, the
expected proportions of advantageous (non-deleterious)
mutations among replacement mutations are

New (nonlethal) mutations 19%
Polymorphic in samples 47%
Fixed differences 93%

This shows that, at least for these two Drosophila
species, evolution has proceeded as Darwin would have
expected.

An Epilogue: The reason that I considered this “work
in progress” is that my co-authors have more recently
sent me a new set of 78 Drosophila loci with 3 species
and then a “better behaved” dataset with 112 loci.
The first did not converge in 1,000,000 steps, even
with the assumption on θri/(2θsi) = q, but does con-
verge in n = 20,000,000 iterations without assuming
θri/(2θsi) = q.

The reasons why the first datasets are “badly behaved”
are illustrated in the next few graphics.
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Thank you for coming.


