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Mixture Models in Statistics:

Given a sample Xi for 1 ≤ i ≤ n, can it be described
as coming from a mixture of m different
subpopulations?

For example, each Xi is independently of type a with
probability pa, with then Xi normal N(µa, Σa),
where

∑m
a=1 pa = 1,?

The problem is to estimate the parameters
θ = (pa, µa, Σa : 1 ≤ a ≤ m) and try to determine
the type a = a(i) for each Xi

This could be done either because we are interested in
detecting population subgroups from the values Xi

alone or as a device to isolate outliers.

The likelihood of θ for the data Xi is
∏n

i=1

(∑m
a=1 paφ(Xi, µa, Σa)

)

If n is large, this is very awkward to work with directly.

See the accompanying graphics for two examples.
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An example from genetics: Chromosomes can be
thought of as long strings of DNA, which in turn can
be thought of as long strings of nucleotides A, C, G, T.

A gene or genetic locus is a segment of a chromosome
that controls some trait, usually by generating a protein
or enzyme.

Parts of each genetic locus directly code for amino acids
by consecutive triples of bases that are called codons,
for example:

ATGGCAGAA GGC TTTAACTTC ATTGGT ACC · · ·
Met Ala Glu Gly Phe Asn Phe Ile Gly Thr · · ·

where Met etc are amino acids. Proteins are built from
strings of amino acids.

There are 20 amino acids and 64 codons. Base changes
that change the amino acid are called replacement.
Changes that do not are called silent.



3

Most silent variation is in the 3rd nucleotide position,
and is mostly either one of

(GAT,GAC) = Asp (GAA,GAG) = Glu or

(GCT,GCC, GCA,GCG) = Ala

In most cases, any change in either of the first two
nucleotides changes is replacement (that is, it changes
the amino acid). For the four codons for Alanine above,
all 3rd position changes are silent.

Suppose that we have samples of DNA sequences from
two closely-related “sibling” species:

Species 1: . . . T. . . A. . . . . . A. . . C. . . C. . .
. . . T. . . T. . . . . . A. . . G. . . C. . .
. . . T. . . A. . . . . . A. . . C. . . C. . .

Species 2: . . . G. . . A. . . . . . C. . . T. . . T. . .
. . . G. . . A. . . . . . C. . . T. . . A. . .
. . . G. . . A. . . . . . C. . . T. . . T. . .
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We then collect counts at each of n = 35 or 91 or 112
loci of the form (McDonald-Kreitman tables):

mono. at poly. in
diff. bases either sp. Sum

Replacement Mri Pri Tri

Silent Msi Psi Tsi

(Sum) TMi TPi Ti

where there is a different table at each locus.

An overall excess of fixed replacements (Mr > TrTM

T ,

so that Mr

T > Tr

T
TM

T ) suggests favorable mutation.

Conversely, an overall deficit (Mr < TrTM

T ) suggests
unfavorable mutation.

DNA changes at individual genetic loci are likely to be
too sparse for individual tables to be significant. Nev-
erthless, the Mantel-Haenszel strata test based on the
differences Zi = Mr − TrTM

T can often be significant.
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Random changes due to random choices of mates and
who survives happen on a time scale of N = Ne gen-
erations, where Ne is the effective population size, so
that it is natural to scale time in this way.

It is useful to consider five different kinds of mutations,
where s is the amount of selection (relative advantage)
per generation:

(i) s < 0, |sN | À 1 Evolutionary lethal

(ii) s < 0, |sN | = O(1) Weakly deleterious

(iii) s = 0 Neutral

(iv) s > 0, |sN | = O(1) Weakly advantageous

(v) s > 0, |sN | À 1 Hopeful monsters(?)

Evolutionary lethal mutations can be ignored since they
rapidly disappear in time scaled by N generations, and
hopeful monsters are never polymorphic in this time
scale.

We will restrict ourselves to weakly selected mutations,
(ii,iii,iv). This ignores the more interesting “hopeful
monsters” (v), but these are relatively rare.
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THE MODEL: A probability model leads to 3 param-
eters at each locus, specifically one parameter γi for
selection and two mutation rates θsi and θri.

Mutations at the ith locus have selection coefficients s
that are normal N(γi, σw). Mutants with s on the
upper tail of this distribution control evolution, except
for “hopeful monsters”.

We also assume the γi are N(µγ , σb). This is then a
random effects model with parameters (γi, σw, σb) for
the distribution of s within and between loci.

Under these assumptions, given data Mri, Pri, Msi, Psi,
we can write down a likelihood

L = L(Mri, Pri,Msi, Psi | µγ , σw, σb, θsi, θri, γi, tdiv)

for 1 ≤ i ≤ n, if we have data for n loci. Here tdiv is the
divergence time between the two species. If n = 56,
there are 172 parameters, of which we are primarily
interested in µγ , σw, σb, γi.

See the accompanying graphics for more examples.
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The maximum likelihood method says that we should
guess those parameter values that maximize L given
our data, but we have far too many parameters for
numerical maximization methods to work well.

Instead, we will use a Bayesian technique called
MCMC, for Markov chain Monte Carlo. The first
step is to assume a “prior distribution” π0(θ) for
θ = (µγ , σw, σb, θsi, θri, γi, tdiv) that is a probability
distribution in those parameters.

The expression π0(θ)L(Mri, Pri,Msi, Psi, θ) is then a
joint probability distribution for both our parameters θ
as well as our data Mri, Pri,Msi, Psi. We now consider
the conditional or posterior distribution

π1(θ) = C(M, P ) π0(θ)L(Mri, Pri, Msi, Psi | θ)
where

C(M, P ) = 1
/ ∫

π0(z)L(Mri, Pri,Msi, Psi | z) dz
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If we have enough data, this distribution should be con-
centrated near the true value of θ, and the center of
the distribution should not depend on π0(θ).

Thus we want to find means or median values of various
components of π1(θ). This is a reasonably tractable
expression of θ except for the hideously complicated
normalizing constant C(M,P ), which is here a 172-
dimensional integral that does not simplify.

Two approaches to this problem — of finding inte-
grals or median values of a moderately complicated ex-
pression π0(θ)L(Mri, Pri,Msi, Psi, θ) times an impos-
sibly complicated normalizing constant — were found
by Metropolis et al. (1953) and Geman and Geman
(1984), and are based on three ideas.
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The first idea is to look for a Markov chain Zn on θ-
space (here part of R172) that has π1(θ) as a stationary
measure. If the Markov chain is ergodic, we can esti-
mate the conditional distribution of the parameters θ
given our data by considering the sample distribution
of a single very long sample path of Zn. That is, we
can estimate

θk ≈ 1

L

L∑

b=1

(Zb)k

with corresponding expressions for the median, exact
confidence intervals, etc.

The second idea is, for parameters θ ∈ R172, is break
up each step of the Markov chain Zn ∈ R172 into a se-
quence of 172 single steps of one-dimensional Markov
chains for each component of θ. If each of the one-
dimensional Markov chains is ergodic in one dimen-
sion, then one can usually show that the resulting 172-
dimensional Markov chain is ergodic in R172.
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The third idea is due to Metropolis (1953): Given
any Markov-chain transition function q(θ1, θ2) on θ-
space that is symmetric in θ1 and θ2, they show how
to modify q(θ1, θ2) in a simple way to form a second
Markov-chain transition function qM (θ1, θ2) such that
qM (θ1, θ2) has π1(θ) as a stationary measure. Hast-
ings (1970) removed the condition of symmetry on
q(θ1, θ2): The resulting slightly more-complicated pro-
cedure is called the Metropolis-Hasting algorithm.

Alternatively, Geman and Geman (1984) introduced
the idea, for updating the ith component of θ or Zn,
of sampling from the conditional distribution of that
component given the current value of all of the other
components as well as the data.

This idea carries the colorful name of Gibbs Sampler . In
practice, many MCMC algorithms use Gibbs’ sampler
steps for some components of θ = Zn and Metropo-
lis random-walk steps for other components. In some
cases, groups of key components are highly correlated
and can be updated together.
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BAYESIAN MIXTURE MODELS: As before, we have
data Xi that come from m unknown subpopulations
or “mixture components”. If Xi comes from the ath

subpopulation, it is normal N(µa,Σa). The likelihood
of the data is

L(X, θ) =
n∏

i=1

( m∑
a=1

paφ(Xi, µa, Σa)
)

for θ = (pa, µa, Σa : 1 ≤ a ≤ m).

To make life simpler, we introduce hidden variables
hi = 1, 2, . . . ,m that given the assumed state of the
ith observation. The likelihood in terms of hi is con-
siderably simpler:

L(X, θ) =
n∏

i=1

phiφ(Xi, µhi , Σhi)

=
m∏

a=1

pNa
a

∏

[hi=a]

φ(Xi, µa,Σa)

where Na = num{a : hi = a} and now

θ = (hi : 1 ≤ i ≤ n, (pa, µa, Σa) : 1 ≤ a ≤ m)
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What makes Bayesian mixture models work so well is
that this likelihood is amenable to Gibbs samplers in
{hi}, {pa}, and {µa,Σa}, in any order, providing that
we choose the prior π0(θ) appropriately:

π0(θ) =
m∏

a=1

pαa−1
a IVGN(µε, Σε)

where IVG is “inverse-gamma-normal”, so that

π1(θ | X) =
m∏

a=1

pNa+αa−1
a

∏

[hi=a]

φ(Xi, µa, Σa) IVGN

=
m∏

a=1

pNa+αa−1
a IVGN(Xa, µa, Σa, ε)

where Xa means all observations Xi with hi = a.

The product form of π1(θ | X) means that individ-
ual component updates will be much simpler, because
under conditioning with respect to X and all other pa-
rameters, most factors in the likelihood will go away.
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Gibbs sampler updates for likelihood

π1(θ | X) =
m∏

a=1

pNa+αa−1
a IVGN(Xa, µa,Σa, ε)

Variables pa: The conditional density in the pa is

C(p,N)
m∏

a=1

pNa+αa−1
a

or if m = 2, so that p2 = 1− p1:

C(p,N)pN1
1 (1− p1)

m−N1

This is a beta density for m = 2 or a Dirichlet density
for m ≥ 2. It is known how to sample efficiently from
either.

Hidden variables hi: For each i:

Pr(hi = a | X etc) = pa IVGN(Xi, µa, Σa, ε)

For each i, this is a Bernoulli sample (biased coin toss)
for m = 2 and the multinomial analog (biased multi-
sided coin toss). This is also easy to do, but must be
done each each hidden variable hi.
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Within-subpopulation parameters (µa, Σa):

The conditional density for each a is

∏

[hi=a]

φ(Xi, µa, Σa) IVGN(a, ε) = IVGN(Xa, µa,Σa, ε)

For d = dim(Xi) = 1, this can be carried out by sam-
pling γa from a gamma distribution with Σa = 1/γa

and then sampling µa from a normal distribution
with mean approximately Xa and variance approxi-
mately Σa/Na.

For d > 2, these steps are replaced by sampling from
an inverse Wishart distribution and then from a multi-
variate normal.

Thus we have Gibbs-sampler updates of all variables,
which is the principal reason why MCMC converges
rapidly for Bayesian mixture models.
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MCMC output for first two examples:

Example 1: Analysis based on 5000 records.
1000 burnins then 1000 samples.
Median and 95% credible interval, true values, and
Gelman-Rubin statistics:

pp ( 0.0567, 0.0715, 0.0871) 0.08 OK 1.2479
mu1 (-0.0800, -0.0253, 0.0352) 0.00 OK 1.1139
sig1 ( 0.2231, 0.2810, 0.3391) 0.30 OK 1.2179
mu2 ( 1.9443, 1.9840, 2.0257) 2.00 OK 1.1077
sig2 ( 0.9706, 1.0004, 1.0287) 1.00 OK 1.1140

Example 2: Analysis based on 5000 records.
Analysis based on 5000 records.
1000 burnins then 20,000 samples.

pp ( 0.6488, 0.8358, 0.8893) 0.88 OK 1.4948
mu1 (-0.1898, -0.0730, 0.0097) 0.00 OK 1.3587
sig1 ( 0.8972, 0.9685, 1.0156) 1.00 OK 1.3023
mu2 ( 1.1478, 2.1527, 2.6047) 2.50 OK 1.4609
sig2 ( 0.9272, 1.1205, 1.4645) 1.00 OK 1.3931
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Thank you for coming.


