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Abstract: We study the Bergman kernel on a domain having

smooth boundary with several connected components, and relate

it to the Bergman kernel of simpler domains having only some

of these boundary components. Results both in one and several

complex variables are obtained.

1 Introduction

The Bergman kernel has, in the past fifty years, become an important tool in
the complex analysis of both one and several complex variables (see [KRA1],
[FEF], [KRP], for example). Its reproducing properties, its biholomorphic
invariance, and its relationship to the Bergman metric are all of fundamental
importance.

This it is important to obtain concrete information about the Bergman
kernel. That said, we must confess that it is generally quite difficult to obtain
specific, concrete information about this kernel. On the disc, the ball, and the
polydisc, the kernel may be computed with an explicit formula (see [KRA1]).
Analogous work was performed on the bounded symmetric domains of Cartan
in [HUA]. But for more general domains a formula is certainly not feasible;
one might hope instead for an asymptotic expansion (see, for instance, [FEF]
or [KRP]).

This paper explores a slightly different avenue for getting one’s hands
on the Bergman kernel of a domain. The general approach is perhaps best
illustrated with an example. Let

Ω = {ζ ∈ C : 1 < |ζ| < 2} .
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This is the annulus, and any explicit representation of its Bergman kernel
will involve elliptic functions (see [BER]). One might hope, however, to relate
the Bergman kernel KΩ of Ω to the Bergman kernels KΩ1

and KΩ2
of

Ω1 = {ζ ∈ C : |ζ| < 2}

and
Ω2 = {ζ ∈ C : 1 < |ζ|} .

The first of these has an explicitly known Bergman kernel (see [KRA1]) and
the second domain is the inversion of a disc, so its kernel is known explicitly
as well.

One could pose a similar question for domains of higher connectivity. The
question also makes sense, with a suitable formulation, in several complex
variables. Our purpose here is to come up with precise formulations of results
such as these and to prove them. In one complex variables, we can make
decisive use of classical results relating the Bergman kernel to the Green’s
function (see [KRA2]). In several complex variables there are analogous
results of Garabedian (see [GAR]) that will serve in good stead.

In Section 2 we introduce appropriate definitions and notation. In Section
3 we prove a basic, representative result in the plane. Section 4 proves a more
general result in the plane. Section 5 treats the multi-dimensional result.
Section 6 sums up the work.

We thank Richard Rochberg for bringing these questions to our attention.

2 Definitions and Notation

If Ω ⊆ Cn is a bounded domain then we let KΩ(z, ζ) denote its Bergman
kernel. This is the reproducing kernel for

A2(Ω) ≡ {f ∈ L2(Ω) : f is holomorphic on Ω} .

It is known, for planar domains, that KΩ(z, ζ) is related to the Green’s
function GΩ(z, ζ) for Ω by this formula:

KΩ(z, ζ) = 4 ·
∂2

∂ζ∂z
GΩ(ζ, z) .
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Of course it is essential for our analysis to realize that the Green’s function
is known quite explicitly on any given domain. If

Γ(ζ, z) =
1

2π
log |ζ − z|

is the fundamental solution for the Laplacian (on all of C) then we construct
the Green’s function as follows:

Given a domain Ω ⊆ C with smooth boundary, the Green’s function is
posited to be a function GΩ(ζ, z) that satisfies

GΩ(ζ, z) = Γ(ζ, z) − F Ω
z (ζ) ,

where F Ω
z (ζ) = F Ω(ζ, z) is a particular harmonic function in the ζ variable.

It is mandated that F Ω be chosen (and is in fact uniquely determined by the
condition) so that G( · , z) vanishes on the boundary of Ω. One constructs the
function F Ω( · , z), for each fixed z, by solving a suitable Dirichlet problem.
Again, the reference [KRA1, p. 40] has all the particulars. It is worth noting
that the Green’s function is a symmetric function of its arguments.

In our proof, we shall be able to exploit known properties of the Poisson
kernel (see especially [KRA3]) and of the solution to the Dirichlet problem
(see [KRA4]) to get the estimates that we need.

We shall first formulate and solve our problem for domains in the plane.
Afterward we shall treat matters in higher-dimensional complex space.

3 A Representative Result

We first prove our main result for the domain

Ω = {ζ ∈ C : 1 < |ζ| < 2} .

This argument will exhibit all the key ideas—at least in one complex variable.
The later exposition will be clearer because we took the time to treat this
case carefully.

Let
Ω1 = {ζ ∈ C : |ζ| < 2}

and
Ω2 = {ζ ∈ C : 1 < |ζ|} .
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For convenience in what follows, we let S1 be the boundary curve of Ω1 and
S2 be the boundary curve of Ω2. Of course it then follows that ∂Ω = S1 ∪S2.

We claim that

KΩ(z, ζ) =
1

2
[KΩ1

(z, ζ) + KΩ2
(z, ζ)] + E(z, ζ) ,

where E is an error term that is smooth on Ω × Ω. In particular, E is bounded
with all derivatives bounded on that domain.

For the proof, we write

1

8

[

KΩ1
(z, ζ) + KΩ2

(z, ζ)
]

=
1

2

∂2

∂ζ∂z

[(

Γ(ζ, z) − F Ω1(ζ, z)
)

+
(

Γ(ζ, z) − F Ω2(ζ, z)
)]

=
∂2

∂ζ∂z

(

Γ(ζ, z) −
1

2

[

F Ω1(ζ, z) + F Ω2(ζ, z)
]

)

.

Now we claim that

F Ω1(ζ, z) + F Ω2(ζ, z) = 2F Ω(ζ, z) + E(z, ζ)

for a suitable error term E. We must analyze

G(ζ, z) ≡ [F Ω1(ζ, z) + F Ω2(ζ, z)] − 2F Ω(ζ, z) .

We think of G as the solution of a Dirichlet problem on Ω, and we must
analyze the boundary data. What we see is this:

• For z near S1, F Ω and F Ω1 agree on S1 (in the variable ζ) and equal
0. And F Ω2 is smooth and bounded by C · | log(1/2)|, just by the form
of the Green’s function. All three functions are plainly smooth and
bounded on S2 (for z still near S1) by similar reasoning. In conclusion,
G is smooth and bounded on Ω for z near S2.

• For z near S2, F Ω and F Ω2 agree on S2 (in the variable ζ) and equal
0. And F Ω1 is smooth and bounded by C · | log(1/2)|, just by the form
of the Green’s function. All three functions are plainly smooth and
bounded on S1 (for z still near S2) by similar reasoning. In conclusion,
G is smooth and bounded on Ω for z near S2.

• For z away from both S1 and S2—in the interior of Ω—it is clear that
all the terms are bounded and smooth on ∂Ω. So the solution G of the
Dirichlet problem will also be smooth as desired.
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As a result of these considerations, G is smooth on Ω.
That completes our argument and gives, altogether, the error term E.

Thus
F Ω1 + F Ω2 − 2F Ω = E .

It follows that

1

2
[KΩ1

(z, ζ) + KΩ2
(z, ζ)] = 4

∂2

∂ζ∂z

(

Γ(ζ, z) − F Ω(ζ, z)

)

+ E ′

= KΩ(z, ζ)

4 The More General Result in the Plane

Now consider a smoothly bounded domain Ω ⊆ C with k connected com-
ponents in its boundary, k ≥ 2. We denote the boundary components by
S1, . . . , Sk; for specificity, we let S1 be the component of the boundary that
bounds the unbounded component of the complement of Ω. Let Ω1 be the
bounded region in the plane bounded by the single Jordan curve S1. Let
Ω2, . . . , Ωk be the unbounded regions bounded by S2, S3, . . . , Sk respectively.

Then we may analyze, just as in the last section, the expression

KΩ −
1

k
[KΩ1

+ KΩ2
+ · · · + KΩk

]

to obtain a smooth error term

E = E1 + E2 + · · · + Ek .

That completes our analysis of a smooth, finitely connected domain in the
plane.

5 Domains in Higher-Dimensional Complex

Space

The elegant paper [GAR] contains the necesarry information about the re-
lationship of the Bergman kernel and a certain Green’s function in several
complex variables so that we may carry out our program in that more general
context.
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Fix a smoothly bounded domain Ω in Ck. Let t = (t1, . . . , tk be a fixed
point in Ω. Following Garabedian’s notation, we set

r =

√

√

√

√

k
∑

j=1

|zj − tj|2 .

Let σk be constants chosen so that

lim
ε→0

σk

∫

Γε

B ·
k

∑

j=1

∂r−2k+2

∂zj

αj dσ + B(t) = 0 ,

where Γε is the sphere of radius ε about t, B is some continuous function,
and (α1, . . . , αk) is a collection of complex-valued direction cosines.

Now set θ(z, t) to be that function

θ = σkr
−2k+2 + regular terms (∗)

on Ω so that
k

∑

j=1

∂θ

∂zj

· αj = 0

on ∂Ω,
∂

∂zj

4 θ = 0

on Ω (for j = 1, . . . , k) and such that

∫

Ω

θf dV = 0 ,

for all functions f analytic in Ω. It follows from standard elliptic theory that
such a θ exists.

In fact, according to [GAR], this function θ that we have constructed is
a Green’s function for the boundary value problem

∂

∂zj

4 β = 0 on Ω, j = 1, . . . , k

k
∑

j=1

∂β

∂zj

· αj = 0 on ∂Ω .
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Garabedian goes on to prove that the Bergman kernel for Ω is related to
the Green’s function θ in this way:

KΩ(z, t) = 4zθ(z, t) .

This is just the information that we need to apply the machinery that has
been developed here.

In order to flesh out the argument in the context of several complex
variables, our primary task is to argue that our new Green’s function has
a form similar to the classical Green’s function from one complex variable.
But in fact this is immediate from equation (∗). It follows from this that
the argument in Section 3 using the maximum principle will go through as
before, and we may establish a version of the result in Sections 3 and 4 in
the context of several complex variables. The theorem is this:

Theorem 1 Let Ω be a smoothly bounded domain in Cn with boundary

having connected components S1, S2, . . . , Sk. For specificity, say that S1 is

the boundary component that bounds the unbounded portion of the com-

plement of Ω. Let KΩ be the Bergman kernel for Ω, let K1 be the Bergman

kernel for the bounded domain having S1 as its single boundary element, and

let Kj , for j ≥ 2, be the Bergman kernel for the unbounded domain having

Sj as its single boundary component. Then

KΩ = K1 + K2 + · · · + Kk + E ,

where E is an error term that is bounded with bounded derivatives.

The reader can see that this new theorem is completely analogous to
the results of Sections 3 and 4 in the one variable setting. But it must be
confessed that this theorem is something of a canard. For, when j ≥ 2, any
function holomorphic on the unbounded domain with boundary Sj will (by
the Hartogs extension phenomenon) extend analytically to all of Cn. And of
course there are no L2 holomorphic functions on all of Cn. So it follows that
Kj ≡ 0. So the theorem really says that

KΩ = K1 + E .

This is an interesting fact, but not nearly as important or provocative as
the one-variable result. The one other point worth noting is that the state-
ment of the result is now a bit different from that in one complex variable,
just because we are dealing with a different Green’s function for a different
boundary value problem. Basically what we are seeing is that K2, . . . , Kk

do not count at all, and K1 is the principal and only term.
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6 Concluding Remarks

It is always a matter of interest to find means to get control of the Bergman
kernel of any domain. This paper offers a simple device—more meaningful in
the one-variable context than in the several-variable context—for doing so.
In practice, asymptotic expansions seem to be the most powerful device for
getting hard analytic information about a Bergman kernel. The decomposi-
tion presented here could be the first step in such an expansion.
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[KRA3] S. G. Krantz, Estimation of the Poisson kernel, Journal of Math. Anal-

ysis and Applications 302(2005), 143–148.

[KRA4] S. G. Krantz, Partial Differential Equations and Complex Analysis,
CRC Press, Boca Raton, 1992.

[KRP] S. G. Krantz and M. M. Peloso, The Bergman kernel and projection
on non-smooth worm domains, preprint.

9


