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Preface

Harmonic analysis is a venerable part of modern mathematics. Its roots be-
gan, perhaps, with late eighteenth-century discussions of the wave equation.
Using the method of separation of variables, it was realized that the equation
could be solved with a data function of the form ¢(x) = sin jz for j € Z.
It was natural to ask, using the philosophy of superposition, whether the
equation could then be solved with data on the interval [0, 7] consisting of a
finite linear combination of the sin jz and cos jz. With an affirmative answer
to that question, one is led to ask about infinite linear combinations.

This was an interesting venue in which physical reasoning interacted
with mathematical reasoning. Physical intuition certainly suggests that any
continuous function ¢ can be a data function for the wave equation. So
one is led to ask whether any continuous ¢ can be expressed as an (infinite)
superposition of sine functions. Thus was born the fundamental question of
Fourier series.

No less an eminence gris than Leonhard Euler argued against the propo-
sition. He pointed out that some continuous functions, such as

sin(z —m) if 0<zx<m/2

plz) = 2(x — )

if 7/2<z<nm
T

are actually not one function, but the juxtaposition of two functions. How,
Euler asked, could the juxtaposition of two functions be written as the sum
of single functions (such as sinjx)? Part of the problem, as we can see,
is that mathematics was nearly 150 years away from a proper and rigorous
definition of function.! We were also more than 25 years away from a rigorous

11t was Goursat, in 1923, who gave a fairly modern definition of function. Not too many
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definition (to be later supplied by Cauchy and Dirichlet) of what it means
for a series to converge.

Fourier? in 1822 finally provided a means for producing the (formal)
Fourier series for virtually any given function. His reasoning was less than
airtight, but it was calculationally compelling and it seemed to work.

Fourier series live on the interval [0, 27), or even more naturally on the
circle group T. The Fourier analysis of the real line (i.e., the Fourier trans-
form) was introduced at about the same time as Fourier series. But it was
not until the mid-twentieth century that Fourier analysis on RY came to
fruition (see [BOC2], [STW]). Meanwhile, abstract harmonic analysis (i.e.,
the harmonic analysis of locally compact abelian groups) had developed a life
of its own. And the theory of Lie group representations provided a natural
crucible for noncommutative harmonic analysis.

The point here is that the subject of harmonic analysis is a point of view
and a collection of tools, and harmonic analysts continually seek new venues
in which to ply their wares. In the 1970s E. M. Stein and his school intro-
duced the idea of studying classical harmonic analysis—fractional integrals
and singular integrals—on the Heisenberg group. This turned out to be a
powerful device for developing sharp estimates for the integral operators (the
Bergman projection, the Szeg6 projection, etc.) that arise naturally in the
several complex variables setting. It also gave sharp subelliptic estimates for
the 0, problem.

It is arguable that modern harmonic analysis (at least linear harmonic
analysis) is the study of integral operators. Stein has pioneered this point
of view, and his introduction of Heisenberg group analysis validated it and
illustrated it in a vital context. Certainly the integral operators of several
complex variables are quite different from those that arise in the classical
setting of one complex variable. And it is not just the well-worn differences
between one-variable analysis and several-variable analysis. It is the non-
isotropic nature of the operators of several complex variables. There is also
a certain non-commutativity arising from the behavior of certain key vector
fields. In appropriate contexts, the structure of the Heisenberg group very
naturally models the structure of the canonical operators of several complex
variables, and provides the means for obtaining sharp estimates thereof.

years before, no less a figure than H. Poincaé lamented the sorry state of the function
concept. He pointed out that each new generation created bizarre “functions” only to
show that the preceding generation did not know what it was talking about.

2In his book The Analytical Theory of Heat [FOUJ.
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The purpose of the present book is to exposit this rich circle of ideas.
And we intend to do so in a context for students. The harmonic analysis
of several complex variables builds on copious background material. We
provide the necessary background in classical Fourier series, leading up to the
Hilbert transform. That will be our entree into singular integrals. Passing
to several real variables, we shall meet the Riesz fractional integrals and
the Caldéron-Zygmund singular integrals. The aggregate of all the integral
operators encountered thus far will provide motivation (in Appendix 2) for
considering pseudodifferential operators.

The material on Euclidean integral operators, that has been described up
to this point, is a self-contained course in its own right. But for us it serves
as an introduction to analysis on the Heisenberg group. In this new arena,
we must first provide suitable background material on the function theory
of several complex variables. This includes analyticity, the Cauchy-Riemann
equations, pseudoconvexity, and the Levi problem. All of this is a prelude
to the generalized Cayley transform and an analysis of the automorphism
group of the Siegel upper half space. From this venue the Heisenberg group
arises in a complex-analytically natural fashion.

Just to put the material presented here in context: We develop the ideas
of integral operators up through pseudodifferential operators not because we
are going to use pseudodifferential operators as such. Rather, they are the
natural climax for this study. For us these ideas are of particular interest
because they put into context, and explain, the idea of “order” of an integral
operator (and of an error term). This material appears in Appendix 2. In
addition, when we later make statements about asymptotic expansions for
the Bergman kernel, the pseudodifferential ideas will help students to put
the ideas into context. The pseudodifferential operator ideas are also lurking
in the background when we discuss subelliptic estimates for the 0 problem
in the last section of the book.

In addition, we present some of the ideas from the real variable theory
of Hardy spaces not because we are going to use them in the context of the
Heisenberg group. Rather, they are the natural culmination of a study of
integral operators in the context of harmonic analysis. Thus Chapters 1-5 of
this book constitute a basic instroduction to harmonic analysis. Chapters 6—
8 provide a bridge between harmonic analysis and complex function theory.
And Chapters 9 and 10 are dessert: They introduce students to some of
the cutting-edge ideas about the Siegel upper halfspace and the Heisenberg

group.
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Analysis on the Heisenberg group still smacks of Euclidean space. But
now we are working in a step-one nilpotent Lie group. So dilations, trans-
lations, convolutions, and many other artifacts of harmonic analysis take a
new form. Even such a fundamental idea as fractional integration must be
rethought. Certainly one of the profound new ideas is that the critical dimen-
sion for integrability is no longer the topological dimension. Now we have
a new idea of homogeneous dimension, which is actually one greater than
the topological dimension. And there are powerful analytic reasons why this
must be so.

We develop the analysis of the Heisenberg group in some detail, so that
we may define and calculate bounds on both fractional and singular integrals
in this new setting. We provide applications to the study of the Szeg6 and
Poisson-Szego integrals. The book concludes with a treatment of domains of
finite type—which is the next development in this chain of ideas, and is the
focus of current research.

We provide considerable background here for the punchline, which is
analysis on the Heisenberg group. We do not, however, wish the book to
be boring for the experienced reader. So we put the most basic material on
Fourier series in an Appendix. Even there, proofs are isolated so that the
reader may review this material quickly and easily. The first chapter of the
book is background and history, and may be read quickly. Chapters 2 and 3
provide basic material on Fourier analysis (although the ideas about singular
integrals in Chapter 2 are seminal and should be absorbed carefully). In these
two chapters we have also exploited the device of having proofs isolated at
the end of the chapter. Many readers will have seen some of this material in
a graduate real variables course. They will want to move on expeditiously
to the more exciting ideas that pertain to the task at hand. We have made
every effort to aid this task.

We introduce in this graduate text a few didactic tools to make the
reading stimulating and engaging for students:

1. Each chapter begins with a Prologue, introducing students to the key
ideas which will unfold in the text that follows.

2. Each section begins with a Capsule, giving a quick preview of that unit
of material.

3. Each key theorem or proposition is preceded by a Prelude, putting the
result in context and providing motivation.
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4. At key junctures we include an Exercise for the Reader:, to encourage
the neophyte to pick up a pencil, do some calculations, and get involved
with the material.

We hope that these devices will break up the usual dry exposition of a re-
search monograph and make this text more like an invitation to the subject.

I have taught versions of this material over the years, most recently in
Spring of 2006 at Washington University in St. Louis. I thank the students
in the course for their attention and for helping me to locate many mistakes
and misstatements. Lina Lee, in particular, took wonderful notes from the
course and prepared them as TEX files. Her notes are the basis for much
of this book. I thank the American Institute of Mathematics for hospitality
and support during some of the writing.

In total, this is an ambitious introduction to a particular direction in
modern harmonic analysis. It presents harmonic analysis in vitro—in a con-
text in which it is actually applied: complex variables and partial differential
equations. This will make the learning experience more meaningful for grad-
uate students who are just beginning to forge a path of research. We expect
the reader of this book to be ready to take a number of different directions in
exploring the research literature and beginning his/her own investigations.

— SGK



Chapter 1

Ontology and History of Real
Analysis

Prologue: Real analysis as a subject grew out of struggles to un-
derstand, and to make rigorous, Newton and Leibniz’s calculus.
But its roots wander in all directions—into real analytic func-
tion theory, into the analysis of polynomials, into the solution of
differential equations.

Likewise the proper study of Fourier series began with the work
of Joseph Fourier in the early nineteenth century. But threads
of the subject go back to Euler, Bernoulli, and others. There is
hardly any part of mathematics that has sprung in full bloom
from a single mathematician’s head (Georg Cantor’s set theory
may be the exception); rather, mathematics is a flowing process
that is the product of many tributaries and many currents.

It should be stressed—and the present book expends some
effort to make this case—that real analysis is not a subject in
isolation. To the contrary, it interacts profitably with complex
analysis, Lie theory, differential equations, differential geometry,
and many other parts of mathematics. Real analysis is a basic
tool for, and lies at the heart of, a good many subjects. It is part
of the lingua franca of modern mathematics.

The present book is a paean to real analysis, but it is also
a vivid illustration of how real variable theory arises in modern,
cutting-edge research (e.g., the Heisenberg group). The reader

1
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will gain an education in how basic analytic tools see new light
when put in a fresh context. This is an illustration of the dynamic
of modern mathematics, and of the kind of energy that causes it
to continue to grow.

1.1 Deep Background in Real Analytic Func-
tions

Capsule: There is a hardly any more basic, yet more thoroughly
misunderstood, part of mathematics than the theory of real ana-
lytic functions. First, it is arguably the oldest part of real analy-
sis. Second, there is only one book on the subject (see [KRP3]).
Third, since everyone learns about Taylor series in calculus class,
it follows that everyone thinks that an arbitrary C'* function
has a power series expansion. Nothing could be further from the
truth. The real analytic functions form a rather thin subset of
the C*° functions, but they are still dense (in a suitable sense).
Properly understood, they are a powerful and versatile tool for
all analysts.

While real analysis certainly finds its roots in the calculus of Newton and
Leibniz, it can be said that the true spirit of analysis is the decomposition of
arbitrary functions into fundamental units. That said, analysis really began
in the early nineteenth century. It was then that Cauchy, Riemann, and
Weierstrass laid the foundations for the theory of real analytic functions,
and also Fourier set the stage for Fourier analysis.

In the present chapter we give an overview of key ideas in the history
of modern analysis. We close the chapter with a sort of history of Fourier
series, emphasizing those parts that are most germaine to the subject matter
of this book. Chapter 2 begins the true guts of the subject.

A function is real analytic if it is locally representable by a convergent
power series. Thus a real analytic function f of a single real variable can be
expanded about a point p in its domain as

flz) = Z%(ﬂf—P)j-
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A real analytic function F' of several real variables can be explanded about
a point P in its domain as

Fla) =Y bale —p)°,

where a here denotes a multi-index (see [KRP3] for this common and useful
notation). It is noteworthy that any harmonic function is real analytic (just
because the Poisson kernel is real analytic), and certainly any holomorphic
function (of either one or several complex variables) is real analytic. Holo-
morphic functions have the additional virtue of being complex analytic, which
means that they can be expanded in powers of a complex variable.

The basic idea of a real analytic function f is that f can be broken down
into elementary units—these units being the integer powers of x. The theory
is at first a bit confusing, because Taylor series might lead one to think that
any C*° function can be expanded in terms of powers of z. In fact nothing
could be further from the truth. It is true that, if f € C*(R), then we may
write

ot (p) - (2 — p)d

where Ry is an error term. What must be emphasized is that the error term
here is of fundamental importance. In fact the Taylor expansion converges
to f at x if and only if Rg(z) — 0. This statement is of course a tautology,
but it is the heart of the matter.

It is a fact, which can be proved with elementary category theory argu-
ments, that “most” C*° functions are not real analytic. Furthermore, even
if the power series expansion of a given C* function f does converge, it
typically will not converge back to f. A good example to bear in mind is

eV i >0
ﬂ@_{o it £<0.

This f is certainly C'™ (as may be verified using I’Hopital’s Rule), but its
Taylor series expansion about 0 is identically 0. So the Taylor series converges
to the function

g(r) =0,

and that function does not agree with f on the entire right half-line.
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The good news is that real analytic functions are generic in some sense. If
¢ is a continuous function on the unit interval I = [0, 1], then the Weierstrass
approximation theorem tells us that ¢ may be uniformly approximated on [
by polynomials. Of course a polynomial is real analytic. So the theorem tells
us that the real analytic functions are uniformly dense in C'([0,1]). A simple
integration argument shows that in fact the real analytic functions are dense
in C*([0,1]) equipped with its natural topology.

Real analytic functions may be characterized by the following useful and
very natural condition. A C'*° function on the interval J = (a — €,a + ¢€) is
real analytic if there is a M > 0 such that, for any integer £ > 0,

M - k!
10@)] < =

for all x € J. The converse is true as well (see [KRP3| for details). By
contrast, consider the venerable result of E. Borel: If a € R, ¢ > 0, and
Co, C1, ... 1S any sequence of real numbers then there is a C*° function f on
the interval J = (a — €, a + €) such that

) =3¢

for every j. In other words, the power series expansion of f about p is

> cile —p) .

1.2 The Idea of Fourier Expansions

Capsule: Fourier analysis as we know it today has its genesis in
the book [FOU]. What is special about that book is that it finally
gives an explicit formula—and the right formula— for the Fourier
coefficients of an “arbitrary” function. The epistemological issue
here must be clearly understood. Mathematicians had been de-
bating for years whether an arbitrary function can be expanded
in terms of sines and cosines. The discussion was hobbled by the
fact that there was not yet any precise definition of “function.”
People were thinking in terms of expressions that could be initial
data for the heat equation. It appeared that such were rather
more general than signs and cosines. Fourier’s contribution came
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as a revelation. His derivation of his formula(s) was suspect, but
it seemed to give rise to viable Fourier series. Of course tech-
niques were not available to sum the resulting series and see that
they converged to the initial function. Even so, Fourier’s argu-
ments were found to be compelling and definitive. The subject
of Fourier analysis was duly born.

Discussions in the late eighteenth century about solutions to the wave
equation led to the question of whether “any” function may be expanded
as a sum of sines and cosines. Thus mathematicians were led to consider a
different type of building block for “arbitrary” functions. The considerations
were hindered by the fact that, at the time, there was no generally accepted
definition of “function.” Many mathematicians thought of a function as a
curve, or perhaps finitely many curves pieced together. Could such a function
be written as the superposition of sines and cosines, each of which were single
real analytic curves and not pieced together?

Joseph Fourier essayed to lay the matter to rest with his classic book
The Analytical Theory of Heat [FOU]|. This book gives a not-very-rigorous
derivation of the formula that is so well known today for the Fourier series
of a given function on [0, 27):

fi =5 [ 10,

It should be stressed that Fourier does not address the question of whether
the Fourier series

St~ FG)ert
J

actually converges to f. Indeed, a rigorous definition of convergence of se-
ries was yet to be formulated by Dirichlet and others. Being a practical
man, however, Fourier did provide a number of concrete examples of explicit
functions with their Fourier series computed in detail.

Fourier’s contribution must be appreciated for the epistemological break-
through that it was. He certainly did not prove that a “fairly arbitrary”
function has a convergent Fourier series (this statement is true, and we shall
prove it later in the book). But he did provide a paradigm for—at least in
principle—expanding any given function in a sum of sines and cosines. This
was a fundamentally new idea.



6 CHAPTER 1. ONTOLOGY AND HISTORY OF REAL ANALYSIS

It took a number of years, and some struggle, for Fourier to get his ideas
published. In fact he finally published the book himself when he served as
Secretary of the National Academy in France. Even the scientists of the early
nineteenth century—somewhat naive by today’s standards—could see the
logical flaws in Fourier’s reasoning. But Fourier’s work has had an immense
impact, and it is certainly appropriate that the subject of Fourier analysis is
named after him.

1.3 Differences of the Real Analytic Theory
and the Fourier Theory

Capsule: If f isa C'™ function on some interval I = (xo—¢, xo+€)
then of course there is a Taylor expansion about the point xy. The
probability that the Taylor series converges, or if it converges that
it converges back to f, is 0. This assertion can be made precise
in a number of ways. We omit the details, but see [KRP3]. Even
if the Taylor series converges at xy to f, there is no reason to
suppose that it converges to f on an entire interval. Functions
that do have this convergence property are very special. They
are called real analytic. By contrast, most any function for which
the Fourier coefficients can be computed has a convergent Fourier
series—and it converges back to the initial function! Even when
the Fourier series itself does not converge, some reasonable sum-
mation method may be applied to get a convergent trigonometric
series. So there is a decided contrast between the two theories.
Fourier series are much more flexible, and considerably more pow-
erful, than power series.

There are fundamental and substantial differences between the theory of
real analytic functions and the theory of Fourier analysis. As already noted,
the real analytic functions form a rather thin set (indeed, a set of the first
category) in the space of all C*° functions. By contrast, any continuously
differentiable function has a convergent Fourier expansion. For this reason
(and other reasons as well), Fourier analysis has proved to be a powerful tool
in many parts of mathematical analysis and engineering.

Fourier analysis has been particularly effective in the study of signal
processing and the creation of filters. Of course sines and cosines are good
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models for the waves that describe sound. So the analysis by Fourier expan-
sion is both apt and accurate. If a signal has noise in it (pops and clicks for
example), then one may expand the signal in a (convergent) Fourier series,
extract those terms that describe the pops and clicks, and reassemble the
remaining terms into a signal that is free of noise. Certainly this is the basic
idea behind all the filters constructed in the 1950s and 1960s. An analogous
construction in the real analytic category really would make no sense—either
mathematically or physically.

Fourier analysis has proved to be a powerful tool in the study of differ-
ential equations because of the formula

f(3) =2mijf ().
Of course a similar formula holds for higher derivatives as well (and certainly
there are analogous formulas in the several-variable theory). As a result,
a differential equation may, by way of Fourier analysis, be converted to an
algebra problem (involving a polynomial in 7). This is one of the most basic
techniques in the solution of linear differential equations with constant coef-

ficients. For equations with variable coefficients, pseudodifferential operators
are a natural outgrowth that address the relevant issues (see Appendix 2).

1.4 Modern Developments

Capsule: Analysis of several real variables is a fairly modern
development. Certainly analysts in the pre-World-War-II period
contented themselves with functions of one variable, and G. H.
Hardy was quite aggressive in asserting that the analysis of several
variables offered nothing new (except some bookkeeping issues).
It is only with the school of Caldéron-Zygmund, Stein, Fefferman,
and others (since 1952) that we have learned all the depth and
subtlety hidden in the analysis of several real variables. It is a
tapestry rich with ideas, and continues to be developed.

The nineteenth century contented itself, by and large, with Fourier series
of one variable on the interval [0, 27) and the Fourier transform on the real
line R. But we live in a higher-dimensional world, and there is good reason
to want analytic tools that are adapted to it. In the twentieth century, espe-
cially following World War 11, there has been considerable development of the
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theory of Fourier series of several variables, of spherical harmonics (which is
another way to generalize Fourier series to many variables), and of the Fourier
transform. This is not simply a matter (as G. H. Hardy suspected) of devel-
oping multi-variable notation and establishing the book-keeping techniques
needed to track the behavior of many variables. In fact higher-dimensional
Fourier analysis contains many surprises, and harbors many new phenomena.
A book like [STEZ2] gives a thoroughgoing survey of some of the new discov-
eries. The present text will give a solid introduction to the multi-variable
Fourier transform, singular integrals, and pseudodifferential operators. These
ideas lie at the heart of many of the modern developments.

1.5 Wavelets and Beyond

Capsule: The theory of wavelets is less than twenty-five years
old. It frees Fourier analysis from an artificial dependence on
sines and cosines, and shows that a viable Fourier analysis may
be built on a much more general basis that can be localized both
in the space and in the time variables. Wavelet analysis has had
a profound impact in engineering, particularly in signal process-
ing, image analysis, and other applications where localization is
important. The fast Fourier transform is still important, but
wavelet theory is gradually supplanting it.

While Fourier series, and classical Fourier analysis in general, are useful
tools of wide applicability, they have their limitations. It is naive and unrea-
sonable to represent a “pop” or a “click”—see Figure 1.1—as a sum of sines
and cosines. For a sine or a cosine function is supported on the entire real
line, and is ill-suited to approximate a function that is just a spike.

Enter the modern theory of wavelets. A wavelet is a basis element—
much like a sine or a cosine—that can be localized in its support. There can
be localization both in the space variable and in the time variable. Thus, in
signal processing for instance, one gets much more rapid (and more accurate)
convergence and therefore much more effective filters. The reference [KRA5|
gives a quick introduction, with motivation, to wavelet theory. These new
and exciting ideas are not really germaine to the present book, and we shall
say no more about them here.
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\ 4

Figure 1.1: A “pop” or “click”.

1.6 History and Genesis of Fourier Series

Capsule: We have already alluded to the key role of the heat
equation (and also the wave equation) in providing a context for
the key questions of basic Fourier series. Thus Fourier analysis
has had intimate connections with differential equations from its
very beginnings. The big names in mathematics—all of whom
were also accomplished applied mathematicians and physicists—
made contributions to the early development of Fourier series.
In this section we exhibit some of the mathematics that led to
Fourier’s seminal contribution.

The classical wave equation (see Figure 1.2) describes the motion of a
plucked string of length 7 with endpoints pinned down as shown:

Pu 0%
— =a’—.
ot? Ox?

Here a is a real parameter that depends on the tension of the string. Typically
we take a = 1.

In 1747 d’Alembert showed that solutions of this equation have the form

u(z,t) == [f(t+z)+g(t—2)], (1.6.1)

1
2
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/\\/\n :

Figure 1.2: The vibrating string.

where f and g are “any” functions of one variable on [0, 7]. [The function is
extended in an obvious way, by odd reflection, to the entire real line.]
It is natural to equip the wave equation with two boundary conditions:

u(z,0) = ¢(x)
Ou(z,0) = ().

These specify the initial position and velocity respectively.
If D’Alembert’s formula is to provide a solution of this initial value prob-
lem then f and g must satisfy

1

5 [f(@) +g(=2)] = ¢(z) (1.6.2)

and

S P @)+ o (~0)] = (@) (1.6

Integration of (1.6.3) gives a formula for f(x) — g(—x). Thus, together with
(1.6.2.), we may solve for f and g.

The converse statement holds as well: for any functions f and ¢, a
function u of the form (1.6.1) satisfies the wave equation.

Daniel Bernoulli solved the wave equation by a different method (sep-
aration of variables) and was able to show that there are infinitely many
solutions of the wave equation having the form

¢j(x,t) = sin jz cos jt.
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This solution procedure presupposes that the initial configuration is ¢;(z,0) =
sin jx. Proceeding formally, Bernoulli hypothesized that all solutions of the
wave equation satisfying u(0,t) = u(m,t) = 0 and dyu(x,0) = 0 will have the
form

U = Z a;sin jx cos jt.
j=1
Setting ¢ = 0 indicates that the initial form of the string is f(x) = Z‘;‘;l a;sin jx.
In d’Alembert’s language, the initial form of the string is %(f x) — f(—a:)),
for we know that

0=u(0,t) = f(t) + g(t)

(because the endpoints of the string are held stationary), hence g(t) = —f(¢).
If we suppose that d’Alembert’s function is odd (as is sin jz, each j), then the
initial position is given by f(z). Thus the problem of reconciling Bernoulli’s
solution to d’Alembert’s reduces to the question of whether an “arbitrary”
function f on [0, 7] may be written in the form Z‘;‘;l a;sin jx.

This is of course a fundamental question. It is at the heart of what
we now think of as Fourier analysis. The question of representing an “arbi-
trary” function as a (possibly infinite) linear combinations of sine functions
fascinated many of the top mathematicians in the late eighteenth and early
nineteenth centuries.

In the 1820’s, the problem of representation of an “arbitrary” function by
trigonometric series was given a satisfactory (at least satisfactory according
to the standards of the day) answer as a result of two events. First there is
the sequence of papers by Joseph Fourier culminating with the tract [FOU].
Fourier gave a formal method of expanding an “arbitrary” function f into a
trigonometric series. He computed some partial sums for some sample f’s and
verified that they gave very good approximations to f. Secondly, Dirichlet
proved the first theorem giving sufficient (and very general) conditions for the
Fourier series of a function f to converge pointwise to f. Dirichlet was one
of the first, in 1828, to formalize the notions of partial sum and convergence
of a series; his ideas certainly had antecedents in work of Gauss and Cauchy.

It is an interesting historical note that Fourier had a difficult time pub-
lishing his now famous tome [FOU]. In fact he finally published it himself
after he was elected Secretary of the French Society.

For all practical purposes, these events mark the beginning of the math-
ematical theory of Fourier series (see [LAN]).
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Figure 1.3: An insulated rod.

1.6.1 Derivation of the Heat Equation

Let there be given an insulated, homogeneous rod of length 7 with initial
temperature at each € [0, 7] given by a function f(z) (Figure 1.3). Assume
that the endpoints are held at temperature 0, and that the temperature of
each cross-section is constant. The problem is to describe the temperature
u(x,t) of the point = in the rod at time ¢.

We shall use three elementary physical principles to derive the heat equa-
tion:

(1.6.4) The density of heat energy is proportional to the temperature u,
hence the amount of heat energy in any interval [a,b] of the rod is
proportional to fabu(a:, t)dx.

(1.6.5) [Newton’s Law of Cooling] The rate at which heat flows from a
hot place to a cold one is proportional to the difference in temperature.
The infinitesimal version of this statement is that the rate of heat flow
across a point x (from left to right) is some negative constant times

Opu(z,t).

(1.6.6) [Conservation of Energy| Heat has no sources or sinks.
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Now (1.6.6) tells us that the only way that heat can enter or leave any
interval portion [a, b] of the rod is through the endpoints. And (1.6.5) tells
us exactly how this happens. Using (1.6.4), we may therefore write

b
o u(w,t) dv = n?*[0,u(b, t) — Oyu(a,t)].

Here 7? is a positive constant. We may rewrite this equation as

b b
/ Owu(z,t)de = 772/ O*u(xw,t) dx.
Differentiating in b, we find that
O = n?0%u, (1.6.7)

and that is the heat equation.

Suppose for simplicity that the constant of proportionality n? equals 1.
Fourier guessed that the equation (1.6.7) has a solution of the form u(z,t) =
a(z)B(t). Substituting this guess into the equation yields

a(z)B(t) = o (x)3(t)
or
g't) _ o'(x)
Bt)  alz)
Since the left side is independent of x and the right side is independent of ¢,
it follows that there is a constant K such that

P _ e (@)

() o)

or

g(t) = KB(t)
o'(x) = Ka(z).

We conclude that §(t) = CeX!. The nature of 3, and hence of «, thus
depends on the sign of K. But physical considerations tell us that the temper-
ature will dissipate as time goes on, so we conclude that K < 0. Therefore

a(r) = cosy/—Kz and a(x) = siny/— Kz are solutions of the differential
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equation for a.. The initial conditions u(0,t) = wu(m,t) = 0 (since the ends
of the rod are held at constant temperature 0) eliminate the first of these
solutions and force K = —j2, j € Z. Thus Fourier found the solutions

uj(x,t) = e_jztsinjzv , j€EN

of the heat equation. Observe that the exponential factor in front of the
expression for u; gives decay with increasing time.
By linearity, any finite linear combination

TP
E bje? sin jx
J

of these solutions is also a solution. It is physically plausible to extend
this assertion to infinite linear combinations. Using the initial condition
u(x,0) = f(x) again raises the question of whether “any” function f(z) on
[0, 7] can be written as a (infinite) linear combination of the functions sin jz.

Fourier used intricate but (by modern standards) logically specious means
to derive the formula

bj = %/OW f(z)sin jz dz. (1.6.9)

for the coefficients.

Whatever the defect of Fourier’s mathematical methodology, his formula
gives an actual procedure for expanding any given f in a series of sine func-
tions. This was a major breakthrough.

Of course we now realize, because of our modern understanding of Hilbert
space concepts (such as orthogonality) that there is a more direct route to
Fourier’s formula. If we assume in advance that

f(z) = Z b;sin jx
J

and that the convergence is in L?, then we may calculate

2 ™ ™
;/ f(z)sinkzdr = 2/ (E b;sin jx) sin kx dzx
0 0 -
j

™
2 o
= —E bj/ sin jx sin kx dz
™=
j

s
0
= by.
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[We use here the fact that [sinjrsinkazder = 0 if j # k, Le., the fact that
{sin ja} are orthogonal in L*[0,x]. Also ["sin® kx dx = 7 /2, each k.]

(Classical studies of Fourier series were devoted to expanding a function
on either [0, 27) or [0, 7) in a series of the form

o
E a; cos jx
Jj=0

or
o
E bjsin jx
j=1

or as a combination of these
o0 o0
E a;cosjr + g b;sin jx.
j=0 j=1

The modern theory tends to use the more elegant notation of complex expo-
nentials. Since

6ijm + 6—ijm 6ijm _ 6—ijm
cos jr = ————— and sin jr = ————,
2 27
we may seek to instead expand f in a series of the form
o
T
E c;e”.
j=—00

In this book we shall confine ourselves almost exclusively to the complex
exponential notation.
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Chapter 2

The Central Idea: The Hilbert
Transform

Prologue: The Hilbert transform is, without question, the most
important operator in analysis. It arises in so many different
contexts, and all these contexts are intertwined in profound and
influential ways. What it all comes down to is that there is only
one singular integral in dimension 1, and it is the Hilbert trans-
form. The philosophy is that all significant analytic questions
reduce to a singular integral; and in the first dimension there is
just one choice.

The most important fact about the Hilbert transform is that
it is bounded on LP for 1 < p < oo. It is also bounded on various
Sobolev and Lipschitz spaces. And also on Hy, and BMO. We
discuss many of these properties in the present chapter and later
on in Chapters 4, 5, and 9. See also [KRA5] and [STE2].

Even though the Hilbert transform is well understood today,
it continues to be studied intensely. Boundedness properties of
the “maximum Hilbert transform” are equivalent to pointwise
convergence results for Fourier series. In higher dimensions, the
Hilbert transform is used to construct analytic discs. Analytic
discs are important in cosmology and other parts of physics.

From our point of view in the present book, the Hilber trans-
form is important because it is the inspiration and the role mode
for higher-dimensional singular integrals. Singular integrals in

17
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RY are about 55 years old. Singular integrals on the Heisenberg
group and other more general settings are quite a lot newer. We
shall study the former in some detail and provide some pointers
to the latter.

2.1 The Notion of the Hilbert Transform

Capsule: Our first approach to the Hilbert transform will be
by way of complex variable theory. The idea is to seek a means
of finding the boundary function of the harmonic conjugate of a
given function (which in turn is the Poisson integral of some ini-
tial boundary function). This very natural process gives rise to a
linear operator which may be identified as the Hilbert transform.
Later on we shall see that the Hilbert transform arises rather nat-
urally in the context of partial summation operators for Fourier
series. Most any question of convergence of Fourier series may be
reduced to an assertion about mapping properties of the Hilbert
transform. Thus the Hilbert transform becomes a central player
in the theory of Fourier series.

Now we study the Hilbert transform H, which is one of the most impor-
tant linear operators in analysis. It is essentially the only singular integral
operator in dimension 1, and it comes up decisively in a variety of contexts.
The Hilbert transform is the key player—from a certain point of view—in
complex variable theory. And it is the key player in the theory of Fourier
series. It also comes up in the Cauchy problem and other aspects of partial
differential equations.

Put in slightly more technical terms, the Hilbert transform is important
for these reasons (among others):

e [t interpolates between the real and imaginary parts of a holomorphic
function.

e [t is the key to all convergence questions for the partial sums of Fourier
series;

e [t is a paradigm for all singular integral operators on Euclidean space
(we shall treat these in Chapter 3);



2.1. THE NOTION OF THE HILBERT TRANSFORM 19

e It is (on the real line) uniquely determined by its invariance proper-
ties with respect to the groups that act naturally on 1-dimensional
Euclidean space.

One can discover the Hilbert transform by way of complex analysis. As
we know, if f is holomorphic on D and continuous up to 9D, we can calculate
f at a point z € D from the boundary value of f by the following formula:

- L[ 1©

20 Jop € — 2

¢, zeD.

We let

S
2t (— 2z

(2.1.1)

be called the Cauchy kernel.

If we let ¢ = e™ and 2z = re®, the expression (2.1.1) can be rewritten as
follows.

1 d¢ 1 —id¢
o1 (— 2 277'.?((—2)

1 —ie ™ . jedy
o e~ (e — ret)
1 i)
21 1 — rei0—¥)
_ L Lo

21 |1 — rei?0=¥)|2

(1 1—rcos(0—1)
N (27‘('. |1 — reil@-¥)|2 dw)

vi (5 o) (212

o1 |1 — rei0-9)|2
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If we subtract ﬁdw from the real part of the Cauchy kernel, we get

1 d¢ dyp
Re (%pﬂ‘ﬂ

1 (1—rcos(0—v) 1
B 7T( |1 — rei@=v)|2 2) o

2
1 3= 5" dip
2t \ 1 — 2rcos(6 — o) + r?
- %P,(e“"—w)dw. (2.1.3)

Note that in the last line we have, in effect, “discovered” the classical (and
well known) Poisson kernel.

This is an important lesson, and one to be remembered as the book
develops: The real part of the Cauchy kernel is (up to a small correction)
the Poisson kernel. That is, the kernel that reproduces harmonic functions
is the real part of the kernel that reproduces holomorphic functions.

In the next section we shall examine the imaginary part of the Cauchy
kernel and find the Hilbert transform revealed.

2.1.1 The Guts of the Hilbert Transform

Now let us take the reasoning that we used above (to discover the Poisson
kernel) and turn it around. Suppose that we are given a real-valued function
f € L*(0D). Then we can use the Poisson integral formula to produce a
function u on D such that u = f on 0D. We may find a harmonic conjugate
of u, say u', such that uf(0) = 0 and w + iu' is holomorphic on D. What
we hope to do is to produce a boundary function ff for u!. This will create
some symmetry in the picture. For we began with a function f from which
we created u; now we are extracting f7 from uf. Our ultimate goal is to
study the linear operator f s fT.
The following diagram illustrates the idea:

L*0D) > f — «u

fT<—uT
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If we define a function h on D as

h(z)—L/ &d(’, z €D,

27 Jop (— 2

then obviously A is holomorphic in D. We know from calculations in the
last subsection that the real part of h is (up to adjustment by an additive
real constant) the Poisson integral u of f. Therefore Reh is harmonic in D
and Im A is a harmonic conjugate of Reh. Thus, if A is continuous up to
the boundary, then we would be able to say that u = Imh and fT(e) =
lim, ;- Im h(Re®).

So let us look at the imaginary part of the Cauchy kernel in (2.1.2):

rsin(6 — )
27|1 — rei@-¥)|2’

If we let r — 17, then

sin(6 — ) B sin(6 — )
21|l — ei@=¥)2 — 27(1 — 2cos( — ) + 1)
sin(f — )

47 (1 — cos(0 — v))
2sin(%) cos(%)

4 - 2C082(%)

Hence we obtain the Hilbert transform! H : f — fT as follows:

0 —
2

Hf(e?) = /027r f(e") cot tdt. (2.1.4)

[We suppress the multiplicative constant here because it is of no interest.|
Note that we can express the kernel as

oy Lo 2 ey 2 p
CO2_sing_g<1_<9/3>zi...)_9 G ’

2 3!

!There are subtle convergence issues—both pointwise and operator-theoretic—which
we momentarily suppress. Details may be found, for instance, in [KAT].
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where E(6) (|9|) is a bounded continuous function. Therefore, we can
rewrite (2.1.

z it l _ o it 2 o it
9 / f(e cot dt—/o f(e )Q——tdt+/0 f(e")E(O—t)dt

Note that the first integral is singular at # and the second one is bounded
and trivial to estimate—just by applying Schur’s lemma (see [SAD] and our
Lemma A1.5.5).2

In practice, we usually write

o 0—t\ 2
2 ) T o—t’

simply ignoring the trivial error term. Both sides of this “equation” are called
the kernel of the Hilbert transform.

4)

2.1.2 The Laplace Equation and Singular integrals on
RN
Let us look at Laplace equation in R¥:
0?02
A ===+ = =0.
u(zr) = (&rz + B ) u(x) =0
The fundamental solution® (see [KRA4]) for the Laplacian is

1
F(I):CN'W, N>2,

where cy is a constant that depends on V.

2Schur’s lemma, in a very basic form, says that convolution with an L! kernel is a
bounded operator on LP. This assertion may be verified with elementary estimates from
measure theory—Exercise.

31t must be noted that this formula is not valid in dimension 2. One might guess
this, because when N = 2 the formula in fact becomes trivial. The correct form for the
fundamental solution in dimension 2 is

1
I(z) = o log || .

Details may be found in [KRA4].
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Exercise for the Reader: Prove the defining property for the fundamental
solution, namely, that AT'(x) = dg, where g is the Dirac mass at 0. (Hint:
Use Green'’s Theorem, or see [KRAA4].)

We may obtain one solution u of Au = f by convolving f with I:
u=fx*xI.

For notice that Au= f*x Al' = f x§y = f.

In the ensuing discussion we shall consider the integrability of expressions
like |7|” near the origin (our subsequent discussion of fractional integrals in
Chapter 5 will put this matter into context). We shall ultimately think of
this kernel as a fractional power (positive or negative) of the fundamental
solution for the Laplacian.

The correct way to assess such a situation is to use polar coordinates:

1
/|| |:B|6d17:// PNl drdo (€) .
/<1 2 JOo

A few comments are in order: The symbol X denotes the unit sphere in R¥,
and do is rotationally invariant area measure (see Chapter 9 for a considera-
tion of Hausdorff measure on a general surface) on 3. The factor 7V~ is the
Jacobian of the change of variables from rectangular coordinates to spherical
coordinates. Of course the integral in the rotational variable ¢ is trivially
a constant. The integral in r converges precisely when 3 > —N. Thus we
think of —N as the “critical index” for integrability at the origin.
Now let us consider the following transformation:

T:fr— fxT.

The kernel I' is singular at the origin to order —(N — 2). To study L?
mapping properties of this transformation is easy because I' is locally inte-
grable. We can perform estimates with easy techniques such as the gener-
alized Minkowski inequality and Schur’s lemma (see [SAD] and our Lemma
A1.5.5). In fact the operator T' is a special instance of a “fractional integral
operator”. We shall have more to say about this family of operators as the
book develops.
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The first derivative of I' is singular at the origin to order —(N — 1) and
is therefore also locally integrable:

or .
oz, [al¥
Again, we may study this “fractional integral” using elementary techniques

that measure only the size of the kernel.
But if we look at the second derivative of I', we find that

0°T Ty

Oz ;0xy, o |x|N+2 (z)

is singular at the origin of order — N and the integral has a critical singularity
at 0. Hence, to analyze the transformation

T fro [ F0K -t

we use the Cauchy Principal Value, denoted as P.V., and defined as follows:

PV, /f K(z— t)dt — lim FOK (z — )dt.
e—0t lx—t|>e
We shall be able to see, in what follows, that T (defined using the Cauchy
Principal Value) induces a distribution. It will also be bounded on LP(RY),
1 < p < co. The operator T is unbounded on L' and L*. When specialized
down to dimension 1, the kernel for the operator T' takes the form

This is of course the kernel of the Hilbert transform. In other words, the
Hilbert transform is a special case of these fundamental considerations re-
garding the solution operator for the Laplacian.

In the next section we return to our consideration of the Hilbert trans-
form.

2.1.3 Boundedness of the Hilbert Transform

The Hilbert transform induces a distribution

)dt , for all p € C°.
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But why is this true? On the face of it, this mapping makes no sense. The
integral is not convergent in the sense of the Lebesgue integral (because the
kernel 1/(x —t) is not integrable). Some further analysis is required in order
to understand the claim that this displayed line defines a distribution.

We understand this distribution by way of the Cauchy Principal Value:

1 1
P.V./ﬁgb(t)dt _ P.V./Zgb(:v—t)dt
1

= lim —p(r—t)dt

=0t Jt|>e

1 1
— lim / —¢x—tdt+/ =z — t)dt
E—’0+[ 1>[t]>e ( ) t>1t ( )

= lim
e—0+

In the first integral we have use the key fact that the kernel is odd, so has
mean value 0. Hence we may subtract off a constant (and it integrates to
0). Of course the second integral does not depend on €, and it converges by
Schwarz’s inequality.

Since ¢(x —t) — ¢(x) = O(|t]), the limit in the first integral exists. That
is to say, the integrand is bounded so the integral makes good sense. We may
perform the following calculation to make this reasoning more rigorous:

For € > 0 define .
I - / Log)at.
e<|t|]<1 t

Now if 0 < €; < €5 < 00 we have

1 1
I, — I, = / ZO(|t|)dt —/ ~O(|t])dt = / O(1)dt — 0
e2<|t|<1 13 e <[|t|<1 13 e1<|t|<ea

as €1, e — 0. This shows that our principal value integral converges.
Let S denote the standard Schwartz space from distribution theory (for
which see [STG1], [KRA5]). If f € S, we have

Hf:P.V./ﬁf(t)dt
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- ()

Since % is homogeneous of degree —1, we find that ( %)Ais homogeneous of de-
gree 0 (see Chapter 3 on the Fourier transform and Chapter 4 on multipliers).
Therefore it is bounded.

Now
I e = Ve = (7) 7

By dint of a tricky argument which we shall detail below, Marcel Riesz (and,
in its present form, Salomon Bochner) proved that H : LP — LP when p is
a positive even integer. By what is now known as the Riesz-Thorin interpo-
lation theorem (stated below), he then showed that H is bounded on p > 2.
Then a simple duality argument guarantees that H is also bounded on L”
for 1 <p<2.

and

< Olfllez = ellfllz2 -
L2

Prelude: Interpolation theory is now an entire subject unto itself. For many
years it was a collection of isolated results known only to a few experts. The
seminal paper [CAL] cemented the complex method of interpolation (the one
used to prove Riesz-Thorin) as an independent entity. In the same year
Lions and Peetre [LIP] baptized the real method of interpolation. The book
[BERL] gives an overview of the subject of interpolation.

In general the setup is this: One has Banach spaces Xy, X; and Yy, V)
and an operator

TXoﬂX1—>YE)UYi

One hypothesizes that
1T flly; < Cill Fllx;

for j = 0,1. The job then is to identify certain “intermediate spaces” and
conclude that T" is bounded in norm on those intermediate spaces.

Theorem 2.1.1 (Riesz-Thorin interpolation theorem) Let 1 < py <
p1 < 0o. Let T be a linear operator that is bounded on L*° and L, i.e.,

1T fllzeo < Collfllzro
1T fllzer < Cullfllzen -
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Then T is a bounded operator on L?, Vpy < p < p; and

P1—Pp

1 p=pg
1T flle < Cgt 7™ - O | fl 2o

Now let us relate the Hilbert transform to Fourier series. We begin
by returning to the idea of the Hilbert transform as a multiplier operator.
Indeed, let h = {h;}, with h; = —isgn j; here the convention is that

-1 if z<0
sgnx=<¢ 0 if =0
1 if x>0.

Then the operator H is given by the multiplier A. This means that, for
f e LX),

Hf =" hif(j)e.
J

[How might we check this assertion? You may calculate both the lefthand side
and the righthand side of this last equation when f(t) = cosjt. The answer
will be sin jt for every 7, just as it should be—because sin jt is the boundary
function for the harmonic conjugate of the Poisson integral of cos jt. Likewise
when f(t) = sinjt (then Hf as written here is cosjt). That is enough
information—by the Stone-Weierstrass theorem—to yield the result.] In the
sequel we shall indicate this relationship by H = M,,.

So defined, the Hilbert transform has the following connection with the
partial sum operators:

[1+sgn(j+ N)] — %[1 +sgn(j — N)]
+% [x-vy (9) + Xy ()]

= Lfsen(j + N) —sen(j — V)]

1

+§ [X{—N}(j) + X{N}(j)} .

X[-N,N] (]) =

DN | —
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-N e
-+ :
: N
y=sgn(j-N)
y=sgn(j+N)
N
— N

Figure 2.1: Summation operators and the Hilbert transform.

See Figure 2.1. Therefore

SNf(eit) = MX[fN,N]f(eit)
=ie M Hlenf] —ieM H[e_yf]

5P+ Paf] (2.15)

where P; is orthogonal projection onto the space spanned by e;.

To understand this last equality, let us examine a piece of it. We look
at the linear operator corresponding to the multiplier

m(j) = sgn(j + N).
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Let f(t) ~ > 272 F(j)e"s. Then
M f(t) = ngn i+ N)f()e

— Z Sgn ZNt ] o N)eijt

= e M Hlenf](t).

This is of course precisely what is asserted in the first half of the right-hand
side of (2.1.5).

We know that the Hilbert transform is bounded on L? because it is a
multiplier operator coming from a bounded sequence. It also turns out to be
bounded on LP for 1 < p < oo. [We shall discuss this fact about H below,
and eventually prove it.] Similar remarks apply to the projection operators
P;. Taking these boundedness assertions for granted, we now re-examine
equation (2.1.5). Multiplication by a complex exponential does not change
the size of an LP function (in technical language, it is an isometry of LP).
So (2.1.5) tells us that Sy is a difference of compositions of operators, all of
which are bounded on LP. And the norm is plainly bounded independent of
N. In conclusion, if we assume that H is bounded on LP, 1 < p < oo, then
Functional Analysis Principle I (see Appendix 1) tells us (since trigonometric
polynomials are dense in L for 1 < p < co) that norm convergence holds in
LP for 1 < p < oo. We now state this as a theorem:

Prelude: What is remarkable about this next theorem is that it reduces
a question of convergence of a sequence of operators to the question of the
boundedness of a single operator. This illustrates the power of functional
analysis—a power that was virtually discovered in the context of Fourier
analysis. From our modern perspective, the uniform boundedness principle
makes this all quite natural.

Theorem 2.1.2 Let 1 < p < oo and assume (to be proved below) that the
Hilbert transform H is bounded on LP(T). Let f € LP(T). Then ||Svf —
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fllzr — 0 as N — oo. Explicitly,

1/p
Jim U|5Nf (@)Pdz| =0

The converse of this theorem is true as well, and can be proved by even easier
arguments. We leave the details to the reader—or see [KAT].

It is useful in the study of the Hilbert transform to be able to express it
explicitly as an integral operator. The next lemma is of great utility in this
regard.

Prelude: The next lemma is one of the key ideas in Laurent Schwartz’s
[SCH] distribution theory. It is an intuitively appealing idea that any translation-
invariant operator is given by convolution with a kernel, but if one restricts
attention to just functions then one will not always be able to find this kernel.
Distributions make possible a new, powerful statement.

Lemma 2.1.3 If the Fourier multiplier A = {)\;}32_ induces a bounded
operator M on L, then the operator is given by a convolution kernel K =
K. In other words,

My f(z) = [+ / FOK (x —t)dt

That convolution kernel is specified by the formula

e') = i Aje'.

j=—o0

[In actuality, the sum that defines this kernel may have to be interpreted
using a summability technique, or using distribution theory, or both. In
practice we shall always be able to calculate the kernel with our bare hands
when we need to do so. So this lemma will play a moot role in our work.|

If we apply Lemma 2.1.3 directly to the multiplier for the Hilbert trans-
form, we obtain the formal series
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Of course the terms of this series do not tend to zero, so this series does
not converge in any conventional sense.
(i.e., summation with factors of 79I, 0 < r < 1) to interpret the series: For

0<r<l1let

kr (6“) —

e}

j=—o00

The sum over the positive indices is

e}

—ire't

1 —reit’

Instead we use Abel summation

E —irkl . sgnj - eV,

0 .

, L , -

—1 E reelt = —j E [re”]
=1 j=1

- ! {1 — rett

0

Similarly, the sum over negative indices can be calculated to be equal to

ire "

1 —re-it’

Adding these two pieces yields that

kr (6“)

—ire’ ire

1 —re
~it]

1 —reit

—ir[e® — e

1= rei?

2rsint

1= ret]?

2rsint

14172 —2rcost

2r-2-sintcos

(1+72—2r)+42r(1 — cos? % + sin? %)

: t t
47 sin 5 COS 5

(1472 —2r) +2r(2sin* %)’
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We formally let 7 — 17 to obtain the kernel
it in 5 2 t
k(") = —=—= = cot 3 (2.1.6)

This is the standard formula for the kernel of the Hilbert transform—just
as we derived it by different means in the context of complex analysis. Now
we have given a second derivation using Fourier analysis ideas. It should be
noted that we have suppressed various subtleties about the validity of Abel
summation in this context, as well as issues concerning the fact that the
kernel £ is not integrable (near the origin, cott/2 =~ 2/t). For the full story,
consult [KAT].

Just to repeat, we resolve the non-integrability problem for the integral
kernel £ in (2.1.6) by using the so-called Cauchy principal value; the Cauchy
principal value is denoted P.V. and will now be defined again. Thus we

usually write
1 [7 t
P.V. gy /_7r f(z —t)cot (5) dt,

and we interpret this to mean

1 t
im — — — . 2.1.
Eli%a+ o /e<|t|§7r f(z —t)cot (2) dt (2.1.7)

Observe in (2.1.7) that, for € > 0 fixed, cot(t/2) is actually bounded on the
domain of integration. Therefore the integral in (2.1.7) makes sense, by
Holder’s inequality, as long as f € LP for some 1 < p < oo. The deeper
question is whether the limit exists, and whether that limit defines an L”
function.

We will prove the LP-boundedness of the Hilbert transform, using a
method of S. Bochner, below.

The reduction of norm convergence of Fourier series to the study of the
Hilbert transform is fundamental to the study of Fourier series. But it also
holds great philosophical significance in the modern history of analysis. For
it shows that we may reduce the study of the (infinitely many) partial sums
of the Fourier series of a function to the study of a single integral operator.
The device for making this reduction is—rather than study one function at a
time—to study an entire space of functions at once. This is what functional
analysis is all about.
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Many of the basic ideas in functional analysis—including the uniform
boundedness principle, the open mapping theorem, and the Hahn-Banach
theorem—grew out of questions of Fourier analysis. Even today, Fourier
analysis has led to many new ideas in Hilbert and Banach space theory—see
[STE2], especially the Cotlar-Knapp-Stein lemma (see Section 9.10).

In the next section we shall examine the Hilbert transform from another
point of view.

In the present section, we have taken the validity of Theorem 2.1.2 for
granted. The details of this result, and its proof, will be treated as the book
develops. Our intention in the next section is to discuss these theorems, and
to look at some examples. We close the present section with a presentation
of the proof of the boundedness of the Hilbert transform.

2.1.4 [? Boundedness of the Hilbert Transform

Now we shall prove that the Hilbert transform is bounded on LP(T), 1 < p <
0o. We will present an argument due to S. Bochner. This will allow us to
make good use of the Riesz-Thorin interpolation theorem that we discussed
in Subsection 2.1.3.

Prelude: Next we present the famous result of Marcel Riesz from 1926.
People had been struggling for years to prove that the Hilbert transform
was bounded on the LP spaces other than p = 2, so Riesz’s result must be
considered a true breakthrough. The actual argument that we now present
is due to Salomon Bochner. But Riesz had slightly different tricks that also
yielded a boundedness result just for the even, integer values of p. It requires
an extra idea, namely interpolation of linear operators, to get the result for
all p, 1 < p < oo (as in the ensuing theorem).

Proposition 2.1.4 The Hilbert transform is bounded on LP(T) when p = 2k
is a positive, even integer.

Theorem 2.1.5 The Hilbert transform is bounded on LP, 1 < p < oo.

Remark: The argument at the end of the proof of the last theorem (see Ap-
pendix 1) is commonly called a “duality argument.” Later in the book, when
this idea is needed, it will be invoked without further comment or detail. O
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We complete our consideration of the Hilbert transform by treating what
happens on the spaces L! and L.

Prelude: The failure of singular integrals on the extreme spaces L' and L*®
is a fundamental part of the theory. The former fact gave rise, in part, to
the relatively new idea of real-variable Hy, (the real-variable Hardy space—
see Section 8.8). Singular integrals are bounded on H},. The latter fact
gave rise to the space BMO of functions of bounded mean oscillation (also
see Chapter 8). Singular integrals are also bounded on BMO. The book
[KRAD5| gives a sketch of some of these ideas. Stein’s early work [STES5]
on the space Llog L (the space of functions f such that [ |f|log™|f|dx is fi-
nite) was another attempt to deal with the failure of singular integrals on L*.

Proposition 2.1.6 Norm summability for Fourier series fails in both L' and
L.

The proof of this last fact is just another instance of the concept of duality,
as noted earlier.

We conclude this discussion by noting that the Hilbert transform of the
characteristic function of the interval [0, 1] is a logarithm function—do the
easy calculation yourself. Thus the Hilbert transform does not map L*> to
L>. By duality, it does not map L' to L'. That completes our treatment of
the non-boundedness of the Hilbert transform on these endpoint spaces.

2.2 The Modified Hilbert Transform

Capsule: The Hilbert transform, in its raw form, is a convolu-
tion operator with kernel cott/2. This is an awkward kernel to
handle, just because it is a transcendental function. We show in
this section that the kernel may be replaced by 1/t. Most any
question about the operator given by convolution with cott/2
may be studied by instead considering the operator given by con-
volution with 1/¢. Thus the latter operator has come (also) to be
known as the Hilbert transform.
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We first note that, in practice, people do not actually look at the operator
consisting of convolution with cot % This kernel is a transcendental function,
and is tedious to handle. Thus what we do instead is to look at the operator

~ 1 [7 2
H:fr— P.V.% /_7r flz —1)- Zdt. (2.2.1)

Clearly the kernel 2/t is much easier to think about than cot . It is also
homogeneous of degree —1, a fact that will prove significant when we adopt
a broader point of view later. But what gives us the right to replace the
complicated integral (2.1.7) by the apparently simpler integral (2.2.1)7
Let us examine the difference
t

2
E(t)=cot (=) -2
(t) =co (2) . 0<|t| <m,

which we extend to R \ 7Z by 2m-periodicity. Using the Taylor expansions
of sine and cosine near the origin, we may write

14+ 0% 2
E@t) = t2+0() t
2+0(t%) 2
t+03)
_ {1 +0(t%) 1]
1+ 0(t?)

QI ]

(2).
Thus the difference between the two kernels under study is (better than) a
bounded function. In particular, it is in every L? class. So we think of

P.V.%/_:f(:v—t)cot(%) dt = P.V.i 7rf(:l:—t)-%dt

2 ),

™

1
PPV [ fla— )1 dt
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By Schur’s Lemma, the integral J; is trivial to study: The integral operator
or— Opx E

is bounded on every L” space. Thus, in order to study the L” mapping
properties of the Hilbert transform, it suffices for us to study the integral in
(2.2.1). In practice, harmonic analysts study the integral in (2.2.1) and refer
to it as the “(modified) Hilbert transform” without further comment. To
repeat, the beautiful fact is that the original Hilbert transform is bounded
on a given LP space if and only if the new transform (2.2.1) is bounded on
that same LP. [In practice it is convenient to forget about the “2” in the
numerator of the kernel in (2.2.1) as well.]

Prelude: In the literature, people discuss variants of the Hilbert transform
and still call these the “Hilbert transform.” Once one understands the basic
idea, it is a trivial matter to pass back and forth among all the different
realizations of this fundamental singular integral.

Lemma 2.2.1 If the modified Hilbert transform H is bounded on L', then
it is bounded on L*°.

We end this section by recording what is perhaps the deepest result of
basic Fourier analysis. Formerly known as the Lusin conjecture, and now as
Carleson’s theorem, this result addresses the pointwise convergence question
for L?. We stress that the approach to proving something like this is to
study the mazimal Hilbert transform—see Functional Analysis Principle I in
Appendix 1.

Prelude: The next theorem is the culmination of more than fifty years of
effort by the best mathematical analysts. This was the central question of
Fourier analysis. Carleson’s proof of the theorem was a triumph. Subse-
quently Fefferman [FEF4] produced another, quite different proof that was
inspired by Stein’s celebrated Limits of Sequences of Operators Theorem
[STE6]. And there is now a third approach by Lacey and Thiele [LAT]. It
must be noted that this last approach derives from ideas in Fefferman’s proof.

Theorem 2.2.2 (Carleson [CAR]) Let f € L*(T). Then the Fourier se-
ries of f converges almost everywhere to f.
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The next result is based on Carleson’s theorem, but requires significant
new ideas.

Prelude: It definitely required a new idea for Richard Hunt to extend Car-
leson’s result from L? to LP for 1 < p < 2 (of course the case L for 2 < p < oo
comes for free since then LP C L?). P. Sjolin [SJO1] has refined Hunt’s theo-
rem even further to obtain spaces of functions that are smaller than L, yet
larger than L? for every p > 1, on which pointwise convergence of Fourier se-

ries holds. The sharpest result along these lines is due to Hunt and Taibleson
[HUT].

Theorem 2.2.3 (Hunt [HUN]) Let f € LP(T), 1 < p < co. Then the
Fourier series of f converges almost everywhere to f.

A classical example of A. Kolmogorov (see [KAT], [ZYG]) provides an L*
function whose Fourier series converges* at no point of T. This phenomenon
provides significant information: If instead the example were of a function
with Fourier series diverging a.e., then we might conclude that we were sim-
ply using the wrong measure to detect convergence. But since there is an L'
function with everywhere diverging Fourier series, we conclude that there is
no hope for pointwise convergence in L!.

Proofs of the Results in Chapter 2

Proof of Lemma 2.1.3: A rigorous proof of this lemma would involve a
digression into distribution theory and the Schwartz kernel theorem. We re-
fer the interested reader to either [STG1] or [SCH]. O

Proof of Proposition 2.1.4: Let f be a continuous, real function on
0,27). We normalize f (by subtracting off a constant) so that [ fdz = 0.
Let u be its Poisson integral, so u is harmonic on the disk D and vanishes
at 0. Let v be that harmonic conjugate of u on D such that v(0) = 0. Then
h = u + iv is holomorphic and A(0) = 0.

4Tt may be noted that Kolmogorov’s original construction was very difficult. Nowadays,
using functional analysis, this result may be had with little difficulty—see [KAT].
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Fix 0 < r < 1. Now we write

0 = 27h?(0)
2m
= / h?*(re®) do
0

— /0 7r[u(rew) + z'v(rew)]% do

21 9
= / u%dQ—l—z’( k) /u%_lvde
0 1
2
—( k) /uzk_zvde—l----
2
2k
2k—1 2%k—1 2k 2k
+1 (%_1)/2”; do +1 /v de .
We rearrange the last equality as
21 2]{5 21
2k < 2k—1
/0 vdl < (2]{:—1)/0 luv=" df
2k g akea
() [
2]{5 27 9 2T
+(2)/ [u?*=202| df + (f)/ [u?* o] df
0 0

2
—l—/ [u?*| de .
0

We apply Holder’s inequality to each composite term on the right—using
the exponents 2k/j and 2k/[2k — j] on the ;' term, for j = 1,2,... 2k — 1.

It is convenient to let S = U u?k d@} Y2k ond T = U v2k d@} /2% and we do
so. The result is

T2k S ( 2]{: )STZk—l + ( 2]{: )SZTQk—Z 4.

2k —1 2k — 2
_l_(22k) S2k—2T2 + (21k) S2k—1T + S2k ]

Now define U = T'/S and rewrite the inequality as

2 2 2
Ut < (%ﬁl)U%‘w (%52)U2’f‘2+---+ (2k)U2+ (21k)U+1.
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Divide through by U?*~! to obtain

2k 2k 2k 2k
< -1, .. —2k+3 —2k+2 ~2k+1
U< (g )+ (g g)uer (G Jursesss (o

If U > 1, then it follows that
2k 2k 2k 2k
< 1< 2%,
7= () () o (3) 4 (1) 22
V]l 2 < 25[Jul| 2x -

We conclude, therefore, that

But of course the function v(re®) is the Hilbert transform of u(re®). The
proof is therefore complete. O

Proof of Theorem 2.1.5: We know that the Hilbert transform is bounded
on L2, L* L° .... We may immediately apply the Riesz-Thorin theorem
(Subsection 2.1.3) to conclude that the Hilbert transform is bounded on L?
for 2 <p <4 4<p<6,6<p <8 ete. In other words, the Hilbert
transform is bounded on LP for 2 < p < .

Now let f € LP for 1 < p < 2. Let ¢ be any element of LP/IP~1 with
norm 1. Notice that 2 < p/[p — 1] < co. Then

/Hf-gpd@z/{/f cot w] ©(0) db
- // cot d9f(w) dyp
. { [0 cotw Qde} Fw) dy

o / Hop(4) () di

Using Holder’s inequality together with the fact that we know that the
Hilbert transform is bounded on LP/P~1 we may bound the righthand side
by the expression C||¢||p/w-11]| fllzr < ||f]|zr. Since this estimate holds for
any such choice of ¢, the result follows. O
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Proof of Proposition 2.1.6: It suffices for us to show that the modified
Hilbert transform (as defined in Section 10.2) fails to be bounded on L! and

fails to be bounded on L*°. In fact the following lemma will cut the job by
half:

Proof of Lemma 2.2.1 Let f be an L™ function. Then

[Hfllw = sup ‘ [ st owyae] = sup ‘ [0t @

peLl peLl
Il ;1 =1 llll ;1 =1

But an easy formal argument (as in the proof of Theorem 10.5) shows that
H¢p = —Ho.

Here H* is the adjoint of H. [In fact a similar formula holds for any convo-
lution operator—exercise.] Thus the last line gives

[Hile = sup ‘ [ remota) i

peLl
llollp1=1

< sup || flloe - [|HO

peLl
llollp1=1

< sup ||fllee - Cll&] 02

¢eLl
llollp1=1

= C-[[fllz-

Here C is the norm of the modified Hilbert transform acting on L'. We have
shown that if H is bounded on L, then it is bounded on L*>. That completes
the proof. O



Chapter 3

Essentials of the Fourier
Transform

Prologue: The nature of Fourier analysis on the circle T is de-
termined by the collection of characters on the circle: these are
the continuous, multiplicative homomorphisms of the T into T
itself—namely the functions t — e for n € Z. The Peter-Weyl
theorem tells us that a viable Fourier analysis may be built on
these characters.

The nature of Fourier analysis on the real line R is determined
by the collection of characters on the line: these are the functions
t — e for £ € R. Again, the Peter-Weyl theorem tells us that
a natural Fourier analysis (i.e., the Fourier transform) may be
based on these functions. For RY the characters are t — e for
¢ € RY and the Fourier transform is defined analogously.

It is interesting to note that Fourier introduced a version of
the Fourier transform in his studies of the heat equation in 1811.
The paper was not published until 1824. Cauchy and Poisson also
studied the matter in 1815 and 1816 respectively. Camille Deflers
gave a proof of Fourier inversion in 1819. Deflers also proved a
version of the Riemann-Lebesgue lemma.

Using the Poisson summation formula, many questions about
Fourier series (even multiple Fourier series!) may be reduced
to questions about the Fourier transform (see [KRAS5]| for the
details). As a result, today, the Fourier transform is the primary

41
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object of study for classical Fourier analysts.

3.1 Essential Properties of the Fourier Trans-
form

Capsule: The basic properties of the Fourier transform are quite
analogous (and proved very similarly) to the basic properties of
Fourier series. The two theories begin to diverge when we dis-
cuss continuity, differentiability and other subtle features of the
Fourier transform function. Perhaps more significantly, the ques-
tion of invariance with respect to group actions makes more sense,
and is more natural, for the Fourier transform. We cannot say
much about this matter here, but see [STE2].

The full-blown theory of the Fourier transform on N-dimensional Eu-
clidean space is a relatively modern idea (developed mainly in the last sixty
years). A good modern source is [STG1]. We present here a sketch of the
main ideas, but there is no claim of originality either in content or in presen-
tation.

Most of the results parallel facts that we have already seen in the context
of Fourier series on the circle. But some, such as the invariance properties of
the Fourier transform under the groups that act on Euclidean space (Section
3.2), will be new. One of the main points of this discussion of the Fourier
transform is that it is valid in any Euclidean space R,

We again follow the paradigm of Chapter 2 by stating theorems without
proof, and providing the proof at the end of the chapter. We hope that this
makes for a brisk transit for the reader, with sufficient details where needed.
The energetic reader may attempt to supply his/her own proofs.

If t, £ € RN then we let

t-&=66 4+ FEnén.

We define the Fourier transform of a function f € L*(RY) by

f& = fyetat.

RN
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Here dt denotes Lebesgue N-dimensional measure. Many references will in-
sert a factor of 27 in the exponential or in the measure. Others will insert a
minus sign in the exponent. There is no agreement on this matter. We have
opted for this definition because of its simplicity.

We note that the significance of the exponentials e?¢ is that the only
continuous multiplicative homomorphisms of R¥ into the circle group are
the functions ¢¢(t) = €, ¢ € RY. [We leave it to the reader to observe
that the argument mentioned in Section 2.1 for the circle group works nearly
verbatim here. See also [FOL4].] These functions are called the characters
of the additive group R¥.

Prelude: Together with the fact that the Fourier transform maps L? to L?
(as an isometry), the boundedness from L' to L™ forms part of the bedrock of
the subject. Interpolation then gives thatAmaps LP to LP/®P=1) for 1 < p < 2.
William Beckner [BEC] has calculated the actual norm of the operator on
each of these spaces. The behavior of " on LP for p > 2 is problematic. It
is difficult to make useful quantitative statements.

Proposition 3.1.1 If f € LY(RY), then
”fHL""(RN) < HfHLl(RN)-

In other WOIdS,AiS a bounded operator from L' to L>°. We sometimes denote
the operator by F.

Prelude: The next two results are the reason that the Fourier transform is
so useful in the theory of partial differential equations. The Fourier transform
turns an equation involving partial derivatives into an algebraic equation in-
volving monomials. Thus a variety of algebraic and analytic techniques may
be invoked in finding and estimating solutions.

Proposition 3.1.2 If f € L'(RY), f isdifferentiable, and 0 f /0x; € L*(RY),
then

(g_gi)A(g) = —i&; f(£).
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Proposition 3.1.3 If f € LY(RY) and iz;f € L'(R"), then

~ O ~
(”jf) = o)

Prelude: The next result has intuitive appeal. For, if the function is smooth
(and, after all, smooth functions are dense), then the function is locally nearly
constant. And clearly a trigonometric function of high frequency will nearly
integrate to zero against a constant function. That is what the proposition
is telling us. The proposition says then that the Fourier transform maps
L' to Cy, the space of continuous functions that vanishes at oo. It can be
shown (see below), using the Open Mapping Theorem, that this mapping
is not onto. It is not possible to say exactly what the image of the Fourier
transform is (although a number of necessary and sufficient conditions are
known).

Proposition 3.1.4 (The Riemann-Lebesgue Lemma)
If f € LY(RY), then

~

lim |f(£)] = 0.

§—00

Proposition 3.1.5 Let f € L'(RY). Then j?is uniformly continuous and
vanishes at co.

Let Co(RY) denote the continuous functions on R that vanish at oco.
Equip this space with the supremum norm. Then our results show that
the Fourier transform maps L! to Cy continuously, with operator norm 1
(Propositions 3.1.1, 3.1.4). We shall show in Proposition 3.3.8, using a clever
functional analysis argument, that it is not onto. It is rather difficult—see
[KAT]—to give an explicit example of a Cy function that is not in the image
of the Fourier transform.

Later in this chapter (Section 3.3), we shall examine the action of the
Fourier transform on L2.
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3.2 Invariance and Symmetry Properties of
the Fourier Transform

Capsule: The symmetry properties that we consider here fit very
naturally into the structure of Euclidean space, and thus suit the
Fourier transform very naturally. They would not arise in such
a fashion in the study of Fourier series. Symmetry is of course
one of the big ideas of modern mathematics. It certainly plays a
central role in the development of the Fourier transform.

The three Euclidean groups that act naturally on RY are
e rotations

e dilations

e translations

Certainly a large part of the utility of the Fourier transform is that it has
natural invariance properties under the actions of these three groups. We
shall now explicitly describe those properties.

We begin with the orthogonal group O(N); an N x N matrix is orthogo-
nal if it has real entries and its rows form an orthonormal system of vectors.
Orthogonal matrices M are characterized by the property that M=t = tM.
A rotation is an orthogonal matrix with determinant 1 (also called a special
orthogonal matrix).

Prelude: The next result should not be a big surprise, for the rotation of
an exponential is just another exponential (exercise—remember that the ad-
joint of a rotation is its inverse, which is another rotation). This observation
is intimately bound up with the fact that the Laplacian, and of course its
fundamental solution I', is rotation-invariant.

Proposition 3.2.1 Let p be a rotation of RY. Let f € LY(RY). We define
pf(x) = f(p(x)). Then we have the formula

pf = of.
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Definition 3.2.2 For § > 0 and f € LY(RY) we set asf(z) = f(dz) and
A f(r) = 6 Nf(x/d). These are the dual dilation operators of Euclidean
analysis.

Prelude: Dilation operators are a means of bringing the part of space near
infinity near the finite part of space (near the origin) and vice versa. While
this last statement may sound a bit dreamy, it is in fact an important princi-
ple in harmonic analysis. The way that the Fourier transform interacts with
dilations is fundamental.

Proposition 3.2.3 The dilation operators interact with the Fourier trans-
form as follows:

(Oéaf)A = a (f)
T = alf)

For any function f on RY and a € RY we define 7,f(z) = f(z — a).
Clearly 7, is a translation operator.

Prelude: One of the principal objects of study in classical harmonic analysis
is the so-called translation-invariant operator. Thus the invariance of the
Fourier transform under translations is essential for us.

A modern thrust in harmonic analysis is to develop tools for doing anal-
ysis where there is less structure—for instance on the boundary of a domain.
In such a setting there is no notion of translation-invariance. The relatively
new field of nonlinear analysis also looks at matters from quite a different
point of view.

Proposition 3.2.4 If f € L}(RY) then

Taf(€) = €€ F(€)
and

{Ta{f“}] (©) = [e7™f ()] (©).
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Much of classical harmonic analysis—especially in the last century—
concentrated on what we call translation-invariant operators. An operator T'
on functions is called translation-invariant if

T(raf) (@) = (raT'f)(2)

for every x.! It is a basic fact that any translation-invariant integral operator
is given by convolution with a kernel &k (see also Lemma 2.1.3). We shall not
prove this general fact (but see [STG1]), because the kernels that we need in
the sequel will be explicitly calculated in context.

Prelude: The next two results are not profound, but they are occasionally
useful—as in the proof of Plancherel’s theorem.

Proposition 3.2.5 For f € L'(RY) we let f(z) = f(—x). Then f = f.

Proposition 3.2.6 We have

F=7.

where the overbar denotes complex conjugation.

Prelude: The proposition that follows lies at the heart of Schwartz’s dis-
tribution theory. It is obviously a means of dualizing the Fourier transform.
It is extremely useful in the theory of partial differential equations, and of
course in the study of pseudodifferential operators.

Proposition 3.2.7 If f,g € L', then
/f@MQﬂz/f@ﬁQ%

We conclude this section with a brief discussion of homogeneity. Recall
the definition of the basic dilations of Fourier analysis given in Definition

Tt is perhaps more accurate to say that such an operator commutes with translations.
However, the terminology “translation-invariant” is standard.
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3.2.2. Now let 3 € R. We say that a function f on RY (or, sometimes, on
RN\ {0}) is homogeneous of degree 3 if, for each x € RY and each § > 0,

asf(x) = 87 f(a).

The typical example of a function homogeneous of degree 3 is f(z) = |z|°,
but this is not the only example. In fact, let ¢ be any function on the unit
sphere of RY. Now set

f@) = ol 6 (%) a0

Then f is homogeneous of degree [3.

There is a slight technical difficulty for Fourier analysis in this context
because no function that is homogeneous of any degree (3 lies in any LP class.
If we are going to apply the Fourier transform to a homogeneous function
then some additional idea will be required. Thus we must pass to the theory
of distributions.

We take a moment now for very quick digression on Schwartz functions
and the Fourier transform. On RY, a multi-indez o is an N-tuple (ay, ..., ay)
of nonnegative integers (see also Section 1.1). Then we let

o —

=t ag? Y
and
804 B 80,1 80,2 80,1\7
O Ox{ 0xy 0y
If a, B are multi-indices then we define the seminorm p, g on C* func-
tions by

BL
: 928 (z)

pap(f) = sup |z°

TzeRN

We call p, s a seminorm because it will annihilate constants and certain
low-degree polynomials. The Schwartz space S is the collection of all C'*°
functions f on RY such that p, g(f) < oo for all choices of a and 3. A simple
example of a Schwartz function is f(z) = e~**. Of course any derivative of
f is also a Schwartz function; and the product of f with any polynomial is a
Schwarz function.

Now &, equipped with the family of seminorms p, 3, is a topological
vector space. Its dual is the space of Schwartz distributions S'. See [STGI]
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or [KRA3]| for a more thorough treatment of these matters. It is easy to
see that any function ¢ in any LP class, 1 < p < oo, induces a Schwarz
distribution by

S>fr— RNf(év)-80(33)d93;

just use Holder’s inequality to verify this assertion.

It is easy to use 3.1.2 and 3.1.3 to see that the Fourier transform maps S
to §. In fact the mapping is one-to-one and onto, as one can see with Fourier
inversion (see Section 3.3).

Let f be a function that is homogeneous of degree 3 on RY (or on
RY \ {0}). Then f will not be in any L” class, so we may not consider its
Fourier transform in the usual sense. We need a different, more general,
definition of the Fourier transform.

Let A be any Schwartz distribution. We define the distribution Fourier
transform of \ by the condition

o) =\ @)

for any Schwartz testing function . The reader may check (see Proposition
3.2.7) that this gives a well-defined definition of \ as a distribution (Fourier
inversion, discussed in the next section, may prove useful here). In particular,
if f is a function that induces a Schwartz distribution (by integration, as
usual), then

&) (&) ds = | f(&)-p(&)d¢ (3.2.8)
RN RN
for any Schwartz function . In other words, j? is defined by this equality.
[The reader familiar with the theory of differential equations will note the
analogy with the definition of “weak solution”.]
We have defined dilations of functions, and the corresponding notion of
homogeneity, earlier in this chapter. If A is a Schwarz distribution and ¢ a
Schwartz testing function and 6 > 0 then we define the dilations

[sA](0) = AMa’p)
and
[’ N (0) = Masp) .

In the next proposition, it is not a priori clear that the Fourier transform
of the function f is a function (after all, f will certainly not be L'). So the
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proposition should be interpreted in the sense of distributions.

Prelude: Homogeneity has been one of the key ideas in modern analysis. It
has been known since the time of Riesz that kernels homogeneous of degree
—N +a, 0 < a < N are relatively tame whereas kernels homogenous of
degree —N are critical in their behavior (these ideas are treated in detail
in our discussion of fractional and singular integrals). As a result of these
considerations, the behavior of the Fourier transform vis a vis homegeneity
is vital information for us.

Proposition 3.2.8 Let f be a function or distribution that is homogeneous
of degree 3. Then f is homogeneous of degree —(3 — N.

Remark: Technically speaking, (3.2.8) only defines j?as a distribution, or
generalized function—even when f itself is a function. Extra considerations
are necessary to determine that f is a function when f is a function. O

3.3 Convolution and Fourier Inversion

Capsule: From our point of view, the natural interaction of the
Fourier transform with convolution is a consequence of symmetry
(particularly, the commutation with translations). The formula

(f*xg)= fﬁ is of pre-eminent importance. And also convolution
(again, it is the translation invariance that is the key) make the
elegant form of Fourier inversion possible. Fourier inversion, in
turn, tells us that the Fourier transform is injective, and that
opens up an array of powerful ideas.

Now we study how the Fourier transform respects convolution. Recall
that if f, g are in L*(R") then we define the convolution

frg@)= [ fla—gtydt= | ft)gle—1t)dt.
RN RN

The second equality follows by change of variable. The function f * ¢ is au-
tomatically in L! just by an application of the Fubini-Tonelli theorem.
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Prelude: The next result is one manifestation of the translation-invariance
of our ideas. In particular, this formula shows that a convolution kernel cor-
responds in a natural way to a Fourier multiplier.

Proposition 3.3.1 If f, g € L', then

—

frg=1-3.

3.3.1 The Inverse Fourier Transform

Our goal is to be able to recover f from j? The process is of interest for
several reasons:

(a) We wish to be able to invert the Fourier transform.
(b) We wish to know that the Fourier transform is one-to-one.

(c) We wish to establish certain useful formulas that involve the inversion
concept.

The program just described entails several technical difficulties. First,
we need to know that the Fourier transform is one-to-one in order to have
any hope of success. Secondly, we would like to say that

70y = - [ Flope s ae (3.3.1)

But in general the Fourier transform fof an L' function f is not integrable
(just calculate the Fourier transform of xjg 1j)—=so the expression on the right
of (3.3.1) does not necessarily make any sense.

To handle this situation, we will construct a family of summability kernels
G, having the following properties:

(3.3.2) G x f — f in the L' topology as € — 0;
(3.3.3) G.(€) = e /%,

(3.3.4) G.* f and Gef*\f are both integrable.
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It will be useful to prove formulas about G, * f and then pass to the limit
as € — 0. Notice that (3.3.3) mandates that the Fourier transform of G. is
the Gaussian. The Gaussian (suitably normalized) is known to be an eigen-
function of the Fourier transform.

Prelude: It is a fundamental fact of Fourier analysis that the Fourier trans-
form of the Gaussian e~ is (up to certain adjustments by constants) the
Gaussian itself. This tells us right away that the Gaussian is an eigenfunc-
tion of the Fourier transform and leads, after some calculations, to the other
eigenfunctions (by way of the Hermite polynomials). We shall see below that
the Gaussian plays a useful role in summability questions for the Fourier
transform. It is a recurring feature of the subject.

Lemma 3.3.5
/ e 1P do = (y/m)N.
RN

Remark: Although the proof presented at the end of the chapter is the most
common method for evaluating [ e~171” dz, several other approaches are pro-
vided in [HEI]. O

Corollary 3.3.6
/ N2l g = 1.
RN

Now let us calculate the Fourier transform of e~*I°. Tt is slightly more
convenient to calculate the Fourier transform of f(z) = e~1#*/2 and this we
do.

It suffices to treat the 1-dimensional case because

(e #2) 1) = / ol 2 i gy
RN

2 1 2 .
— / e m1/2€zm1§1 dl’1"'/€ mN/2€sz§N dl’N.
R R

We thank J. Walker for providing the following argument (see also [FOL3,
p. 242]):
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By Proposition 3.1.3,
d_j/f\_ oo
U .

. _ 2 ;
ize™" 2 dy.

We now integrate by parts, with dv = ze~"/2 dx and u = ie™¢. The bound-
ary terms vanish because of the presence of the rapidly decreasing exponential
e~**/2. The result is then

Gt [ emnata— o)

This is just a first-order linear ordinary differential equation for j? It is
easily solved using the integrating factor e£*/2, and we find that

~

F(&) = F(0) - e

But Lemma 3.3.5 (and a change of variable) tells us that f(0) = [ f(z)dz =
V27, In summary, on R!,

e=*/2(g) = \2me €/, (3.3.7)
in RY we therefore have
(e P12)(€) = (Vam)Ve P,
We can, if we wish, scale this formula to obtain
(e7I7)(€) = w16,

The function G(z) = (2r) N/2e1eP/2 i5 called the Gauss-Weierstrass
kernel, or sometimes just the Gaussian. It is a summability kernel (see
[KAT)) for the Fourier transform. We shall flesh out this assertion in what
follows. Observe that

G(&) = e €72 = (2m)N2G(¢). (3.3.8)
On RY we define

G.(z) = V¥ (G)(x) = e N/2(2m) N2 a2/ (26)
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Then
Ge(§) = (oz\/gG) A(g) = aﬁ@(g) — ocll?/2
G() = (e 72) (g
= (ave ™) (®)

= aVve <e—|m|2/2)A(g)
— N2 N/ 218/ 20
(2m)NG(9).

Observe that é\e is, except for the factor of (27)Y, the same as G.. This fact
anticipates the Fourier inversion formula that we are gearing up to prove.

Now assume that f € C¥*1. This implies in particular that f, f are in
L' and continuous (see the proof of the Riemann-Lebesgue Lemma 3.1.4).
We apply Proposition 3.2.7 with ¢ = G. € L' to obtain

[ t@Gwyde = [ FeGe ae.
In other words,
/ F@)@mN G (2) dr = / F(e)eeel 2 ge. (3.3.9)
Now e~€*/2 1 as ¢ — 0F, uniformly on compact sets. Thus
[ R~ [ feae.

That concludes our analysis of the right-hand side of (3.3.9).
Next observe that, for any € > 0,

/GE(:E) do = /Ge(a:)e”'o dz = G,(0) = 1.
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v

Figure 3.1: The Gaussian.

Thus the left side of (3.3.7) equals

(2m) /f
= (20 /f(O)G x)dx

(2m)™ / (@) — F(0)]Ge(z) da
= A.+ B.

Now it is crucial to observe that the function GG, has total mass 1, and that
mass is more and more concentrated near the origin as ¢ — 0. Refer to
Figure 3.1. As a result, A, — (27)" - £(0) and B. — 0. Altogether then,

/ F(2)(20)V G () dx — (27) £(0)

as € — 0. Thus we have evaluated the limits of the left and right-hand sides
of (3.3.7). [Note that the argument just given is analogous to some of the
proofs for the summation of Fourier series that were presented in Chapter 1.]
We have proved the following:

Prelude: This next proposition (and the theorem following) is our first
glimpse of the role of the Gaussian in summability results. It is simple and
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Figure 3.2: The Fourier transform of the Gaussian.

elegant and makes the theory proceed smoothly.

Proposition 3.3.10 (Gauss-Weierstrass Summation) Suppose that f €
CN+L(RYN) (this hypothesis is included to guarantee that f € L'). Then

0) = lim () [ Fle)e e g
Limiting arguments may be used to show that the formula in Proposition
3.3.10 is valid for any f € L', even when f is not integrable. She shall omit
the details of this assertion.

The method of Gauss-Weierstrass summation will prove to be crucial in
some of our later calculations. However, in practice, it is convenient to have
a result with a simpler and less technical statement. If f, f are both known
to be in L' (this is true, for example, if f has (N +1) derivatives in L'), then
a limiting argument gives the following standard result:

Theorem 3.3.11 If f, f € L (and both are therefore continuous), then
£(0) = (2m)N / Fle) de. (3.3.11.1)

Of course there is nothing special about the point 0 € RY. We now
exploit the compatibility of the Fourier transform with translations to obtain
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a more generally applicable formula. We apply formula (3.3.11.1) in our
theorem to 7_, f for f € L', f € L', y € RN. The result is

(ryf) (0) = (2m)N / (o) (&) d

Theorem 3.3.12 (The Fourier Inversion Formula) If f, felL (and
hence both f, f are continuous), then for any y € RN we have

f(y) = (2m) N / Fle)eve de.

Observe that this theorem tells us something that we already know im-
plicily: that if f, f are both L!, then f (being the inverse Fourier transform
of an L! function) can be corrected on a set of measure zero to be continuous.

Prelude: We reap here the benefit of our development of the Gaussian in
Fourier analysis. Now we see that the Fourier transform is univalent, and this
sets the stage for the inverse Fourier transform which we shall develop below.

Corollary 3.3.13 The Fourier transform is one-to-one. That is, if f, g € Lt
and f =74, then f = g almost everywhere.

Even though we do not know the Fourier transform to be a surjective
operator (in fact see the next theorem) onto the continuous functions van-
ishing at infinity, it is convenient to be able to make explicit reference to the
inverse operation. Thus we define

J (@) = @m)™ / g(E)e ¢ de

whenever g € L*(RY). We call the operation V' the inverse Fourier trans-
form. Notice that the operation expressed in the displayed equation makes
sense for any g € L', regardless of the operation’s possible role as an inverse
to the Fourier transform. It is convenient to give the operation the italicized
name.
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In particular, observe that if the hypotheses of the Fourier inversion
formula are in force, then we have that

@) = () (@).

Since the Fourier transform is one-to-one, it is natural to ask whether it
is onto. We have

Proposition 3.3.14 The operator

vZL1—>CQ

is not onto.

Exercise for the Reader: Imitate the proof of this last result to show that
the mapping
: LY(T) — co,

that assigns to each integrable function on the circle its sequence of Fourier
coefficients (a bi-infinite sequence that vanishes at o), is not onto.

It is actually possible to write down explicitly a bi-infinite complex se-
quence that vanishes at oo and is not the sequence of Fourier coefficients of
any L' function on the circle. See [KAT] for the details.

The Fourier inversion formula is troublesome. First, it represents the
function f as the superposition of uncountably many basis elements e,
none of which is in any L” class. In particular, the Fourier transform does
not localize well. The theory of wavelets (see [MEY1]|, [MEY2|, [MEY3],
[KRAD]) is designed to address some of these shortcomings. We shall not
treat wavelets in the present book.

3.4 Quadratic Integrals and Plancherel

Capsule: Certainly one of the beautiful features of Fourier anal-
ysis is the Plancherel formula. As a consequence, the Fourier
transform is an isometry on L?. The theory of Sobolev spaces is



3.4. QUADRATIC INTEGRALS AND PLANCHEREL 59

facilitated by the action of the Fourier transform on L?. Pseu-
dodifferential operators and Fourier integral operators are made
possible in part by the nice way that the Fourier transform acts
on L?. The spectral theory of the action of the Fourier transform
on L? is very elegant.

We earlier made some initial remarks about the quadratic Fourier the-
ory. Now we give a more detailed treatment in the context of the Fourier
transform.

Prelude: This next result is the celebrated theorem of Plancherel. As pre-
sented here, it seems to be a natural and straightforward consequence of the
ideas we have been developing. But it is a truly profound result, and has
serious consequences. The entire L? theory of the Fourier transform depends
on this proposition.

Proposition 3.4.1 (Plancherel) If f € C®(RY), then

em ™ [1F©Fde = [ 15w ds

Definition 3.4.2 For any f € L?(RY), the Fourier transform of f can be
defined in the following fashion: Let f; € C satisfy f; — f in the L?

topology. It follows from the proposition that {fj} is Cauchy in L2. Let g be
the L? limit of this latter sequence. We set f = g.

It is easy to check that this definition of j?is independent of the choice
of sequence f; € C2° and that

em) ™ [1f©Fde = [ 15w ds (3.4.3)
We next record the “polarized form” of Plancherel’s formula:

Prelude: Of course the next result is a “polarized” version of Plancherel’s
theorem. It follows just from algebra. But it is an extremely useful identity,
and makes possible many of the advanced ideas in the subject. Certainly one
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should compare this results with 3.2.7. In view of Fourier inversion, the two
formulas are logically equivalent.

Proposition 3.4.4 If f,g € L?>(RY), then

/ £(t) - 9(t) dt = (2m)™ / Flege) de.

Exercises for the Reader: Restrict attention to dimension 1. Let F be
the Fourier transform. Consider G = (27)'/2- F as a bounded linear operator
(indeed an isometry) on the Hilbert space L?(R). Prove that the four roots
of unity (suitably scaled) are eigenvalues of G. [Hint: What happens when
you compose the G with itself four times?|

Which functions in L? are invariant (up to a scalar factor) under the

Fourier transform? We know that (z:vf)v (&) = (f)(€) and (f’)A(f) = —ilf ().
As a result, the differential operator d?/dx? — z*I is invariant under the
Fourier transform. It seems plausible that any solution of the differential
equation

& — 220 = \o (3.4.5)

da? ’ o
for A a suitable constant, will also be mapped by the Fourier transform to
itself. Since the function e=*"/2 is (up to a constant) mapped to itself by
the Fourier transform, it is natural to guess that equation (3.4.5) would
have solutions involving this function. Thus perform the change of notation
d(x) = e **/2. ®(x). Guess that ® is a polynomial, and derive recursions for
the coefficients of that polynomial. These polynomials are called the Hermite
polynomials. A full treatment of these matters appears in [WIE, pp. 51-55]
or in [FOL3, p. 248].

You may also verify that the polynomials ® that you find form (after

suitable normalization) an orthonormal basis for L? when calculated with
respect to the measure du = /2¢**/? dz. For details, see [WIE].

We now know that the Fourier transform F has the following mappings
properties:

F: L' — L™
F:.I? — L2
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These are both bounded operations. It follows that F is defined on L for
1 < p < 2 (since, for such p, LP C L' + L?).
The Riesz-Thorin interpolation theorem (see [STG1]) allows us to con-
clude that
F.LP — ¥ , 1<p<2,

where p/ = p/(p—1). If p > 2, then F does not map L? into any nice func-
tion space. The theory of distributions is required in order to obtain any
satisfactory theory. We shall not treat the matter here. The precise norm of
F on LP,; 1 < p <2, has been computed by Beckner [BEC].

3.5 Sobolev Space Basics

Capsule: Sobolev spaces were invented as an extension of the
L? theory of the Fourier transform. It is awkward to study the
action of the Fourier transform on C* (even though these spaces
are very intuitively appealing). But it is very natural to study the
Fourier transform acting on the Sobolev space H®. The Rellich
lemma and the restriction and extension theorems for Sobolev
spaces make these objects all the more compelling to study—see
[KRA3] for details.

Definition 3.5.1 If ¢ € D (the space of testing functions, or C*° functions
with compact support), then we define the norm

we=loll = [ 13P(1+ 1) )/

We let the space H*(R"Y) be the closure of D with respect to || ||

9]

In the case that s is a non-negative integer then

A+ = T+ EP) = DY g~ | D g

|a|<2s la|<s
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Therefore N
¢ € H* ifandonlyif ¢- () [¢") € L%

laf<s

This last condition means that ¢¢* € L? for all multi-indices a with la] < s.

That is,

(ﬁ) ¢ € L* Vo such that |a| < s.
ox

Thus we have:

Prelude: Although it is intuitively appealing to think of an element of the
Sobolev space H* as an L? function with derivatives up to order s also lying
in L2, this is not in practice the most useful characterization of the space. In
actual applications of the Sobolev spaces, the norm in the preceding defini-
tion is what gives the most information.

Proposition 3.5.2 If s is a non-negative integer then

8&
Hs:{fELzzﬂfEszoraHaWith |a|§s}.
x

Here derivatives are interpreted in the sense of distributions.
Notice in passing that if s > r then H* C H" because
B*(1+[E]*)" < C - o (1+ [€]%).
The Sobolev spaces turn out to be easy to work with because they are
modeled on L?>—indeed each H* is canonically isomorphic as a Hilbert space
to L? (exercise). But they are important because they can be related to

more classical spaces of smooth functions. That is the content of the Sobolev
imbedding theorem:

Prelude: It is this next result that is the heuristic justification for the
Sobolev spaces. The intuition is that C* spaces are much more intuitively
appealing, but they do not behave well under the integral operators that we
wish to study. Sobolev spaces are less intuitive but, thanks to Plancherel,
they behave very naturally under the integral operators. So this theorem
provides a bridge between the two sets of ideas.
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Theorem 3.5.3 (Sobolev) Let s > N/2. If f € H*(RY) then f can be
corrected on a set of measure zero to be continuous.

More generally, if k € {0,1,2,...} and if f € H®,s > N/2 + k, then f
can be corrected on a set of measure zero to be C*.

Proof: For the first part of the theorem, let f € H®. By definition, there
exist ¢; € D such that ||¢; — f||zs — 0. Then

65 = fllzz = llos = fllo < Iy = fIE — ©. (3.5.3.1)

Our plan is to show that {¢;} is an equibounded, equicontinuous family of
functions. Then the Ascoli-Arzeld theorem [RUDI1] will imply that there is a
subsequence converging uniformly on compact sets to a (continuous) function
g. But (3.5.3.1) guarantees that a subsequence of this subsequence converges
pointwise to the function f. So f = ¢ almost everywhere and the required
(first) assertion follows.

To see that {¢;} is equibounded, we calculate that

|6;(x)] = ¢

/ e (6) de
< e / BN+ [€2)72(1 + €2)"2 de

< e ( G |s|2>8ds) " ( Ja+ign- dg) "

Using polar coordinates, we may see easily that, for s > N/2,

/(1 F1EP) " de < oo.

Therefore

9j ()] < Cllgsllas < C'

and {¢;} is equibounded.
To see that {¢;} is equicontinuous, we write

/ 3:(6) (¢ — ) dg|

|05 (x) — @5 (y)| = ¢

Observe that |e=®¢ — e~®%¢| < 2 and, by the mean value theorem,

|76 —eTVE < far —yl €]
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Then, for any 0 < e < 1,
eI _ (mIE]  |emin€ g Ie|omivt _ omin€]e < o1l _ ylefe]e,
Therefore
6,@) = 5] < € [ 18,0~ vllel g
< Clo—yl° [ 15,01(1+ 16) " de

e ([ i) "

If we select 0 < € < 1 such that —s + ¢ < —N/2 then we find that [(1+
|€|?) 751 d€ is finite. It follows that the sequence {¢;} is equicontinuous and
we are done.

The second assertion may be derived from the first by a simple inductive
argument. We leave the details as an exercise. O

< Clz —yles]

Remarks:
1. If s = N/2 then the first part of the theorem is false (exercise).
2. The theorem may be interpreted as saying that H* C CE _for s > k+N/2.
In other words, the identity provides a continuous imbedding of H*® into C*.
A converse is also true. Namely, if H* C CF _ for some non-negative integer
k then s > k + N/2.

To see this, notice that the hypotheses u; — u in H* and u; — v in C*
imply that u = v. Therefore the inclusion of H*® into C* is a closed map. It is

therefore continuous by the closed graph theorem. Thus there is a constant
C such that

[ fller < Clf]

For z € RY fixed and o a multi-index with |o| < k, the tempered distribution

el defined by
80&
£(0) = (4 ) 010)

is bounded in (C*)* with bound independent of z and a (but depending on
k). Hence {e?} form a bounded set in (H*)* = H™*. As a result, for |a] <k

Hs-
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we have that

lezllz-s =

1/2
(@) ©F (1 +1eP) )

(/1
- (/\ —ig) e [ (1 +1¢) )1/2
< o(/1+|§| S+'ald5)m

is finite, independent of x and «. But this can only happen if 2(k—s) < —N,
that is if s > k+ N/2. O

Exercise for the Reader: Imitate the proof of the Sobolev theorem to

prove Rellich’s lemma: If s > r then the inclusion map ¢ : H®* — H" is a
compact operator.

Proofs of the Results in Chapter 3

Proof of Proposition 3.1.1: Observe that, for any & € RY,

fle)l < /If(t)|dt- 0

Proof of Proposition 3.1.2: Integrate by parts: If f € C® (the C*
functions with compact support), then

(52) 0 = [olevea

al’j
= / /U ettt dtj] dty...dt; ydtiy ... dty
— / /f ( zt §) dt ; dtl dtj_ldtj_H ce dtN
= _253/ /f Ztﬁdt

— _ZS_]

[Of course the “boundary terms” in the integration by parts vanish since
f € C2°.] The general case follows from a limiting argument. O
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Proof of Proposition 3.1.3: Differentiate under the integral sign. O

Proof of Proposition 3.1.4: First assume that ¢ € C2(RY). We know that

[9llzee < gl < C
and, for each j,

et~ ()1, <1(2)»

Then (1 + |£]?)g is bounded. Therefore

= (.

It

1
C"  lel—+oo
—_

0.
1+ ¢

9(&)] <

This proves the result for g € C?. [Notice that the same argument also shows
that if g € CNTHRY) then g € L]

Now let f € L! be arbitrary. Then there is a function ¢ € C?(RY)
such that || f —||1 < €/2. Indeed, it is a standard fact from measure theory
(see [RUDZ2]) that there is a C, function (a continuous function with compact
support) that so approximates. Then one can convolve that C. function with
a Friedrichs mollifier (see [KRA5]) to obtain the desired C? function.

By the result already established, choose M so large that when [¢| > M
then |’QZJ\(€)| < €/2. Then, for [£| > M, we have

O = 1(F =) (©) +9(©)
< (=) ©1+ 9 (©)]
< - v+
€ €
< 5 + 5 = €.
This proves the result. O

Proof of Proposition 3.1.5: Note that j?is continuous by the Lebesgue
dominated convergence theorem:

lim f(¢) = lim /f )et dy = /glljg) f@)e™de = f(&).

§—>§0 §—&o
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Since f also vanishes at oo (see 3.1.4), the result is immediate. O

Proof of Proposition 3.2.1: Remembering that p is orthogonal and has
determinant 1, we calculate that

e = / (o) (1) dt = / F(o(t))eitdt
(s=p(1)) / ()6 9% g

_ / F(s)el 7€ g
_ /f ZSP(§ ds

= f(p6) = pf(e).

The proof is complete. O

Proof of Proposition 3.2.3: We calculate that

(asf) (€) = / (asf) (£)eS dt
f(6t)e s dt

J o

(s= 5t/ 1(3/555 N 1s
0Nf(g/s

- (o f)

That proves the first assertion. The proof of the second is similar. O
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Proof of Proposition 3.2.4: For the first equality, we calculate that
nf©) = [ @
RN

= / "t f(x — a)dx
RN
(z—a)=t / 6i(t+a)-§f(t) dt
RN

= em'§/ e (t) dt
RN

= ().

The second identity is proved similarly. O

Proof of Proposition 3.2.5: We calculate that

7 £) = / et dt = / F(=t)e e dt

/f Je e dt = F(—¢) = F(©). 0

Proof of Proposition 3.2.6: We calculate that

7 /f )it gt = /f He-tedt = F(—€) = T (€). 0

Proof of Proposition 3.2.7: This is a straightforward change in the order

of integration:
/ F©)g() de = / / F(t)e dt g (&) de

- [ [ aoeaes
:/ 1) £(t) dt.

Here we have applied the Fubini-Tonelli theorem. O
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~

Proof of Proposition 3.2.8: Calculate as(f) using (3.2.8) and a change
of variables. O

Proof of Proposition 3.3.1: We calculate that
Fo@ = [(reaoeca= [ [ 1= sgts)dseta

= // f(t —5)e' ¢ qt g(s)e™ < ds
= J(&) -39 @)

Proof of Lemma 3.3.5: Breaking the integral into a product of 1-dimensional
integrals, we see that it is enough to treat the case N = 1. Set [ =
[* e dt. Then (refer to Figure 3.2)

e
-] = / e‘szds/ e dt = // eI gsqt
—00 —00 R2
2T [e'e] )
= / / e " rdrdd =m.
o Jo

Thus I = /7, as desired. O

Proof of theorem 3.3.11 For the proof, consider g = f * G, note that g =
i\-e‘ﬁmz/z and apply the previous theorem. Note that Figure 3.2 shows how
G. flattens out, uniformly on compact sets, as ¢ — 0. We leave the details
of the argument to the reader. R

Proof of Corollary 3.3.13: Observe that f —g € L' and f —g=0 € L.
The theorem allows us to conclude that (f —g) = 0, and that is the result. O

Proof of Proposition 3.3.14: For simplicity, we restrict attention to R*.
Seeking a contradiction, we suppose that the operator is in fact surjective.
Then the open mapping principle guarantees that there is a constant C' > 0
such that

Ifllr < C - | fllswp  for all f € L%, (3.3.14.1)
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On R', let g be the characteristic function of the interval [—1,1]. A
calculation shows that the inverse Fourier transform of g is

\Vi sint
g(t)=—

7t
We would like to say that f = ;]/ violates (3.3.14.1). But this f is not in L,
so such logic is flawed.

Instead we consider he = G, * g. Then h,, being the convolution of two
L' functions, is certainly L'. Moreover,

hia)) = e eme [

6—|m—t|2/2e dt
1

1
6—1/2(27T)—1/26—m2/2e/

6mt/ee—t2/2e dt
-1

< 066_m2/46.

So h. € L' N Cy.
In addition,

% Cv
he(t)=2m-Go (1) g (1) =2 g (1) — 4 (1)
pointwise. This convergence cannot be boundedly in L!, otherwise Fatou’s

lemma would show that ;]/ € L'; and we know that that is false.
A contradiction now arises because
Cv
|27 - G.

V V
Gl =1(Gexg) "l < C- |G gllsup < C- |Gel[1 - [gllsup = €
As noted, the left side blows up as € — 0%

O
Proof of Proposition 3.4.1: Define g =

f *f € C>*(RY). Then

1=FF=FT=F71

~

— T =FT ="

)

Now

M@Zf*f@%=/f@ﬂﬂ—wﬁ:

(3.4.1.1)

/mﬁ@ﬁZ/met
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By Fourier inversion and formula (3.4.1.1) we may now conclude that

/ F@OP dt = g(0) = (2m)N / 3(6) de = (2m)~ / FeRde.
That is the desired formula. O

Proof of Proposition 3.4.4: The proof consists of standard tricks from
algebra: First assume that f, g are real-valued. Apply the Plancherel formula
that we proved to the function (f 4 ¢g) and then again to the function (f — g)
and then subtract.
The case of complex-valued f and g is treated by applying the Plancherel
formulato f+g¢, f — g, f +ig, f —ig and combining,.
O



72

PROOFS OF THE RESULTS IN CHAPTER 3



Chapter 4

The World According to
Fourier Multipliers

Prologue: If a linear operator is given by
Tf=fxK

for some integration kernel K, then it follow from standard Fourier
theory that

TF=K-f=m-J.
We call m a Fourier multiplier, and we call T a multiplier opera-
tor.

Often the situation is presented in reverse: We are given a
multiplier m and consider the operator T, defined by

Tmf:m-j?.

Because the Fourier transform is known to be univalent, this is
well defined. It makes sense to take m to be bounded, because
then (and only then) will 7}, be bounded on L?.

There is a considerable literature of Fourier multipliers. The
celebrated Marcinkiewicz multiplier theorem gives sufficient con-
ditions for 7T, to be bounded on LP. Roughly speaking, the hy-
potheses are in terms of decay at oo of m and its derivatives.

73
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In this chapter we develop properties of multipliers that are
relevant to our main themes. Fractional integrals, singular inte-
grals, and pseudodifferential operators will be examined from this
point of view.

4.1 Basics of Fractional Integrals

Capsule: Fractional integrals and singular integrals are the two
most basic types of integral operators on Euclidean space. A frac-
tional integral operator is (a) inverse to a fractional differential
operator (i.e., a power of the Laplacian) and (b) a smoothing
operator (in the sense that it takes functions in a given function
class to functions in a “better” function class). Fractional in-
tegrals act on LP, on BMO, on (real variable) Hardy spaces, on
Sobolev spaces, and on many other natural function spaces. They
are part of the bedrock of our theory of integral operators. They
are used routinely in the study of regularity of partial differential
equations, in harmonic analysis, and in many other disciplines.

For ¢ € C1(RY) we know that

g—;;@ — i 3E). (4.1.1)

In other words, the Fourier transform converts differentiation in the z-variable
to multiplication by a monomial in the Fourier transform variable. Of course
higher-order derivatives correspond to multiplication by higher-order mono-
mials.

It is natural to wonder whether the Fourier transform can provide us
with a way to think about differentiation to a fractional order. In pursuit of
this goal, we begin by thinking about the Laplacian

N

N

J=1

Of course formula (4.1.1) shows that

DG(E) = —|€[2(¢). (4.1.2)
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In the remainder of this section, let us use the notation

D*p(§) = — L 6(€). (4.1.3)

Then we set D¢ = D? o D?¢, and so forth. What will be important for us
is that the negative of the Laplacian is a positive operator, as (4.1.2) shows.
Thus it will be natural to take roots of this operator.

Now let us examine the Fourier transform of D?¢ from a slightly more
abstract point of view. Observe that the operator D? is translation-invariant.
Therefore, by the Schwartz kernel theorem (Section 2.1 and [SCH]), it is given
by a convolution kernel k5. Thus

D*p(x) = ¢ * ko).

Therefore - R R
D2g(§) = B(€) - k2(E) - (4.1.4)

If we wish to understand differentiation from the point of view of the
Fourier transform, then we should calculate k5 and then ko. But comparison
of (4.1.2), (4.1.3), and (4.1.4) tells us instantly that

ka(€) = €.

[Since the expression on the right neither vanishes at infinity—think of the
Riemann-Lebesgue lemma—mnor is it in L?, the reader will have to treat the
present calculations as purely formal. Or else interpret everything in the
language of distributions.] In other words,

D2g(¢) = [¢]* - 9(€).

More generally,
DU(E) = [¢[* - ¢(6).
The calculations presented thus far should be considered to have been
a finger exercise. Making them rigorous would require a considerable dose
of the theory of Schwartz distributions, and this we wish to avoid. Now we
enter the more rigorous phase of our discussion.
It turns out to be more efficient to study fractional integration than
fractional differentiation. This is only a technical distinction, but the kernels
that arise in the theory of fractional integration are a bit easier to study.
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Thus, in analogy with the operators D?, we define Z%2¢ according to the
identity

29(€) = [¢]72- 6(¢).

Observing that this Fourier multiplier is rotationally invariant and homoge-
neous of degree —2, we conclude that the convolution kernel corresponding
to the fractional integral operator Z? is ko (x) = c-|z|~™*?2 for some constant
c. In what follows we shall suppress this constant. Thus

T (x) = / (e — 1) dt
RN

—at least when N > 2.1
More generally, if 0 < § < N, we define

T 4(x) = / 1N — t) db

for any testing function ¢ € C}(RY). Observe that this integral is absolutely
convergent—near the origin because ¢ is bounded and |z|~V*7 is integrable,
and near oo because ¢ is compactly supported. The operators Z” are called
fractional integral operators.

4.2 The Concept of Singular Integrals

Capsule: Of course singular integrals are the main point of this
book. They are at the heart of many, if not most, basic questions
of modern real analysis. Based both philosophcally and techni-
cally on the Hilbert transform, singular integrals are the natural
higher-dimensional generalization of a fundamental concept from
complex function theory and Fourier series. The hypothesized
homogeneity properties of a classical singular integral kernel are
a bit primitive by modern standards, but they set the stage for
the many theories of singular integrals that we have today.

!Many of the formulas of potential theory have a special form in dimension 2. For in-
stance, in dimension 2 the Newton potential is given by a logarithm. Riesz’s classical theory
of potentials—for which see [HOR2]—provides some explanation for this phenomenon.
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In the last section we considered Fourier multipliers of positive or nega-
tive homogeneity. Now let us look at Fourier multipliers of homogeneity 0.
Let m(&) be such a multiplier. It follows from our elementary ideas about
homogeneity and the Fourier transform that the corresponding kernel must
be homogeneous of degree —N, where N is the dimension of space. Call the
kernel k.

Now we think of k as the kernel of an integral operator. We can, in the
fashion of Caldéron and Zygmund, write

_ k() -] _ Q)

M=y = T

Here it must be that 2 is homogeneous of degree 0.
Let ¢ be the mean value of {2 on the unit sphere. We write

Q(|£:l::)|1\f_ - |:L“C|N = k() + ka()

k() =

Now if ¢ is a C>®(RY) testing function then we may calculate

[ e = [7 [ 00 ~dete dstenr i
= [T 00 - dletr) 0] drter

- / /EN 1 |- O() do(€)r ™ N dr

and the integral converges. Thus k; induces a distribution in a natural way.
But integration against ks fails to induce a distribution. For if the testing
function ¢ is identically 1 near the origin then the integrand in

/RN ko(z)p(x) dz

near 0 is like ¢/|z|", and that is not integrable (just use polar coordinates as
above).

We conclude that if we want our kernel k£ to induce a distribution—which
seems like a reasonable and minimal requirement for any integral operator
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that we should want to study—then we need ¢ = 0. In other words 2 must
have mean value 0. It follows that the original Fourier multiplier m must have
mean value 0. In fact, if you compose 2 with a rotation and then average
over all rotations (using Haar measure on the special orthogonal group) then
you get zero. Since the map {2 +— m commutes with rotations, the same
assertion holds for m. Hence m must have mean value 0.

Important examples in dimension N of degree-zero homogeneity, mean-
value-zero Fourier multipliers are the Riesz multipliers

Ly

mj(:v):m, j=1,...,N.

These correspond (see the calculation in [STE1]) to kernels

Notice that each of the Riesz kernels k; is homogeneous of degree —N. And
the corresponding Q;(x) = z;/|z| has (by odd parity) mean value zero on
the unit sphere.

The integral operators

RN

are called the Riesz transforms and are fundamental to harmonic analysis
on Euclidean space. We shall see them put to good use in a proof of the
Sobolev imbedding theorem in Section 5.2. Later, in our treatment of real
variable Hardy spaces in Chapter 5, we shall hear more about these important
operators. In particular, Section 8.8 treats the generalized Cauchy-Riemann
equations, which are an analytic aspect of the Riesz transform theory.

Of course there are uncountably many distinct smooth functions 2 on
the unit sphere which have mean value zero. Thus there are uncountably
many distinct Caldéron-Zygmund singular integral kernels. Singular integrals
come up naturally in the regularity theory for partial differential equations,
in harmonic analysis, in image analysis and compression, and in many other
fields of pure and applied mathematics. They are a fundamental part of
modern analysis.
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4.3 Prolegomena to Pseudodifferential Oper-
ators

Capsule: Ever since the 1930s there has been a desire for an
algebra of operators that contains all parametrices for elliptic
operators, and that has operations (i.e., composition, inverse, ad-
joint) that are naturally consistent with considerations of par-
tial differential equations. It was not until the late 1960s that
Kohn/Nirenberg, and later Hérmander, were able to create such
a calculus. This has really transformed the theory of differential
equations. Many constructs that were formerly tedious and tech-
nical are now smooth and natural. Today there are many differ-
ent calculi of pseudodifferential operators, and also Hormander’s
powerful calculus of Fourier integral operators. This continues to
be an intense area of study.

We shall treat pseudodifferential operators in some detail in Appendix
2. In the present section we merely indicate what they are, and try to fit
them into the context of Fourier multipliers.

Pseudodifferential operators were invented by Kohn/Nirenberg and Hor-
mander (building on work by Mihlin, Caldéron/Zygmund and many others)
in order to provide a calculus of operators for constructing parametrices for
elliptic partial differential equations.

Here, by a “calculus”, we mean a class of operators which are easy to
compose, calculate adjoints of, and calculate inverses of—in such a way that
the calculated operator is seen to fit into the given class and to have the
same form. Also the “order” of the calculated operator should be easy to
determine. Again, Appendix 2 on pseudodifferential operators will make it
clear what all this terminology means. The terminology “parametrix” means
an approximate inverse to a given elliptic operator. The manner in which
an inverse is “approximate” is a key part of the theory, and is measured in
terms of mapping properties of the operators.

It took a long time to realize that the most effective way to define pseu-
dodifferential operators is in terms of their symbols (i.e., on the Fourier trans-
form side). A preliminary definition of pseudodifferential operator, rooted in
ideas of Mihlin, is this:

A function p(z,€) is said to be a symbol of order m if p is C*°,
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has compact support in the x variable, and is homogeneous of
degree m in £ when £ is large. That is, we assume that there is
an M > 0 such that if |£| > M and A > 1 then

p(x, AE) = X"p(x, §).

Thus the key defining property of the symbol of a pseudodifferential operator
is its rate of decay in the & variable. A slightly more general, and more useful,
definition of pseudodifferential operator (due to Kohn and Nirenberg) is:

Let m € R. We say that a smooth function o(z,£) on RY x RV is
a symbol of order m if there is a compact set K C R such that
suppo C K x RN and, for any pair of multi-indices «, 3, there is
a constant C, g such that

|DEDEo(x,)| < Cap(1 + €)™ (4.1.1.1)
We write o € S™.

We define the corresponding pseudodifferential operator to be

T,f = / 7)o (e, €)= de

Thus we see the pseudodifferential operator being treated just like an or-
dinary (constant-coefficient) Fourier multiplier. The difference now is that
the symbol will, in general, have “variable coefficients”. This is so that we
can ultimately treat elliptic partial differential equations with variable coef-
ficients.

In the long term, what we want to see—and this will be proved rigorously
in Appendix 2—is that

T,0T, =Ty,

[TP]* ~ T§>

and
[Tp]_l ~ Tl/p .

Of course it must be made clear what the nature of the approximation is,
and that (highly nontrivial) matter is a central part of the theory of pseu-
dodifferential operators to be developed below (in Appendix 2).



Chapter 5

Fractional and Singular
Integrals

Prologue: In some vague sense, the collection of all fractional
and singular integrals form a poor man’s version of a classical
calculus of pseudodifferential operators. Certainly a fractional
integral is very much like the parametrix for a strongly elliptic
operator.

But fractional and singular integrals do not form a calcu-
lus in any natural sense. They are certainly not closed under
composition, and there is no easy way to calculate compositions
and inverses. Calculations also reveal that the collection is not
complete in any natural sense. Finally, fractional and singular
integrals (of the most classical sort) are all convolution opera-
tors. Many of the most interesting partial differential equations
of elliptic type are not translation invariant. So we clearly need
a larger calculus of operators.

In spite of their limitations, fractional and singular integrals
form the bedrock of our studies of linear harmonic analysis. Many
of the most basic questions in the subject—ranging from the
Sobolev imbedding theorem to boundary limits of harmonic con-
jugate functions to convergence of Fourier series—can be reduced
to estimates for these fundamental operators. And any more ad-
vanced studies will certainly be based on techniques developed to
study these more primitive operators.

81
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The big names in the study of fractional integrals are Riemann,
Liouville, and M. Riesz. The big names in the study of singular
integrals are Mikhlin, Caldéron, Zygmund, Stein, and Fefferman.
More modern developments are due to Christ, Rubio de Francia,
David, Journé, and many others.

The subject of fractional and singular integrals is one that
continues to evolve. As new contexts for analysis develop, new
tools must be created along with them. Thus the subject of
harmonic analysis continues to grow.

5.1 Fractional and Singular Integrals Together

Capsule: In this section we introduce fractional and singular
integrals. We see how they differ from the point of view of ho-
mogeneity, and from the point of view of the Fourier transform.
We related the idea to fractional powers of the Laplacian, and
the idea of the fractional derivative.

We have seen the Hilbert transform as the central artifact of any study of
convergence issues for Fourier series. The Hilbert transform turns out to be a
special instance, indeed the most fundamental instance, of what is known as a
singular integral. Caldéron and Zygmund, in 1952 (see [CALZ]), identified a
very natural class of integral operators that generalized the Hilbert transform
to higher dimensions and subsumed everything that we knew up until that
time about the Hilbert transform.

The work of Caldéron and Zygmund of course built on earlier studies of
integral operators. One of the most fundamental types of integral operators—
far more basic and simpler to study than singular integral operators—is the
fractional integral operators. These operators turn out to model integrations
to a fractional order. They are very natural from the point of view of par-
tial differential equations: For instance, the Newton potential is a fractional
integral operator.

In the present chapter, as a prelude to our study of singular integrals,
we provide a treatment of fractional integrals. Then we segue into singular
integrals and lay the basis for that subject.
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Consider the Laplace equation
Au=f,

where f € C.(RY). Especially since A is an elliptic operator, we think
of the Laplacian as a “second derivative.” Thus it is natural to wonder
whether u will have two more derivatives than f. We examine the matter by
constructing a particular u using the fundamental solution for the Laplacian.
For convenience we take the dimension N > 3.

Recall that the fundamental solution for A is I'(z) = ¢ - |z|7V 2. Tt is
known that AI' = §, the Dirac delta mass. Thus u = I" % f is a solution to
the Laplace equation. Note that any other solution will differ from this one
by a harmonic function which is certainly C'*°. So it suffices for our studies
to consider this one solution.

Begin by noticing that the kernel I' is homogeneous of degree —N + 2 so
it is certainly locally integrable. We may therefore conclude that u is locally
bounded.

As we have noted before,

ou_or
8l’j_al’j

f.

and
0%u 0T

dx;0xy, - dx;0xy, -

The first kernel is homogeneous of degree —N +1; the second is homogeneous
of degree —N and is not locally integrable. In fact the convolution makes no
sense as a Lebesgue integral.

One must in fact interpret the integral with the Cauchy principal value
(discussed elsewhere in the present book), and apply the Caldéron-Zygmund
theory of singular integrals in order to make sense of this expression. By
inspection, the kernel for 9*u/dz ;0 is homogeneous of degree —N and has
mean value 0 on the unit sphere. Since a classical singular integral is bounded
on LP for 1 < p < oo, we may conclude that 9%u/0x;0zy is locally in L?,
hence locally integrable.

In conclusion, the solution u of Au = f has roughly two more derivatives
than the data function f. That is what was expected. Our ensuing discussion
of fractional integrals (and singular integrals) will flesh out these ideas and
make them more rigorous.
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5.2 Fractional Integrals and Other Elemen-
tary Operators

Fractional integrals are certainly more basic, and easier to study,
than singular integrals. The reason is that the estimation of frac-
tional integrals depends only on size (more precisely on the dis-
tribution of values of the absolute value of the kernel) and not on
any cancellation properties. Thus we begin our study of integral
operators with these elementary objects. The mapping properties
of fractional integrals on L? spaces are interesting. These results
have been extended to the real variable Hardy spaces and other
modern contexts.

Now the basic fact about fractional integration is that it acts naturally
on the L” spaces, for p in a particular range. Indeed we may anticipate
exactly what the correct theorem is by using a little dimensional analysis.

Fix 0 < # < N and suppose that an inequality of the form

1Z7¢llze < C- @l 2v

were true for all testing functions ¢. It could happen that ¢ =p or ¢ > p (a
theorem of Hérmander [HOR3] tells us that it cannot be that ¢ < p). Let us
replace ¢ in both sides of this inequality by the expression as¢(x) = ¢(0x)
for 6 > 0. Writing out the integrals, we have

(/RN ng;)l/q <C. (/RN |a5¢(:c)|pd:v)l/p.

On the left side we replace t by ¢t/d and x by x/J; on the right we replace
x by x/0. The result, after a little calculation (i.e., elementary changes of

variable), is
g q 1/q
(677N (/ / 1t)PNp(x —t)dt da?)
RN |JRN

1/p
< g e (/RN |¢(I)|pdl’) .

gN/p . 5—B—N/q <.

/ 1PN asd(a — 1) dt
RN

In other words,
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Notice that the value of C’ comes from the values of the two integrals—
neither of which involves ¢. In particular, C’ depends on ¢. But ¢ is fixed
once and for all.

Since this last inequality must hold for any fixed ¢ and for all 6 > 0,
there would be a contradiction either as 6 — 0 or as § — +oo if the two
expressions in ¢ do not cancel out.

We conclude that the two exponents must cancel each other, or

N N
qg p

B+

This may be rewritten in the more classical form

g p N

Thus our dimensional-analysis calculation points to the correct theorem:

Prelude: Certainly one of the marvels of the Fourier transform is that it
gives us a natural and intuitively appealing way to think about fractional
differentiation and fractional integration. The fractional integration theorem
of Riesz is the tactile device for understanding fractional integration.

Theorem 5.2.3 Let 0 < 3 < N. The integral operator
Poa) = [ o - oyt
RN

initially defined for ¢ € C}(RY), satisfies

127l Loy < C - [[0]l o),

whenever 1 < p < N/ and q satisfies

=2 (5.2.3.1)
¢ p N
Of course this result requires a bona fide proof. We shall provide a proof
of (a very general version of) this result in Theorem 9.y.z. It may be noted
that there are versions of Theorem 5.2.3 for p < 1 (see [KRA1]) and also for
p > N/ (see [STE2], [HOR2)).
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EXAMPLE 5.2.4 Let N > 1 and consider on RY the kernel

Ko = 25

for 0 < B < N as usual. The integral operator
fo fr K
may be studied by instead considering
[ fxlK],

and there is no loss of generality to do so. Of course

1
K| <———
| |_|$|N—5’

and the latter is a classical fractional integration kernel.

The point here is that cancellation has no role when the homogeneity
of the kernel is less than the critical index N. One may as well replace the
kernel by its absolute value, and majorize the resulting positive kernel by the
obvious fractional integral kernel.

It is also enlightening to consider the point of view of the classical work
[HLP]. They advocated proving inequalities by replacing each function by its
non-increasing rearrangement. For simplicity let us work on the real line. If f
is a nonnegative function in L” then its non-increasing rearrangement will be
a function (roughly) of the form f(x) = 2~/?. The fractional integral kernel
will have the form k(z) = |z|~'™. Thus the convolution of the two will have
size about f x k = x~V/pH(-148)+ — 4=1/p+8_ Byt this latter function is just

about in L7, where
1 1 1
S=-_pB==
q p p
This result is consistent with (5.2.3.1).
Fractional integrals are one of the two building blocks of the theory of
integral operators that has developed in the last half century. In the next
section we introduce the other building block.

B
.
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5.3 Background to Singular Integral

Theory

Capsule: We know that singular integrals, as they are under-
stood today, are a natural outgrowth of the Hilbert transform.
The Hilbert transform has a long and venerable tradition in com-
plex and harmonic analysis. The generalization to N dimensions,
due to Caldéron and Zygmund in 1952, revolutionized the sub-
ject. This made a whole new body of techniques available for
higher-dimensional analysis. Cauchy problems, commutators of
operators, subtle boundary value problems, and many other natu-
ral contexts for analysis were now amenable to a powerful method
of attack. This section provides some background on singular in-

tegrals.

We begin with a table that illustrates some of the differences between
fractional integrals and singular integrals.

| TYPE OF INTEGRAL | Fractional Singular
Linear yes yes
Translation-Invariant yes yes
Rotationally Invariant Kernel yes never
Is a Pseudodifferential Operator | yes yes
Compact yes on Sobolev spaces | never
LP Bounded increases index p bounded on LP, 1 < p < o0
Smoothing always smoothing never smoothing

The Hilbert transform (Section 1.7) is the quintessential example of a
singular integral. [We shall treat singular integrals in detail in Section 9.y
ff.] In fact in dimension 1 it is, up to multiplication by a constant, the only
classical singular integral. This statement means that the function 1/t is
the only integral kernel that is (i) smooth away from 0, (ii) homogeneous of
degree —1, and (iii) has “mean value 0” on the unit sphere! in R*.

In RV, N > 1, there are a great many singular integral operators. Let
us give a formal definition (refer to [CALZ]):

"We have yet to explain what the critical “mean value 0” property is. This will come

in the present and ensuing sections.
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Definition 5.3.1 A function K : RV \ {0} — C is called a Caldéron-
Zygmund singular integral kernel if it possesses the following three properties:

(5.2.1.1) The function K is smooth on RY \ {0};
(5.2.1.2) The function K is homogeneous of degree —N;

(5.2.1.3) fENfl K(x)do(z) = 0, where ¥ y_1 is the (N —1)-dimensional unit
sphere in R, and do is rotationally-invariant surface measure on that
sphere.?

It is worthwhile to put this definition in context. Let 3 be a fixed complex
number and consider the functional

61— [ ola)lalds

which is defined on functions ¢ that are C'™° with compact support. When
Ref > —N, this definition makes good sense, because we may estimate
the integral near the origin (taking supp(¢) € B(0,R), C' = sup|¢|, and
C'=C-0(Xn_1)) by

C- '/ |z|? dx
{lzI<R}

Now we change our point of view; we think of the test function ¢ as
being fixed and we think of § € C as the variable. In fact Morera’s theorem
shows that

R
SC'/ |$|Roﬁdif=0'-/ PPNl g < 0.
{lz|<R} 0

G(5) = / o) |]° da

is well-defined and is a holomorphic function of § on {f € C: Re > —N}.
We may ask whether this holomorphic function can be analytically continued
to the rest of the complex plane.

In order to carry out the needed calculation, it is convenient to assume
that the test function ¢ is a radial function: ¢(x) = ¢(x’) whenever |z| = |2/|.

2In some contexts this surface measure is called Hausdorff measure. See [FOL3] or
[FED] or our Chapter 9. Caldéron and Zygmund themselves were rather uncomfort-
able with the concept of surface measure. So they formulated condition (5.3.1.3) as
fa<|z|<b K(z)dx =0 for any 0 < a < b < co. We leave it as an exercise for you to verify
that the two different formulations are equivalent. It is property (5.3.1.3) that is called
the mean value zero property.
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In this case we may write ¢(z) = f(r), where r = |z|. Then we may write,
using polar coordinates,

6(6)= [ otalalds=c- [ ¥t

Integrating by parts in r gives

Cc

0(9) =~ [ Fo0*an

Notice that the boundary term at infinity vanishes since ¢ (and hence f) is
compactly supported; the boundary term at the origin vanishes because of
the presence of 8+,

We may continue, in this fashion, integrating by parts to obtain the
formulas

G(9)
(-1

- (ﬁ+N)(ﬁ+N+1)---(ﬁ+N+j)/0 FORD ()P dr - (5.3.2;)

The key fact is that any two of these formulas for G((3) are equal for Re § >
—N. Yet the integral in formula (5.3.2;) makes sense for Re§ > —N —j — 1.
Hence formula (5.3.2;) can be used to define an analytic continuation of
G to the domain Re > —N — 7 — 1. As a result, we have a method
of analytically continuing G to the entire complex plane, less the poles at
{=N,—N—-1,—N—2,...,—N — j}. Observe that these poles are exhibited
explicitly in the denominator of the fraction preceding the integral in the
formulas (5.3.2;) that define G.

The upshot of our calculations is that it is possible to make sense of the
operator consisting of integration against |x|° as a classical fractional integral
operator provided that § # —N,—N — 1,.... More generally, an operator
with integral kernel homogeneous of degree 3, where 3 # —N,—N —1,...,
is amenable to a relatively simple analysis (as we shall learn below).

If instead we consider an operator with kernel homogeneous of degree
(8 where 3 takes on one of these critical values — N, —N — 1,..., then some
additional condition must be imposed on the kernel. These observations
give rise to the mean-value-zero condition (5.3.1.3) in the definition of the
Caldéron-Zygmund singular integrals that are homogeneous of degree —N.
[The study of singular integrals of degree —N —k, k > 0, is an advanced topic
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(known as the theory of strongly singular integrals), treated for instance in
[FEF1]. We shall not discuss it here.]

Now let K be a Caldéron-Zygmund kernel. The associated integral op-
erator

Ty (6)(z) = / K(t)é(x — t)dt

makes no formal sense, even when ¢ is a testing function. This is so because
K is not absolutely integrable at the origin. Instead we use the notion of the
Cauchy principal value to evaluate this integral. To wit, let ¢ € CH(RY). Set

Tk(p)(z) = P.V./K(t)gb(a: —t)dt = lim K(t)p(x —t)dt.

We have already shown in Subsection 2.1.3 that this last limit exists. We
take this now for granted.

EXAMPLE 5.3.2 Let N > 1 and consider on RY the kernel

/||
K(zx) = .
We may rewrite this kernel as
K(z) = —,
|z

with Q(z) = x1/|x|. Of course this €2 is homogeneous of degree 0 and (by
parity) has mean value zero on the unit sphere.
Thus K is a classical Caldéron-Zygmund kernel, and the operator

f—fxK
is bounded on LP(RY) for 1 < p < cc.

Remark 5.3.3 There is an alternative to the standard mean value zero con-
dition for a kernel k(z) = Q(z)/|z|" that we have been discussing. Known
as Hormander’s condition, it is that

/||>2| | k(r —y) — k(x)dz| < C. (%)
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This new condition is rather flexible, and rather well suited to the study of the
mapping properties of the integral operator defined by integration against k.
Also the condition (x) is implied by the classical mean-value-zero condition.
So it is a formally weaker condition. Let us now prove this last implication.
Thus let k(z) = Q(z)/]z|Y, with Q a C! function on RY \ {0} and
satisfying the usual mean-value-zero property on the sphere. Then

Q)
k(x —y) — k(z)de| = ‘/ — dzv‘
‘/|m|>2|y| ( )~ k() |z >2]y| |93—?J|N ||

‘/|m|>2|y| Ll‘ —y 2 - Q(E’:;Vy)]
)

+{ s m] dz‘

< /|m|>2|y| Qz—y) Q- y)}

A
Qz—y)  Qx)
|| ||

+ dx

= I+11.

We now perform an analysis of /. The estimation of I is similar, and we
leave the details to the reader.
o —y|V - |2V

Now
I < C. /
|z[>2[y]
< C./ et
N w2y 17—yl - Y
<o IR
|lz|>2]y] |z 2N

1
Clyl / dx
eyl 12V
< C.

i el L

dx

IN

In the last step of course we have used polar coordinates as usual.

When you provide the details of the estimation of /1, you should keep in
mind that the derivative of a function homogeneous of degree A will in fact
be homogeneous of degree A — 1. O
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Building on ideas that we developed in the context of the Hilbert trans-
form, the most fundamental question that we might now ask is whether

1 Tx (@)]|2r < Cll| o

for all ¢ € CL(RYN). If, for some fixed p, this inequality holds then a simple
density argument would extend the operator Tk and the inequality to all
¢ € LP(RY). In fact this inequality holds for 1 < p < oo and fails for
p = 1,00. The first of these two statements is called the Caldéron-Zygmund
theorem, and we prove it in Chapter 9. The second follows just as it did in
Chapter 2 for the Hilbert transform; we leave the details as an exercise for
the interested reader.
Here is a summary of what our discussion has revealed thus far:

Prelude: This next is one of the great theorems in analysis of the twentieth
century. For it captures the essence of why the Hilbert transform works,
and generalizes it to the N-variable setting. Both the statement and its
proof are profound, and the technique of the Caldéron-Zygmund theorem
has had a tremendous influence. Today there are many generalizations of
the Caldéron-Zygmund theory. We might mention particularly the 7'(1) the-
orem of David-Journé [DAVJ], which gives a “variable-coefficient” version of
the theory.

Theorem 5.3.4 (Caldéron-Zygmund) Let K be a Caldéron-Zygmund ker-
nel. Then the operator

Tk(p)(xz) =P.V. / K(t)o(xz —t)dt,

for ¢ € CL(RY), is well defined. It is bounded in the LP norm for 1 < p < oo.
Thus it extends as a bounded operator from LP to LP. It is not bounded on
L' nor is it bounded on L.

It is natural to wonder whether there are spaces that are related to
L' and L, and which might serve as their substitutes for the purposes of
singular integral theory. As we shall see, the correct approach is to consider
that subspace of L! which behaves naturally under certain canonical singular
integral operators. This approach yields a subspace of L! that is known
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as H' (or, more precisely, Hy,)—this is the real variable Hardy space of
Fefferman, Stein, and Weiss. The dual of this new space is a superspace of
L. Tt is called BMO (the functions of bounded mean oscillation). We shall
explore these two new spaces, and their connections with the questions under
discussion, as the book develops.

Notice that the discussion at the end of Section 5.2 on how to construct
functions of a given homogeneity also tells us how to construct Caldéron-
Zygmund kernels. Namely, let ¢ be any smooth function on the unit sphere
of RY that integrates to zero with respect to area measure. Extend it to a
function €2 on all of space (except the origin) so that 2 is homogeneous of
degree zero, i.e., let Q(z) = ¢(z/|z|). Then

Q(x)
K(z) = P
is a Caldéron-Zygmund kernel.

We shall provide a proof of Theorem 5.3.4 in Chapter 9.

We close this section with an application of the Riesz transforms and
singular integrals to an imbedding theorem for function spaces. This is a
version of the so-called Sobolev imbedding theorem.

Prelude: This version of the Sobolev imbedding theorem is far from sharp,
but it illustrates the naturalness and the utility of fractional integrals and
singular integrals. They are seen here as the obvious tools in a calculation
of fundamental importance.

Theorem 5.3.5 Fixadimension N > 1 andlet1 <p < N. Let f € LP(R")
with the property that (0/0x;)f exists and is in LP, j = 1,...,N. Then
f € LYRY), where 1/q =1/p — 1/N.

Proof: As usual, we content ourselves with a proof of an a priori inequality
for f € C*(RY). We write

~

Observe that &;f(§) is (essentially, up to a trivial constant multiple) the
Fourier transform of (9/9x;)f. Also &;/|¢| is the multiplier for the j™ Riesz
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transform R;. And 1/[¢| is the Fourier multiplier for a fractional integral
T'. [All of these statements are true up to constant multiples, which we
omit.] Using operator notation, we may therefore rewrite the last displayed

equation as
N 1 P
=37 (rt)).

We know by hypothesis that (0/0z;)f € LP. Now R; maps L” to LP and
I, maps LP to L7, where 1/¢g = 1/p — 1/N (see Chapter 5). That completes
the proof. 0O

Remark: In an ideal world, we would study C* spaces because they are in-
tuitive and natural. But the integral operators that come up in practice—the
fractional integral and singular integrals, as well as the more general pseu-
dodifferential operators—do not behave well on the C* spaces. The Sobolev
spaces, especially those modeled on L2, are considerably more useful. And of
course the reason for this is that the Fourier transform acts so nicely on L2. O



Chapter 6

A Crash Course in Several
Complex Variables

Prologue: The function theory of several complex variables (SCV)
is—obviously—a generalization of the subject of one complex
variable. Certainly some of the results in the former subject are
inspired by ideas from the latter subject. But SCV really has an
entirely new character.

One difference (to be explained below) is that in one com-
plex variable every domain is a domain of holomorphy; but in
several complex variables some domains are and some are not
(this is a famous theorem of F. Hartogs). Another difference is
that the Cauchy-Riemann equations in several variables form an
over-determined system; in one variable they do not. There are
also subtleties involving the -Neumann boundary value problem,
such as subellipticity; we cannot treat the details here, but see
[KRA3].

Most of the familiar techniques of one complex variables—
integral formulas, Blaschke products, Weierstrass products, the
argument principle, conformality—either do not exist or at least
take a quite different form in the several variable setting. New
tools, such as sheaf theory and the d-Neumann problem, have
been developed to handle problems in this new setting.

Several complex variables is exciting for its interaction with
differential geometry, with partial differential equations, with Lie

95
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theory, with harmonic analysis, and with many other parts of
mathematics. In this text we shall see several complex variables
lay the groundwork for a new type of harmonic analysis.

Next we turn our attention to the function theory of several complex
variables. One of the main purposes of this book is to provide a foundational
introduction to the harmonic analysis of several complex variables. So this
chapter comprises a transition. It will provide the reader with the basic
language and key ideas of several complex variables so that the later material
makes good sense.

As a working definition let us say that a function f(z1,z22,...,2,) of
several complex variables is holomorphic if it is holomorphic in each variable
separately. We shall say more about different definitions of holomorphicity,
and their equivalence, as the exposition progresses.

6.1 Fundamentals of Holomorphic Functions

Capsule: There are many ways to define the notion of holomor-
phic function. A functions is holomorphic if it is holomorphic (in
the classical sense) in each variable separately. It is holomorphic
if it satisfies the Cauchy-Riemann equations. It is holomorphic
if it has a local power series expansion about each point. There
are a number of other possible formulations. We explore these,
and some of the elementary properties of holomorphic functions,
in this section.

In the discussion that follows, a domain is a connected, open set. Let us
restrict attention to functions f : 2 — C, 2 a domain in C", that are locally
integrable (denoted f € Ly, ). That is, we assume that [ [f(2)]dV(z) < oo
for each compact subset K of 2. In particular, in order to avoid aberrations,
we shall only discuss functions that are distributions (to see what happens
to function theory when such a standing hypothesis is not enforced, see the
work of E. R. Hedrick [HED]). Distribution theory will not, however, play an
explicit role in this what follows.

For p € C" and r > 0, we let

D"(p,r) ={2=(21,...,2,) € C" : |p; — 2;| <r for all j}
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and B
D" (p,r)={z=(21,...,2,) € C": |p; — 2| < r for all j}.

We also define balls in complex space by

B(z,r)={z=(z1,...,2) €C": Y _|pj — > < 1°}

J

and B
B(z,r)={z2=(21,...,2,) € C": Z|pj — z)* <}

J

We now offer four plausible definitions of holomorphic function on a do-
main 2 C C™:

DEFINITION A: A function f : QQ — C is holomorphic if for each j =1,...,n
and each fixed 21, ..., 2;-1, 2j41, - . ., 2n the function
C’_) f(Zl,...,Zj_l,C,Zj+1,...,Zn)

is holomorphic, in the classical one-variable sense, on the set

Q(Zl, R P 7 B A >Zn) = {C eC: (Zl, ce >Zj—1>C>Zj+1> .. .,Zn) S Q}
In other words, we require that f be holomorphic in each variable separately.
DEFINITION B: A function f :  — C that is continuously differentiable in
each complex variable separately on € is said to be holomorphic if f satisfies
the Cauchy-Riemann equations in each variable separately.

This is just another way of requiring that f be holomorphic in each vari-
able separately.

DEFINITION C: A function f : 2 — C is holomorphic (VE complex analytic)
if for each 20 € Q there is an r = r(2°) > 0 such that D" (z°,7) C Q and f
can be written as an absolutely and uniformly convergent power series

£2) = aalz = 20)°

for all z € D"(2% r).
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Fortunately Definitions A-D, as well as several other plausible definitions,
are equivalent. Some of these equivalences, such as A < C', are not entirely
trivial to prove. We shall explain the equivalences in the discussion that
follows. All details may be found in [KRA4]. Later on we shall fix one
formal definition of holomorphic function of several variables and proceed
logically from that definition.

We conclude this section by reminding the reader of some of the complex
calculus notation in this subject. If f is a C'* function on a domain in C then

we define
of _1(of .of
0z 2\ 0x Z@y
and
of 1 (05 0f
9z 2\ozr oy
Note that 9 9
z z
-0 0 &m0
0z 0z
9. 0 , i 1.

Observe that, for a C! function f on a domain Q C C, 9f/0z = 0 if and
only if f satisfies the Cauchy-Riemann equations; this is true in turn if and
only if f is holomorphic on §2.

Now let f be a C! function on a domain 2 C C". We write

N 9f
af = Z 5 dz;
J=1
and .
g.f = 8de_j
=1 8Zj

Notice that df = 0 on  if and only if 0f/0z; = 0 for each j, and that
in turn is true if and only if f is holomorphic in each variable separately.
According to the discussion above, this is the same as f being holomorphic
in the several variable sense.

It is a straightforward exercise to see that 00f =0 and 00f = 0.
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6.2 Plurisubharmonic Functions

Capsule: In some sense, just as subharmonic functions are re-
ally the guts of one-variable complex analysis, so plurisubhar-
monic functions are the guts of several-variable complex analysis.
Plurisubharmonic functions capture a good deal of analytic infor-
mation, but they are much more flexible than holomorphic func-
tions. For example, they are closed under the operation of taking
the maximum. Plurisubharmonic functions may be studied us-
ing function-theoretic techniques. Thanks to the school of Lelong,
they may also be studied using partial differential equations. The
singular set of a plurisubharmonic function—also called a pluripo-
lar set—is also very important in pluripotential theory.

The function theory of several complex variables is remarkable in the
range of techniques that may be profitably used to explore it: algebraic ge-
ometry, one complex variable, differential geometry, partial differential equa-
tions, harmonic analysis, and function algebras are only some of the areas
that interact with the subject. Most of the important results in several com-
plex variables bear clearly the imprint of one or more of these disciplines.
But if there is one set of ideas that belongs exclusively to several complex
variables, it is those centering around pluriharmonic and plurisubharmonic
functions. These play a recurring role in any treatment of the subject; we
record here a number of their basic properties.

The setting for the present section is C". Let a,b € C". The set

{a+bC:CeC)

is called a complex line in C".

Remark: Note that not every real two-dimensional affine space in C™ is
a complex line. For instance, the set ¢ = {(x + 0,0 + iy) : =,y € R}
is not a complex line in C? according to our definition. This is rightly
so, for the complex structures on ¢ and C? are incompatible. This means
the following: if f : C* — C is holomorphic then it does not follow that
z =z +1iy — f(xr 440,04+ iy) is holomorphic. The point is that a complex
line is supposed to be a (holomorphic) complex affine imbedding of C into
C. O
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Definition 6.2.1 A C? function f : Q — C is said to be pluriharmonic if
for every complex line ¢ = {a 4 b} the function ¢ — f(a + b() is harmonic
on the set Qy ={( € C:a+b( € Q}.

Remark 6.2.2 Certainly a function f is holomorphic on € if and only if
¢ — f(a+0b() is holomorphic on €2, for every complex line £ = {a+b(}. This
assertion follows immediately from our definition of holomorphic function
and the chain rule.

A C? function f on Q is pluriharmonic iff (0?/0z;0z)f = 0 for all
j.k=1,...,n. This in turn is true iff 90f = 0 on Q. O

In the theory of one complex variable, harmonic functions play an impor-
tant role because they are (locally) the real parts of holomorphic functions.
The analogous role in several complex variables is played by pluriharmonic
functions. To make this statement more precise, we first need a “Poincaré
lemma’:

Lemma 6.2.3 Let a = Zj ajdz; be a differential form with C* coefficients
and satisfying doo = 0 on a neighborhood of a closed box S C RN with sides
parallel to the axes. Then there is a function a on S satisfying da = a.

Proof: See [LOS]. O

The proof of the Poincaré lemma shows that if daw = 0 then a can be
taken to be real. Or one can derive the fact from linear algebraic formalism.
We leave the details for the interested reader.

Prelude: In several complex variables, pluriharmonic functions are for many
purposes the FErsatz for harmonic functions. They are much more rigid ob-
jects, and satisfy a much more complicated partial differential equation than
the Laplacian. Certainly a pluriharmonic function is harmonic, but the con-
verse is false.

Proposition 6.2.4 Let D"(P,r) C C" be a polydisc and assume that
f:D"(P,r) — R is C% Then f is pluriharmonic on D"(P,r) if and only if
f is the real part of a holomorphic function on D"(P,r).
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Proof: The “if” part is trivial.

For “only if,” notice that o = i(0f — Of) is real and satisfies da = 0.
But then there exists a real function ¢ such that dg = «. In other words,
d(ig) = (0f — 0f). Counting degrees, we see that d(ig) = —0f. It follows
that 9(f +ig) = Of —df = 0, hence g is the real function we seek—it is the
function that completes f to a holomorphic function. O

Observe that it is automatic that the g we constructed in the proposition is
pluriharmonic, just because it is the imaginary part of a holomorphic func-
tion.

Remark: If f is a function defined on a polydisc and harmonic in each
variable separately, it is natural to wonder whether f is pluriharmonic. In
fact the answer is “no,” as the function f(z1, 22) = 21Z2 demonstrates. This
is a bit surprising, since the answer is affirmative when “harmonic” and
“pluriharmonic” are replaced by “holomorphic” and “holomorphic.”
Questions of “separate (P),” where (P) is some property, implying joint
(P) are considered in detail in Hervé [HER]. See also the recent work of
Wiegerinck [WIE]. O

A substitute result, which we present without proof, is the following (see
F. Forelli [FOR] as well as [KRAG] for details):

Prelude: It is known that Forelli’s theorem fails if the smoothness hypoth-
esis at the origin is weakened. Of course the analogous result for “holomor-
phic” instead of “harmonic” is immediate.

Theorem 6.2.5 (Forelli) Let B C C" be the unit ball and f € C(B).
Suppose that for each b € 0B the function ¢ — f({ - b) is harmonic on D,
the unit disc. Suppose also that f is C*° in a neighborhood of the origin.
Then f is pluriharmonic on B.

The proof of this theorem is clever but elementary; it uses only basic
Fourier expansions of one variable. Such techniques are available only on
domains—such as the ball and polydisc and, to a more limited extent, the
bounded symmetric domains (see S. Helgason [HEL])—with a great deal of
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symimetry.

Exercises for the Reader

1. Pluriharmonic functions are harmonic, but the converse is false.

2. If Q C C" is a domain, P its Poisson-Szegd kernel (see Section 8.2), and
f € C(Q) is pluriharmonic on €2, then P( f|,,) = f. (What happens if we
use the Szegd kernel instead of the Poisson-Szeg6 kernel?)

3. If f and f2 are pluriharmonic then f is either holomorphic or conjugate
holomorphic.

Remark: It is well known how to solve the Dirichlet problem for harmonic
functions on smoothly bounded domains in RY, in particular on the ball
(see [KRA4] and [GRK12]). Pluriharmonic functions are much more rigid
objects; in fact the Dirichlet problem for these functions cannot always be
solved. Let ¢ be a smooth function on the boundary of the ball B in C?
with the property that ¢ = 1 in a relative neighborhood of (1,0) € 9B and
¢ = —1 in a relative neighborhood of (—1,0) € dB. Then any pluriharmonic
functions assuming ¢ as its boundary function would have to be identically
equal to 1 in a neighborhood of (1,0) and would have to be identically equal
to —1 in a neighborhood of (—1,0). Since a pluriharmonic function is real
analytic, these conditions are incompatible.

The situation for the Dirichlet problem for pluriharmonic functions is
rather subtle. In fact there is a partial differential operator £ on 0B so that
a smooth f on JB is the boundary function of a pluriharmonic function if
and only if Lf = 0 (see [BED], [BEF]). The operator £ may be computed
using just the theory of differential forms. It is remarkable that £ is of third
order. O

Recall that a function f taking values in R U {—oc} is said to be upper
semicontinuous (u.s.c.) if, for any o € R, the set

U*={x: f(z) > a}

is open. Likewise, the function is lower semicontinuous (l.s.c.) if, for any
b € R, the set
Us={xz: f(z) < B}

is open.



6.2. PLURISUBHARMONIC FUNCTIONS 103

Definition 6.2.6 Let 2 C C" and let f: Q2 — RU{—00} be u.s.c. We say
that f is plurisubharmonic if, for each complex line ¢ = {a + b(} C C", the
function

¢ — fla+b)
is subharmonic on Q, = {( € C: a + b € Q}.

Remark: Because it is cumbersome to write out the word “plurisubhar-
monic,” a number of abbreviations for the word have come into use. Among
the most common are psh, plsh, and plush. We shall sometimes use the first
of these.
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Exercise for the Reader:

If @ C C"and f: Q — C is holomorphic then log|f| is psh; so is
|f|P,p > 0. The property of plurisubharmonicity is local (exercise—what
does this mean?). A real-valued function f € C*(Q) is psh iff

0z;0Z
=1 Y%k

(2)w;wg > 0

J

for every z € (2 and every w € C". In other words, f is psh on 2 iff the com-
plex Hessian of f is positive semi-definite at each point of 2. See [KRA4] for
more on these matters.

Proposition 6.2.7 If f : Q@ — RU{—o0} is psh and ¢ : RU{oo} — RU{oc0}
is convex and monotonically increasing then ¢ o f is psh.

Proof: Exercise. Use the chain rule. O

Definition 6.2.8 A real-valued function f € C?%(Q),Q C Cm, is strictly
plurisubharmonic if

= 02;0%

(2)w;wg > 0

for every z € Q and every 0 # w € C" (see the preceding Exercise for the
Reader: for motivation).

Exercise for the Reader:

With notation as in Definition 6.1.8, use the notion of homogeneity to
see that, if K CC Q, then there is a C' = C(K) > 0 such that

—(2)w;wy, > Clw|?
= 02,07 J

J

for all z € K,w € C".
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Proposition 6.2.9 Let 2 C C" and f : Q@ — R U {oo} a psh function.
For e > 0 we set Q. = {z € Q : dist (z,09) > €}. Then there is a family
fe: Q¢ — R for € > 0 such that f. € C°(), f. \, f as e — 07, and each f.
is psh on 2.

Proof: Let ¢ € C°(C") satisty [¢ =1 and ¢(21,...,2,) = ¢(|z1],-- -, |2n])
for all z. Assume that ¢ is supported in B(0,1).
Define

/fz—e( av(¢), ze€ Q..

Now a standard argument (see [KRA4] shows that each f. is smooth and
plurisubharmonic. O

Continuous plurisubharmonic functions are often called pseudoconvex
functions.

Exercise for the Reader:

If Q1,0 C C*, Qy is bounded, and f : Qs — R U {oo} is C?, then f is
psh if and only if f o ¢ is psh for every holomorphic map ¢ : {2; — Qs. Now
prove the result assuming only that f is u.s.c. Why must 2; be bounded?

The deeper properties of psh functions are beyond the scope of this book.
The potential theory of psh functions is a rather well developed subject,
and is intimately connected with the theory of the complex Monge-Ampere
equation. Good reference for these matters are [CEG]|, [KLI]. See also the
papers [BET1-BET3] and references therein. In earlier work ([BET1]), the
theory of the Dirichlet problem for psh functions is developed.

We have laid the groundwork earlier for one aspect of the potential the-
ory of psh functions, and we should like to say a bit about it now. Call a
subset P C C™ pluripolar if it is the —oo set of a plurisubharmonic function.
Then zero sets of holomorphic functions are obviously pluripolar (because if
f is holomorphic then log | f| is plurisubharmonic). It is a result of B. Josef-
son [JOS] that locally pluripolar sets are pluripolar. In [BET3], a capacity
theory for pluripolar sets is developed that is a powerful tool for answering
many natural questions about pluripolar sets. In particular, it gives another
method for proving Josefson’s theorem. Plurisubharmonic functions, which
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were first defined by Lelong, are treated in depth in the treatise L. Gruman
and P. Lelong [GRL].

Define the Hartogs functions on a domain in C” to be the smallest class
of functions on (2 that contains all log | f| for f holomorphic on €2 and that is
closed under the operations (1)—(6) listed here:

(1) If ¢1,¢2 € Fq then ¢1 + ¢2 € Fa.
(2) If ¢ € Fq and a > 0 then a¢p € Fq.
(3) If {¢;} C Fa,¢1 > ¢2 > ... then lim;_o ¢; € Fo,

(4) If{¢;} € Faq, ¢; uniformly bounded above on compacta, then sup; ¢; €
Fa.

(5) If ¢ € Fq then limsup,,_,, ¢(2') = ¢(z) € Fa.
(6) If ¢ € Foy for all Q' CC Q then ¢ € Fq.

H. Bremerman [2] has shown that all psh functions are Hartogs (note that
the converse is trivial) provided that € is a domain of holomorphy (to be
defined later). He also showed that it is necessary for €2 to be a domain of
holomorphy in order for this assertion to hold. This answered an old question
of S. Bochner and W. Martin [BOM].

6.3 Notions of Convexity

Capsule: Convexity is one of the most elegant and important
ideas in modern mathematics. Up to two thousand years old, the
idea was first formalized in a book in 1934 [BOF]. It is now a
prominent feature of geometry, functional analysis, tomography,
and several complex variables (to name just a few subject areas).
It turns out (thanks to the Riemann mapping theorem) that con-
vexity is not preserved under holomorphic mappings. Thus one
desires a version of convexity that will be invariant. This is pseu-
doconvexity. We exposit this point of view here.

The concept of convexity goes back to the work of Archimedes, who used
the idea in his axiomatic treatment of arc length. The notion was treated
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sporadically, and in an ancillary fashion, by Fermat, Cauchy, Minkowski,
and others. It was not until the 1930s, however, that the first treatise on
convexity ([BOF]) appeared. An authoritative discussion of the history of
convexity can be found in [FEN].

One of the most prevalent and classical definitions of convexity is as
follows: a subset S C R¥ is said to be convex if whenever P, € S and
0 <A <1then (1 -=A)P+ AQ € S. In the remainder of this book we shall
refer to a set, or domain, satisfying this condition as geometrically convexz.
From the point of view of analysis, this definition is of little use. We say this
because the definition is nonquantitative, nonlocal, and not formulated in the
language of functions. Put slightly differently, we have known since the time
of Riemann that the most useful conditions in geometry are differential con-
ditions. Thus we wish to find a differential characterization of convexity. We
begin this chapter by relating classical notions of convexity to more analytic
notions. All of these ideas are properly a part of real analysis, so we restrict
attention to RY.

Let Q C RY be a domain with C! boundary. Let p : RY — R be a C*!
defining function for €. Such a function has these properties:

1. Q={z cRY:p(x) <0}
2. Q= {zeRY:p(z) >0}
3. gradp(z) #0 Vz € 0%.

If & > 2 and the boundary of Q is a regularly embedded C* manifold in
the usual sense then it is straightforward to manufacture a C! (indeed a
C*) defining function for by using the signed distance-to-the-boundary
function. See [KRA4] for the details.

Definition 6.3.1 Let Q C RY have C'! boundary and let p be a C'! defining
function. Let P € 9. An N—tuple w = (wy,...,wy) of real numbers is
called a tangent vector to 02 at P if

N
Z (0p/0z;)(P) - w; = 0.
7=1

We write w € Tp(092).
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We will formulate our analytic definition of convexity, and later our an-
alytic (Levi) definition of pseudoconvexity, in terms of the defining function
and tangent vectors. A more detailed discussion of these basic tools of geo-
metric analysis may be found in [KRA4].

6.3.1 The Analytic Definition of Convexity

For convenience, we restrict attention for this subsection to bounded domains.
Many of our definitions would need to be modified, and extra arguments given
in proofs, were we to consider unbounded domains as well. We continue, for
the moment, to work in RY.

Definition 6.3.2 Let Q cC RY be a domain with C? boundary and p a C?
defining function for €. Fix a point P € 0Q2. We say that 0Q is (weakly)
conver at P if

N2,

M(P)ijk >0, Ywe Tp(aQ)
k=17

J

We say that 0€) is strongly conver at P if the inequality is strict whenever
w # 0.

If 0L is convex (resp. strongly convex) at each boundary point then we
say that 2 is convex (resp. strongly convex).

o2 N
(5297)
Oz jO0xy, k=1

is frequently called the “real Hessian” of the function p. This form carries
considerable geometric information about the boundary of €2. It is of course
closely related to the second fundamental form of Riemannian geometry (see
[ONE]).

Now we explore our analytic notions of convexity. The first lemma is a
technical one:

The quadratic form

Prelude: The point to see in the statement of this next lemma is that we
get a strict inequality not just for tangent vectors but for all vectors. This
is why strong convexity is so important—because it is stable under C? per-
turbations. Without this lemma the stability would not be at all clear.
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Lemma 6.3.3 Let Q C RY be strongly convex. Then there is a constant
C > 0 and a defining function p for  such that

N

(P)wjwy, > Clw|?, VP € 0Q,w € RY. (6.3.3.1)
k

Proof: Let p be some fixed C? defining function for Q. For A > 0 define

_ exp(Mp()) — 1
paz) = )\ :

We shall select A large in a moment. Let P € 0f2 and set

0?%p
X=Xp=LweRY:|w =1and Plw;w, <0 5.

Then no element of X could be a tangent vector at P, hence X C {w: |w| =
Land >;0p/0z;(P)w; # 0}. Since X is defined by a non-strict inequality,
it is closed; it is of course also bounded. Hence X is compact and

,uEmin{ :wEX}

is attained and is non-zero. Define
. 9%p
— MINyex ka —amjamk (P)'LUj’LUk

12
Set p = px. Then, for any w € RY with |w| = 1, we have (since exp(p(P)) =
1) that

> p/0x,(P)u;

J

A= + 1.

Op (P)wjwy, = Z{ Op (P)—I—AQ(P)@(P)}ijk

m Oz ;j0xy, Oxj " " Oxy

2

9p dp

If w ¢ X then this expression is positive by definition (because the first
sum is). If w € X then the expression is positive by the choice of A. Since
{w e RY : |w| = 1} is compact, there is thus a C' > 0 such that

g~
Z {aaap } (P)wjwy, > C, Yw € RY such that |w| = 1.
ik TjOT}
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This establishes our inequality (6.3.3.1) for P € 02 fixed and w in the
unit sphere of RY. For arbitrary w, we set w = |w|®@, with @ in the unit
sphere. Then (6.3.3.1) holds for w. Multiplying both sides of the inequality
for w by |w|? and performing some algebraic manipulations gives the result
for fixed P and all w € RY. [In the future we shall refer to this type of
argument as a “homogeneity argument.”|

Finally, notice that our estimates—in particular the existence of C, hold
uniformly over points in 02 near P. Since 0f) is compact, we see that the
constant C' may be chosen uniformly over all boundary points of €. O

Notice that the statement of the lemma has two important features: (i)
that the constant C' may be selected uniformly over the boundary and (ii)
that the inequality (6.3.3.1) holds for all w € RY (not just tangent vectors).
In fact it is impossible to arrange for anything like (6.3.3.1) to be true at a
weakly convex point.

Our proof shows in fact that (6.3.3.1) is true not just for P € 0S) but for
P in a neighborhood of 0. It is this sort of stability of the notion of strong
convexity that makes it a more useful device than ordinary (weak) convexity.

Prelude: We certainly believe, and the results here bear out this belief, that
the analytic approach to convexity is the most useful and most meaningful.
However it is comforting and heuristically appealing to relate that less famil-
iar idea to the more well known notion of convexity that one learns in grade
school. This we now do.

Proposition 6.3.4 If () is strongly convex then €2 is geometrically convex.

Proof: We use a connectedness argument.

Clearly Q2 x Q2 is connected. Set S = {(P1, ) € QxQ: (1-N)Pi+ AP, €
Q, all 0 < XA < 1}. Then S is plainly open and non-empty.

To see that S is closed, fix a defining function p for €2 as in the lemma.
If S is not closed in €2 x Q2 then there exist P, P, € { such that the function

t p((1—t)PL + tPy)

assumes an interior maximum value of 0 on [0, 1]. But the positive definite-
ness of the real Hessian of p now contradicts that assertion. The proof is
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therefore complete. O

We gave a special proof that strong convexity implies geometric convexity
simply to illustrate the utility of the strong convexity concept. It is possible
to prove that an arbitrary (weakly) convex domain is geometrically convex
by showing that such a domain can be written as the increasing union of
strongly convex domains. However the proof is difficult and technical (the
reader interested in these matters may wish to consider them after he has
learned the techniques in the proof of Theorem 6.5.5). We thus give another
proof of this fact:

Proposition 6.3.5 If Q) is (weakly) convex then ) is geometrically convex.

Proof: To simplify the proof we shall assume that Q has at least C® bound-
ary.

Assume without loss of generality that N > 2 and 0 € Q. Let 0 <
M € R be large. Let f be a defining functions for 2. For ¢ > 0, let
pe(x) = p(x) + €|x|? /M and Q. = {x : p.(x) < 0}. Then Q. C Q. if ¢ < €
and Uesof2e = Q. If M € N is large and ¢ is small, then (), is strongly con-
vex. By Proposition 4.1.5, each €2, is geometrically convex, so €2 is convex. O

We mention in passing that a nice treatment of convexity, from roughly
the point of view presented here, appears in [VLA].

Proposition 6.3.6 Let  CcC RY have C? boundary and be geometrically
convex. Then (Q is (weakly) analytically convex.

Proof: Seeking a contradiction, we suppose that for some P € 02 and some
w € Tp(0N2) we have

9%p
m Oz ;j0xy,

(P)wjwy, = —2K < 0. (6.3.6.1)

Suppose without loss of generality that coordinates have been selected in RV
so that P =0 and (0,0, ...,0,1) is the unit outward normal vector to 92 at
P. We may further normalize the defining function p so that dp/dxy(0) = 1.
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Let Q = Q' = tw+¢€-(0,0,...,0,1), where ¢ > 0 and t € R. Then, by Taylor’s
expansion,

§Q) = p<o>+z(§—gf;< Z Foa(0Q,0: +ol|QP)

t2
— Z 8:5 &Ek 0)wjwy, + O(€*) + o(t?)
J

aZL’N
= e—Kt2+O( ) o(t?).

Thus if t = 0 and € > 0 is small enough then p(@)) > 0. However, for that
same value of €, if |t| > /2¢/K then p(Q) < 0. This contradicts the defini-
tion of geometric convexity. O

Remark: The reader can already see in the proof of the proposition how
useful the quantitative version of convexity can be.

The assumption that 9Q be C? is not very restrictive, for convex func-
tions of one variable are twice differentiable almost everywhere (see [ZYG]
or [EVG]). On the other hand, C* smoothness of the boundary is essential
for our approach to the subject. O

Exercise for the Reader:

If Q@ C RY is a domain then the closed conver hull of  is defined to
be the closure of the set {3°7", Ajs; 1 55 € Qm € N, > 0,37\ = 1}
Equivalently, 2 is the intersection of all closed, convex sets that contain €.

Assume in the following problems that Q0 C R” is closed, bounded, and
convex. Assume that ) has C? boundary.

A point p in the closure Q of our domain is called extreme if it cannot
be written in the form p = (1 — A\)x + Ay with 2,y € Q and 0 < A < 1.

(a) Prove that € is the closed convex hull of its extreme points (this result is
usually referred to as the Krein-Milman theorem and is true in much greater
generality).

(b) Let P € 99 be extreme. Let p = P + Tp(0f2) be the geometric tangent
affine hyperplane to the boundary of 2 that passes through P. Show by an
example that it is not necessarily the case that p N Q = {P}.
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(c) Prove that if g is any bounded domain with C* boundary then there is
a relatively open subset U of 02y such that U is strongly convex. (Hint: Fix
xo € o and choose P € 0€) that is as far as possible from z).

(d) If Q is a convex domain then the Minkowski functional (see S. R. Lay
[1]) gives a convex defining function for (2.

6.3.2 Convexity with Respect to a Family of Functions

Let © C RY be a domain and let F be a family of real-valued functions
on ) (we do not assume in advance that F is closed under any algebraic
operations, although often in practice it will be). Let K be a compact subset
of 2. Then the convex hull of K in Q0 with respect to F is defined to be

K;E{xEQ:f(x)gsupf(t) for allfef}.

teK

We sometimes denote this hull by K when the family F is understood or
when no confusion is possible. We say that  is convexr with respect to F
provided Ky is compact in €2 whenever K is. When the functions in F are
complex-valued then |f| replaces f in the definition of K.

Proposition 6.3.7 Let Q cC RY and let F be the family of real linear
functions. Then € is convex with respect to F if and only if €2 is geometrically
conver.

Proof: Exercise. Use the classical definition of convexity at the beginning
of the section. 0

Proposition 6.3.8 Let Q@ cC RY be any domain. Let F be the family of
continuous functions on ). Then ) is convexr with respect to F.

Proof: If K CC Q and = ¢ K then the function F(t) = 1/(1 + |x — t|) is
continuous on 2. Notice that f(z) =1 and |f(k)| < 1 for all k¥ € K. Thus
x € Kz. Therefore Krx = K and 2 is convex with respect to F. O



114 CHAPTER 6. SEVERAL COMPLEX VARIABLES

Proposition 6.3.9 Let Q2 C C be an open set and let F be the family of all
functions holomorphic on ). Then ) is convex with respect to F.

Proof: First suppose that (2 is bounded. Let K CC . Let r be the
Euclidean distance of K to the complement of €2. Then r > 0. Suppose
that w € Q is of distance less than r from 0€2. Choose w’ € 92 such that
|lw — w'| = dist(w, °Q). Then the function f({) = 1/(¢ — w’) is holomorphic
on Q and |f(w)| > sup;cg |f(C)|. Hence w ¢ Kz so Kr CC Q. Therefore Q
is convex with respect to F.

In case € is unbounded we take a large disc D(0, R) containing K and
notice that Kz with respect to Q2 is equal to K with respect to QN D(0, R),
which by the first part of the proof is relatively compact. O

6.3.3 A Complex Analogue of Convexity

Our goal now is to pass from convexity to a complex-analytic analogue of
convexity. We shall first express the differential condition for convexity in
complex notation. Then we shall isolate that portion of the complexified
expression that is invariant under biholomorphic mappings. Because of its
centrality we have gone to extra trouble to put all these ideas into context.

Now fix 2 cC C" with C? boundary and assume that 9€) is convex at
P € 00. If w € C™ then the complex coordinates for w are of course

w=(wy,...,wp) = (& + i1, ..., &+ 10n).

Then it is natural to (geometrically) identify C* with R?" via the map

(61 + z.7717 s >€n + '”7“) — (€1>7717 s >€n>77n)-

Similarly we identify z = (21,...,2,) = (1 + Y1, ..., Tn + 1y,) € C* with
(T1,Y1, - -, Tn, Yn) € R*™. [Strictly speaking, C" is R ®@p C. Then one equips
C™ with a linear map J, called the complex structure tensor, which mediates
between the algebraic operation of multiplying by ¢ and the geometric map-
ping (&1, &, mm) — (=11, &1, -, —Mn, &) In this book it would be
both tedious and unnatural to indulge in these niceties. In other contexts
they are essential. See R. O. Wells [2] for a thorough treatment of this mat-
ter.] If p is a defining function for Q that is C? near P then the condition



6.3. NOTIONS OF CONVEXITY 115

that w € Tp(012) is
ap dp
8—:@& + ; a—yj% =

In complex notation we may write this equation as
- P .
Z {(8% 82)) 4 )} (wj i wy)

AEIC) (-] (s

But this is the same as

2Re <Z %(P)wj> = 0. (6.3.7)

Again, (7.3.8) is the equation for the real tangent space written in complex
notation.

The space of vectors w that satisfy this last equation is not closed under
multiplication by 7, hence is not a natural object of study for our purposes.
Instead, we restrict attention in the following discussion to vectors w € C"
that satisfy

3 a—Zj(P)wj = 0. (6.3.8)

The collection of all such vectors is termed the complex tangent space to 02
at P and is denoted by 7p(0€2). Clearly 7p(0€2) C Tp(952) but the spaces
are not equal; indeed the complex tangent space is a proper real subspace of
the ordinary (real) tangent space. The reader should check that 7p(0%) is
the largest complex subspace of Tp(952) in the following sense: first, 7p(012)
1s closed under multiplication by 7; second, if S is a real linear subspace
of Tp(0N) that is closed under multiplication by i then S C 7p(0%2). In
particular, when n = 1,Q C C", and P € 02 then 7p(092) = {0}. At some
level, this last fact explains many of the differences between the functions
theories of one and several complex variables. To wit, the complex tangent
space is that part of the differential geometry of 02 that behaves rigidly under
biholomorpic mappings. Since the complex tangent space in dimension 1 is
vacuous, this rigidity is gone. This is why the Riemann mapping theorem is
possible. Now we turn our attention to the analytic convexity condition.
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The convexity condition on tangent vectors is

- P p) 55+2Z P)¢
D01 ok oz a i+

Jik=1 =

- 42(6% azj) (a(zk 82k) p(P)(w; + ;) (wy + W)

1 <& 0 0 1 0 0
2 (a—zm—zj)(z)(a—zm—zk)p(”
j,k=1

1

X (wj + wy) (;) (wi —wp)
a2 () G mas) () (o)

0 <

773 Mk

ik lazjﬁzk
ke (3 L2 (P +2i TV (Pywyw
T\ e 050z ) T 2 ggom T

[This formula could also have been derived by examining the complex form
of Taylor’s formula.] We see that the real Hessian, when written in complex
coordinates, decomposes rather naturally into two Hessian-like expressions.
Our next task is to see that the first of these does not transform canonically
under biholomorphic mappings but the second one does. We shall thus dub
the second quadratic expression “the complex Hessian” of p. It will also be
called the “Levi form” of the domain €2 at the point P.

The Riemann mapping theorem tells us, in part, that the unit disc is
biholomorphic to any simply connected smoothly bounded planar domain.
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Since many of these domains are not convex, we see easily that biholomorphic
mappings do not preserve convexity (an explicit example of this phenomenon
is the mapping ¢ : D — ¢(D), ¢(¢) = (¢ +2)*). We wish now to understand
analytically where the failure lies. So let 2 CC C" be a convex domain with
C? boundary. Let U be a neighborhood of Q and p : U — R a defining
function for 2. Assume that & : U — C" is biholomorphic onto its image
and define ' = ®(€2). We now use an old idea from partial differential
equations—Hopf’s lemma—to get our hands on a defining function for .
Hopf’s lemma has classical provenance, such as [COH]. A statement is this
(see also [GRK12] for an elementary proof):

Prelude: The next result, Hopf’s lemma, came up originally in the proof of
the maximum principle for solutions of elliptic partial differential equations.
Its utility in several complex variables is a fairly recent discovery. It has
proved to have both practical and philosophical significance.

Lemma 6.3.9 Let u be a real-valued harmonic function on a bounded do-
main 2 C RY with C? boundary. Assume that u extends continuously to a
boundary point p € 0X). We take it that u(p) = 0 and u(z) < 0 for all other
points of the domain. Then

3}
au(p) > 0.

Here v denotes the unit outward normal vector at p. What is interesting
is that the conclusion with > replaced by > is immediate by the definition
of the derivative.

The proof shows that Hopf’s lemma is valid for subharmonic, hence for
plurisubharmonic, functions. The result guarantees that p’ = po @' is a
defining function for 2. Finally fix a point P € 992 and corresponding point
P =®(P) € o. If w e Tp(0) then

e < LO0(P) G 9Du(P)

VE ;
8Zj i1 8Zj

’LUj) € Tp/(aﬁl).

j=1

Let the complex coordinates on ®(U) be z1,...,z,. Our task is to write the
expression determining convexity,

9R
¢ < 2. 02,07,
J,k=1

82
59" )ijk> +2 (P)w;m, (6.3.10)
J ;
J

k=1
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in terms of the z§ and the w;. But

9?%p 0 <= 0p 0B,

p) = —\N 227
8zj8zk( ) Ozj “= 0z Oz,

R~ 0%y 0P, 0D, " (0p 0%,
B Z {8z282§n Dz, 0z; } * ; {8—2’282@821@} ’

fm=1
Po_py _ D000 O 00 0T,
02;0% 0242 07,07, 02 0%, 0z; 0%
Therefore
8,0 8 (bg
6.3.10) = 2Re
( { Z: 2 ; ZZ 0z, azjazk k}
nonfunctorial
n 2p/
+2 ) AL (6.3.11)

functorial
So we see that the part of the quadratic form characterizing convexity that
is preserved under biholomorphic mappings (compare (6.3.11) with (6.3.10))

is
n

The other part is deﬁnitely not preserved. Our calculations motivate the
following definition.

Definition 6.3.12 Let @ C C" be a domain with C? boundary and let
P € 09). We say that 0€) is (weakly) Levi pseudoconver at P if
n azp B
——(P)w;wy, > 0, Yw € Tp(09). (6.3.12.1)
— 0z;0%Z
j,k=1
The expression on the left side of (6.3.12.1) is called the Levi form. The point
P is said to be strongly (or strictly) Levi pseudoconvez if the expression on
the left side of (6.3.12.1) is positive whenever w # 0. A domain is called Levi
pseudoconvex (resp. strongly Levi pseudoconver) if all of its boundary points
are pseudoconvex (resp. strongly Levi pseudoconvex).



6.3. NOTIONS OF CONVEXITY 119

The reader may check that the definition of pseudoconvexity is independent
of the choice of defining function for the domain in question.

The collection of Levi pseudoconvex domains is, in a local sense to be
made precise later, the smallest class of domains that contains the convex
domains and is closed under increasing union and biholomorphic mappings.

Prelude: Since pseudoconvexity is a complex-analytically invariant form of
convexity, it is important to relate the two ideas. This next proposition gives
a direct connection.

Proposition 6.3.13 IfQ) C C" is a domain with C? boundary and if P € 0}
is a point of convexity then P is also a point of pseudoconvexity.

Proof: Let p be a defining function for €. Let w € 7p(0f2). Then iw is also
in 7p(012). If we apply the convexity hypothesis to w at P we obtain

2

" 0% " 9%
-2 Plw; 2 Plw;w; > 0.
Re <J ( )ijk> + j;l 8zj8§k( Jw;wy >0

Adding these two inequalities we find that

9P (Pyww, >0
. azjazk( Jwik

J

hence 0f is Levi pseudoconvex at P. O

The converse of this lemma is false. For instance, any product of smooth
domains (take annuli, for example) Q; x Qy C C? is Levi pseudoconvex
at boundary points which are smooth (for instance, off the distinguished
boundary 0€2; x 0€);). From this observation a smooth example may be
obtained simply by rounding off the product domain near its distinguished
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boundary. The reader should carry out the details of these remarks as an
exercise.

There is no elementary geometric way to think about pseudoconvex do-
mains. The collection of convex domains forms an important subclass, but
by no means a representative subclass. As recently as 1972 it was conjec-
tured that a pseudoconvex point P € 0f) has the property that there is a
holomorphic change of coordinates ® on a neighborhood U of P such that
O(U N 0N) is convex. This conjecture is false (see [KON2]). In fact it is not
known which pseudoconvex boundary points are “convexifiable.”

The definition of Levi pseudoconvexity can be motivated by analogy with
the real variable definition of convexity. However we feel that the calculations
above, which we learned from J. J. Kohn, provide the most palpable means
of establishing the importance of the Levi form.

We conclude this discussion by noting that pseudoconvexity is not an
interesting condition in one complex dimension because the complex tangent
space to the boundary of a domain is always empty. Any domain in the
complex plane is vacuously pseudoconvex.

6.3.4 Further Remarks about Pseudoconvexity

The discussion thus far in this chapter has shown that convexity for domains
and convexity for functions are closely related concepts. We now develop the
latter notion a bit further.

Classically, a real-valued function f on a convex domain () is called
convez if, whenever P,Q € Q and 0 < A < 1, we have f((1 — AP + Q) <
(1 =N f(P)+ Af(Q). A C? function f is convex according to this definition
if and only if the matrix (9*f/ axj&vk)j.\fk:l is positive semi-definite at each
point of the domain of f. Put in other words, the function is convex at a point
if this Hessian matrix is positive semi-definite at that point. It is strongly
(or strictly) conver at a point of its domain if the matrix is strictly positive
definite at that point.

Now let © C RY be any domain. A function ¢ :  — R is called an
ezhaustion function for Q if, for any ¢ € R, the set Q. = {x € Q : ¢(x) < ¢}
is relatively compact in €2. It is a fact (not easy to prove) that {2 is convex
if and only if it possesses a (strictly) convex exhaustion function, and that
is true if and only if it possesses a strictly convex exhaustion function. The
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reference [KRA4] provides some of the techniques for proving a result like
this.

We now record several logical equivalences that are fundamental to the
function theory of several complex variables. We stress that we shall not
prove any of these—the proofs, generally speaking, are simply too complex
and would take too much time and space. See [KRA4]| for the details. But
it is useful for us to have this information at our fingertips.

() is a domain of holomorphy <=

) is Levi pseudoconvex <=

) has a C'* strictly psh exhaustion function <=
The equation du = f can be solved on Q for

every 0 — closed (p, q) form f on Q <=

The hardest part of these equivalences is that a Levi pseudoconvex domain
is a domain of holomorphy. This implication is known as the Levi problem,
and was only solved completely for domains in C", all n, in the mid-1950’s.
Some generalizations of the problem to complex manifolds remain open. An
informative survey is [SIU].

The next section collects a number of geometric properties of pseudocon-
vex domains. Although some of these properties are not needed for a while,
it is appropriate to treat these facts all in one place.

6.4 Convexity and Pseudoconvexity

Capsule: As indicated in the previous section, convexity and
pseudoconvexity are closely related. Pseudoconvexity is, in a pal-
pable sense, a biholomorphically invariant version of convexity.
In this section we explore the connections between convexity and
pseudoconvexity.

A straightforward calculation (see [KRA4]) establishes the following re-
sult:
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Prelude: The next proposition demonstrates, just as we did above for strong
convexity, that strong pseudoconvexity is a stable property under C? pertur-
bations of the boundary. This is one of the main reasons that strong pseu-
doconvexity is so useful.

Proposition 6.4.1 If Q) is strongly pseudoconvex then () has a defining
function p such that

= 02,07 J

J

for all P € 09, all w € C™.

By continuity of the second derivatives of p, the inequality in the propo-
sition must in fact persist for all z in a neighborhood of 9€). In particular, if
P € 09 is a point of strong pseudoconvexity then so are all nearby bound-
ary points. The analogous assertion for weakly pseudoconvex points is false.

EXAMPLE 6.4.2 Let Q = {(21,22) € C* : |z1]* + |22|* < 1}. Then
p(21,22) = =1+ |21]? + |22|* is a defining function for Q and the Levi form
applied to (wy,ws) is |w1|? + 4|z2]?|wz|%. Thus 9N is strongly pseudoconvex
except at boundary points where |25]? = 0 and the tangent vectors w satisfy
w; = 0. Of course these are just the boundary points of the form (e?,0).
The domain is (weakly) Levi pseudoconvex at these exceptional points. 0O

Pseudoconvexity describes something more (and less) than classical geo-
metric properties of a domain. However, it is important to realize that there
is no simple geometric description of pseudoconvex points. Weakly pseudo-
convex points are far from being well understood at this time. Matters are
much clearer for strongly pseudoconvex points:

Prelude: One of the biggest unsolved problems in the function theory of sev-
eral complex variables is to determine which pseudoconvex boundary points
may be “convexified”—in the sense that there is a biholomorphic change of
coordinates that makes the point convex in some sense. We see next that,
for a strongly pseudoconvex point, matters are quite simple.
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Lemma 6.4.3 (Narasimhan) Let Q@ CC C" be a domain with C* bound-
ary. Let P € 0Q be a point of strong pseudoconvexity. Then there is a
neighborhood U C C" of P and a biholomorphic mapping ® on U such that
O(U N o) is strongly conver.

Proof: By Proposition 7.4.1 there is a defining function p for  such that
0%p
——(P)w;w;, > C|w|?

for all w € C". By a rotation and translation of coordinates, we may assume
that P = 0 and that v = (1,0, ...,0) is the unit outward normal to 0S) at P.
The second order Taylor expansion of p about P = 0 is given by

1 %
o .
plw) +Z Pty 2, 595 (Dwsn

ap _ 1 — 0%p _
+26—§J(P)w’+ 5) — (P)’LUj’LUk

0% _ 2
+ 2 W(P)ijk + o(jw]?)

j7 =

J,k=1

= 2Re {wl + 3 2 6zj8zk(P)ijk}

+ i ﬁ(P)wﬁk + o(Jw]?) (6.4.3.1)
) aZjagk J

by our normalization v = (1,0,...,0).
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Define the mapping w = (wy, ..., wy,) — w' = (w},...,w.) by
1 <& 0%
w; =&(w) =w + = P (P)wjwy,
2 —~ 0z;0z
J,k=1
wy = Do(w) = we
w, = d,(w) = w,.

By the implicit function theorem, we see that for w sufficiently small this is
a well-defined invertible holomorphic mapping on a small neighborhood W
of P = 0. Then equation (6.4.3.1) tells us that, in the coordinate w’, the
defining function becomes
n 82~ )
— /
Pt = e+ 3 5o (Phuyw + o).

[Notice how the canonical transformation property of the Levi form comes
into play!] Thus the real Hessian at P of the defining function p is precisely
the Levi form; and the latter is positive definite by our hypothesis. Hence
the boundary of ®(W N ) is strictly convex at ®(P). By the continuity of
the second derivatives of p, we may conclude that the boundary of (W N§2)
is strictly convex in a neighborhood V' of ®(P). We now select U C W a
neighborhood of P such that ®(U) C V to complete the proof. O

By a very ingeneous (and complicated) argument, J. E. Fornaess [1] has
refined Narasimhan’s lemma in the following manner:

Prelude: The Fornaess imbedding theorem is quite deep and difficult. But
it makes good sense, and is a very natural generalization of Narasimhan’s
lemma.

Theorem 6.4.4 (Fornaess) Let 0 C C" be a strongly pseudoconvex do-
main with C? boundary Then there is an integer n' > n, a strongly con-

vex domain QY C C", a neighborhood Q of Q, and a one-to-one imbedding
®: Q) — C" such that:
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TN

Figure 6.1: The Fornaess imbedding theorem.

1. &(Q) C
2. (60) C 9
3. 0(Q\Q)CcCv\Q;

4. ®(Q) is transversal to O<Y.

Remark: In general, n’ >> n in the theorem. Sharp estimates on the size
of n/, in terms of the Betti numbers of Q2 and other analytic data, are not
known. Figure 6.1 suggests, roughly, what Fornaess’s theorem says. O

It is known (see [YU]) that if 2 has real analytic boundary then the
domain €' in the theorem can be taken to have real analytic boundary and
the mapping ® will extend real analytically across the boundary (see also
[FOR1]). It is not known whether, if Q is described by a polynomial defin-
ing function, the mapping ® can be taken to be a polynomial. Sibony has
produced an example of a smooth weakly pseudoconvex domain that cannot
be mapped properly into any weakly convex domain of any dimension (even
if we discard the smoothness and transversality-at-the-boundary part of the
conclusion). See [SIB] for details. It is not known which weakly pseudoconvex
domains can be properly imbedded in a convex domain of some dimension. O
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Definition 6.4.5 An analytic discin C™ is a nonconstant holomorphic map-
ping ¢ : D — C". We shall sometimes intentionally confuse the imbedding
with its image (the latter is denoted by d or d,). If ¢ extends continuously
to D then we call ¢(D) a closed analytic disc and ¢(0D) the boundary of the
analytic disc.

EXAMPLE 6.4.6 The analytic disc ¢(¢) = (1, () lies entirely in the bound-
ary of the bidisc D x D. By contrast, the boundary of the ball contains no
non-trivial (i.e. non-constant) analytic discs.

To see this last assertion, take the dimension to be 2. Assume that
¢ = (¢1,¢2) : D — OB is an analytic disc. For simplicity take the dimension
to be two. Let p(z) = —1 + |21]* + |22]? be a defining function for B. Then
pod=—1+|p1]*+ |pa|? is constantly equal to 0, or |¢1(C)|? + |p2(C)]* = 1.
Each function on the left side of this identity is subharmonic. By the sub-
mean value property, if d is a small disc centered at ( € D with radius r,
then

1= 610 + 16O < =5 [ 16n(@)F + oa(©PaA(E) = 1.

Thus, in fact, we have the equality

QP+ 16aOF = =5 [ 161OF + len(PaA©)

But also

(O < =5 [ Ien(OPaA)

and

02O < =5 [ 1en(©)FaA©)

It therefore must be that equality holds in each of these last two inequalities.
But then, since ¢ and 7 are arbitrary, |¢;1]? and |¢»|* are harmonic. That can
only be true if ¢1, ¢ are constant. O

Exercise for the Reader:
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Prove that the boundary of a strongly pseudoconvex domain cannot
contain a non-constant analytic disc.

In fact more is true: If € is strongly pseudoconvex, P € 0f2, and
¢ : D — Q satisfies ¢(0) = P then ¢ is identically equal to P.

Exercise for the Reader:

There is a precise, quantitative version of the behavior of an analytic
disc at a strongly pseudoconvex point. If P € 0€) is a strongly pseudoconvex
point then there is no analytic disc d with the property that

I dist(z, 0Q2)
im ———= =
ds>:—p |z — PJ?

This property distinguishes a weakly pseudoconvex boundary point from a
strongly pseudoconvex boundary point. For example, the boundary point
(1,0,0) in the domain {z € C? : |21]* +|22|*+ |23|* < 1} has a zero eigenvalue
of its Levi form in the direction (0,0, 1). Correspondingly, the analytic disc
#(¢) = (0,0,¢) has order of contact with the boundary greater than 2 at the
point (0,0, 1).

6.4.1 Holomorphic Support Functions

Let 2 C C" be a domain and P € 0f). We say that P possesses a holomorphic
support function for the domain €2 provided that there is a neighborhood Up
of P and a holomorphic function fp : Up — C such that {z € Up : fp(z) =
0} NQ = {P} (see Figure 6.2). Compare the notion of holomorphic support
function with the classical notion of support line or support hypersurface for
a convex body (see [VAL] or [LAY]).

Suppose now 2 C C™ and that P € 02 is a point of strong convexity.
Further assume that Tp(0€2) denotes the ordinary, (2n — 1)-dimensional, real
tangent hyperplane to 02 at P. Then there is a neighborhood Up of P such
that Tp(0Q)NQNUp = {P} (exercise). Identify C" with R?" in the usual way.
Assume, for notational simplicity, that P = 0. Let (a1, b1, ..., an,b,) =~ (a1 +
iby,...,an+1b,) = (o, ..., a,) = a be the unit outward normal to 02 at P.
Then we may think of Tp(0) as {(x1,y1,- .-, Tn, Yn) : D5, a;7;+bsy; = 0}.
Equivalently, identifying (z1, y1, . . ., Tn, Yn) With (21, ..., 2,), we may identify
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Figure 6.2: A holomorphic support function.

{(zl,...,zn) : Reszaj = 0} .
j=1

Let f(2) = > z;&; = z - @. [The notation (z,a) is used in some contexts in
place of z-@.] Then f is plainly holomorphic on C" and f is a support func-
tion for Q at P since the zero set of f lies in Tp(0€2). The next proposition
now follows from Narasimhan’s lemma:

Prelude: In the 1970s there was great interest in support functions and
peak functions. Here f is a peak function at P € 0N if (i) f is continuous
on Q, (ii) f is holomorphic on Q, (iii) f(P) = 1, and (iv) |f(2)] < 1 for
z € Q\{P}. See [GAM] and Subsection 6.4.2 for more about peak functions.
Often one can use a support function to manufacture a peak function. And
peak functions are useful in function-algebraic considerations. Unfortunately
there are no useful necessary and sufficient conditions for either support or
peak functions, the problem seems to be quite difficult, and interest in the
matter has waned.

Proposition 6.4.7 If ) C C" is a domain and P € 00 is a point of strong

pseudoconvexity, then there exists a holomorphic support function for ) at
P.
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As already noted, the proposition follows immediately from Narasimhan’s
lemma. But the phenomenon of support functions turns out to be so impor-
tant that we now provide a separate, self-contained proof:

Proof of the Proposition: Let p be a defining function for 2 with the
property that

0zi%
k=1 1%k

(P)ywjwy, > Clw/?
for all w € C™. Define
— P, — P.).
Z azj Z azjazk i) (2 )

We call f the Lewi polynomial at P. The function f is obviously holomorphic.
We claim that f is a support function for €2 at P. To see this, we expand p
in a Taylor expansion about P :

S {Z 0z - ) +% — 82;zk(P)(zj = i) _Pk)}
T ; azapzk P)(zj — Pj)(zr — Pr) + o(|z — P|?)

(P)(zj — Pj) (2 — Pe) + ol]z — P[*).

Note that p(P) = 0 so there is no constant term. Now let z be a point at
which f(z) = 0. Then we find that

o) = Zaz 2Pz = P)(on = Po) +ol|z = PP)

> Clz—PP*+o(|z — PP).

Obviously if 2 is sufficiently closed to P then we find that
C
p(z) = |z = PP

Thus if 2 is near P and f(z) = 0 then either p(z) > 0, which means that »
lies outside €2, or z = P. But this means precisely that f is a holomorphic
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support functions for €2 at P. O

EXAMPLE 6.4.8 Let Q = D?(0,1) C C?. Then
0N = (0D xDxD)U(Dx0DxD)U(Dx D xdD,).

In particular, 92 contains the entire bidisc d = {((1,2,1) : |G1] < 1, |G| <
1}. The point P = (0,0, 1) is the center of d. If there were a support function
f for Q at P then f|q would have an isolated zero at P. That is impossible
for a function of two complex variables.

On the other hand, the function g(z1, 22, 23) = 23 — 1 is a weak support
function for Q at P in the sense that g(P) = 0 and {z : g(z) = 0} NQ C 9Q.

If Q@ C C"is any (weakly) convex domain and P € 0, then Tp(@Q)ﬂﬁ -
0f). As above, a weak support function for {2 at P can therefore be con-
structed. O

As recently as 1972 it was hoped that a weakly pseudoconvex domain
would have at least a weak support function at each point of its boundary.
These hopes were dashed by the following theorem:

Prelude: As recently as 1973 the experts thought that any smooth, Levi
pseudoconvex point could be convexified. That is, in analogy with Narasimhan’s
lemma, it was supposed that a biholomorphic change of coordinates could
be instituted that would make a pseudoconvex point convex. These hopes
were dashed by the dramatic but simple example of Kohn and Nirenberg.
This is a real analytic, pseudoconvex point in the boundary of a domain in
C? such that any complex variety passing through the point weaves in and
out of the domain infinitely many times in any small neighborhood. The
Kohn/Nirenberg example has proved to be one of the most important and
influential artifacts of the subject.

'Some explanation is required here. The celebrated Hartogs extension phenomenon says
that if f is holomorphic on the domain Q = B(0,2)\ B(0, 1) then f continues analytically
to all of B(0,2). It follows that a holomorphic function h cannot have an isolated zero,
because then 1/h would have an isolated singularity.
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Theorem 6.4.9 (Kohn and Nirenberg) Let
2 2 8, 19 on 6
Q={(21,22) € C*: Reza + |z122|" + |21|° + 7|zl| Rez] < 0}.

Then () is strongly pseudoconvex at every point of 02 except 0 (where it
is weakly pseudoconvex). However there is no weak holomorphic support
function (and hence no support function) for ) at 0. More precisely, if f is a
function holomorphic in a neighborhood U of 0 such that f(0) = 0 then, for
every neighborhood V of zero, f vanishes both in V N Q and in V N °Q.

Proof: The reader should verify the first assertion. For the second, consult
[KON2]J. O

Necessary and sufficient conditions for the existence of holomorphic sup-
port functions, or of weak holomorphic support functions, are not known.

6.4.2 Peaking Functions

The ideas that we have been presenting are closely related to questions about
the existence of peaking functions in various function algebras on pseudo-
convex domains. We briefly summarize some of these. Let 2 C C" be a
pseudoconvex domain.

If A is any algebra of functions on ), we say that P € Q is a peak point
for A if there is a function f € A satisfying f(P) = 1 and |f(z)| < 1 for all
2z € Q\ {P}. Let P(A) denote the set of all peak points for the algebra A.

Recall that A(Q) is the subspace of C'(Q) consisting of those functions
that are holomorphic on Q. Let A7(Q) = A(2)NC’(Q). The maximum princi-
ple for holomorphic functions implies that any peak point for any subalgebra
of A(Q) must lie in 0Q. If Q is Levi pseudoconvex with C* boundary then
P(A()) is contained in the closure of the strongly pseudoconvex points (see
[BAS]). Also the Silov boundary for the algebra A(f) is equal to the clo-
sure of the set of peak points (this follows from classical function algebra
theory—see [GAM]) which in turn equals the closure of the set of strongly
pseudoconvex points (see [BAS]).

The Kohn-Nirenberg domain has no peak function at 0 that extends to
be holomorphic in a neighborhood of 0 (for if f were a peak function then
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f(2) — 1 would be a holomorphic support function at 0.) [HAS]] showed that
the same domain has no peak function at 0 for the algebra A®(Q2). [FOR2]
has refined the example to exhibit a domain €2 that is strongly pseudoconvex
except at one boundary point P but has no peak function at P for the algebra
AL(Q). There is no known example of a smooth, pseudoconvex boundary
point that is not a peak point for the algebra A(£2). The deepest work to
date on peaking functions is [BEDF1]. See also the more recent approaches
in [FOSI] and in [FOM]. It is desirable to extend that work to a larger class of
domains, and in higher dimensions, but that program seems to be intractable.
See [YU] for some progress in the matter.

It is reasonable to hypothesize (see the remarks in the last paragraph
about the Kohn-Nirenberg domain) that if 2 C C" has C'"*° boundary and a
holomorphic support function at P € 9€) then there is a neighborhood Up of
P and a holomorphic function f : Up N2 — C with a smooth extension to
Up N2 so that f peaks at P. This was proved false by [BLO]. However this
conjecture is true at a strongly pseudoconvex point.

The problem of the existence of peaking functions is still a matter of
great interest, for peak functions can be used to study the boundary behav-
ior of holomorphic mappings (see [BEDF2]). Recently [FOR3|] modified the
peaking function construction of [BEDF1] to construct reproducing formulas
for holomorphic functions.

Exercise for the Reader:

Show that if 2 C C is a domain with boundary consisting of finitely
many closed C7 Jordan curves (each of which closes up to be C7) then every
P € 99 is a peak point for A771(Q). (Hint: The problem is local. The Rie-
mann mapping of a simply connected € to D extends C?~¢ to the boundary.
See [KELJ, [TSU]J.)

6.5 Pseudoconvexity and Analytic Discs

Capsule: Certainly one of the most powerful and flexible tools in
the analysis of several complex variables is the analytic disc. An
analytic disc is simply a holomorphic mapping of the unit disc into
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C™. Analytic discs measure a holomorphically invariant version
of convexity—namely pseudoconvexity—and detect other subtle
phenomena such as tautness of a domain. An analytic disc may
be used to detect pseudoconvexity in much the same way that a
line segment may be used to detect convexity (see, for example
[KRA14]). We explore these ideas in the present section.

At this point the various components of our investigations begin to con-
verge to a single theme. In particular, we shall directly relate the notions
of pseudoconvexity, plurisubharmonicity, and domains of holomorphy. On
the one hand, the theorems that we now prove are fundamental. The tech-
niques in the proofs are basic to the subject. On the other hand, the proofs
are rather long and tedious. Because the main focus of the present book is
harmonic analysis—not several complex variables—we shall place the proof
of Theorems 6.5.5 and 6.6.5 at the ends of their respective sections. That
way the reader may concentrate on the exposition and dip into the proofs as
interest dictates.

In order to effect the desired unity—exhibiting the synthesis between
pseudoconvexity and domains of holomorphy—we need a second notion of
pseudoconvexity. This, in turn, requires some preliminary terminology:

Definition 6.5.1 A continuous function p : C* — R is called a distance
function if

Lop=>0;
2. p(z) =0 if and only if z = 0;
3. u(tz) = |t|u(z), vVt € C,z € C".

Definition 6.5.2 Let 2 C C" be a domain and p a distance function. For
any z € C", define

po(z) = pu(z,°Q) = nf u(z —w).

If X CQis aset, we write

po(X) = inf uo(z).
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It is elementary to verify that the function pq is continuous. In the
special case that u(z) = |z|, one checks that in fact o must satisfy a classical
Lipschitz condition with norm 1. Moreover, for this special pu, it turns out
that when Q has ¢V boundary, j > 2, then uq is a one-sided C? function
near 0f) (see [KRP1] or [GIL]). The assertion is false for j = 1.

Definition 6.5.3 Let Q2 C C™ be a (possibly unbounded) domain (with,
possibly, unsmooth boundary). We say that €2 is Hartogs pseudoconvex if
there is a distance function p such that —log g is plurisubharmonic on ).

This new definition is at first obscure. What do these different distance
functions have to do with complex analysis? It turns out that they give us
a flexibility that we shall need in characterizing domains of holomorphy. In
practice we think of a Hartogs pseudoconvex domain as a domain that has
a (strictly) plurisubharmonic exhaustion function. [The equivalence of this
characterization with Definition 6.5.3 requires proof.] Theorem 6.5.5 below
will clarify matters. In particular, we shall prove that a given domain 2
satisfies the definition of “Hartogs pseudoconvex” for one distance function
if and only if it does so for all distance functions. The thing to note is
that Hartogs pseudoconvexity makes sense on a domain regardless of the
boundary smoothness; Levi pseudoconvexity requires C* boundary so that
we can make sense of the Levi form.

In what follows we shall let dg(z) denote the Euclidean distance of the
point z to the boundary of the domain (2.

Prelude: It is natural to wonder why “domain of holomorphy” and “pseu-
doconvex” are not discussed for domains in complex dimension one. The
answer is that every domain in C! is a domain of holomorphy, every domain
is Hartogs pseudoconvex, and every C? domain is (vacuously) Levi pseudo-
convex. So there is nothing to discuss.

Proposition 6.5.4 Let (2 C C be any planar domain. Then () is Hartogs
pseudoconvex.

Proof: We use the Euclidean distance 6(z) = |z|. Let D(zp,7) € Q and let h
be real valued and harmonic on a neighborhood of this closed disc. Assume
that h > —logdg on 0D(z, 7). Let h be a real harmonic conjugate for h
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on a neighborhood of D(z,r). So h + ih is holomorphic on D(z,r) and
continuous on D(zp, 7). Fix, for the moment, a point P € 0f). Then

—logda(z) < h(z), =€ dD(z,7)
exp (—h(z) - Z?L(Z))
exp (—h(z) - Z?L(Z))

= oy <1, z€dD(zy,r).

= <dq(z2), z € 0D(2p,7)

But the expression in absolute value signs is holomorphic on D(zp,r) and
continuous on D(zp, 7). Hence

exp (—h(z) — zﬁ(z)) -

T p < , Vz € D(z,7).

Unwinding this inequality yields that
—log |z — P| < h(z), Yz € D(z,7).

Choosing for each z € Q a point P = P, € 02 with |z — P| = dqo(z) yields
now that

—logda(z) < h(z).
It follows that — log dg, is subharmonic, hence the domain €2 is Hartogs pseu-
doconvex. 0

Exercise for the Reader:

Why does the proof of Proposition 6.5.4 break down when the dimension
is two or greater?

Prelude: Pseudoconvexity is one of the fundamental ideas in the function
theory of several complex variables. The next result, giving ten equivalent
formulations of pseudoconvexity, is important (a) because these different
formulations are actually used in practice and (b) because the proofs of the
equivalences are some of the most fundamental techniques in the subject. In
particular, the prominent role of plurisubharmonic functions comes to the
fore here.
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Theorem 6.5.5 Let 2 C C" be any connected open set. The following
eleven properties are then equivalent. [Note, however, that property (8)
only makes sense when the boundary is C?.]

(1) —log pg is plurisubharmonic on €2 for any distance function pu.
(2) Q is Hartogs pseudoconvex.

(8) There exists a continuous plurisubharmonic (i.e. pseudoconvex) func-
tion ® on  such that, for every ¢ € R, we have {z € Q: ®(2) < ¢} CC
Q.

(4) Same as (3) for a C* strictly plurisubharmonic exhaustion function ®.

(5) Let {ds}aca be a family of closed analytic discs in Q. If Upe 40d,, CC €,
then Uyead, CC ). (This assertion is called the Kontinuitdtssatz.)

(6) If u is any distance function and if d C € is any closed analytic disc

(7) Same as (6) for just one particular distance function.

(8) Q is Levi pseudoconvex.

(9) Q= U8Q;, where each §2; is Hartogs pseudoconvex and €; CC €2j4.
(10) Same as (9) except that each ); is a bounded, strongly Levi pseudo-

convex domain with C'*° boundary.

Remark: The strategy of the proof is shown in Figure 6.3. O

Some parts of the proof are rather long. However this proof (presented at
the end of the section) contains many of the basic techniques of the theory
of several complex variables. This is material that is worth mastering.

Notice that the hypothesis of C? boundary is used only in the proof that
(1) = (8) = (3). The implication (1) = (3) is immediate for any domain ).

Remark: The last half of the proof of (8) = (3) explains what is geometri-
cally significant about Levi pseudoconvexity. For it is nothing other than a
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Figure 6.3: Scheme of the proof of Theorem 6.5.5.

Figure 6.4: Levi pseudoconvexity.

classical convexity condition along complex tangential directions. This con-
vexity condition may be computed along analytic discs which are tangent to
the boundary. With this in mind, we see that Figure 6.4 already suggests
that Levi pseudoconvexity does not hold at a boundary point with a certain
indicative geometry—think of an appropriate submanifold of the boundary
as locally the graph of a function over the analytic disc. O

We now formulate some useful consequences of the theorem, some of
which are restatements of the theorem and some of which go beyond the
theorem. Note that we may now use the word “pseudoconvex” to mean either
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Hartogs’s notion or Levi’s notion (at least for domains with C? boundary).

Proposition 6.5.6 Let }; C C" be pseudoconvex domains. If 2 = N32,;
is open and connected, then () is pseudoconvex.

Proof: Use part (1) of the Theorem together with the Euclidean distance
function. 0

Proposition 6.5.7 If )} C Qy C --- are pseudoconvex domains then U;();
is pseudoconvex.

Proof: Exercise. O

Proposition 6.5.8 Let ) C C". Let ' C C" be pseudoconvex, and as-
sume that ¢ : Q — Q' is a surjective (but not necessarily injective) proper
holomorphic mapping. Then ) is pseudoconvex.

Proof: Let &' : ' — R be a pseudoconvex (continuous, plurisubharmonic)
exhaustion function for Q. Let ® = &' o ¢. Then ® is pseudoconvex. Let
Q, = (9')7'((—00,¢)). Then € is relatively compact in €' since @’ is an
exhaustion function. Then Q. = ®7'((—o0,¢)) = ¢7'(€2). Thus Q. is
relatively compact in € by the properness of ¢. We conclude that € is pseu-
doconvex. O

Check that Proposition 6.5.8 fails if the hypothesis of properness of ¢ is
omitted.

Prelude: It is the localness of pseudoconvexity, more than anything, that
makes it so useful. The property of being a domain of holomorphy is not
obviously local—although it turns out in the end that it actually is local.
One of the principal reasons that the solution of the Levi problem turns out
to be so difficult is the dialectic about locality.

Proposition 6.5.9 Hartogs pseudoconvexity is a local property. More pre-
cisely, if 0 C C" is a domain and each P € 0f) has a neighborhood Up such
that Up N () is Hartogs pseudoconvex, then () is Hartogs pseudoconvex.
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Proof: Since Up N is pseudoconvex, — log dy,nq is psh on Up N (here ¢ is
Euclidean distance). But, for z sufficiently near P, —log dy,.no = —logdq. It
follows that — log dg, is psh near 0€), say on 2\ F' where F' is a closed subset
of Q. Let ¢ : C* — R be a convex increasing function of |z|? that satisfies
¢(z) — oo when |z| — oo and ¢(z) > —logdg(z) for all z € F. Then the
function

®(z) = max{¢(z), —logda(2)}

is continuous and plurisubharmonic on €2 and is also an exhaustion function
for . Thus 2 is a pseudoconvex domain. O

Remark: If 9Q is C? then there is an alternative (but essentially equiva-
lent) proof of the last proposition as follows: Fix P € 0f). Since Up N is
pseudoconvex, the part of its boundary that it shares with OS2 is Levi pseu-
doconvex. Hence the Levi form at P is positive semi-definite. But P was
arbitrary, hence each boundary point of 2 is Levi pseudoconvex. The result
follows.

It is essentially tautologous that Levi pseudoconvexity is a local prop-
erty. O

Exercise for the Reader:

Proof of Theorem 6.5.5

(2) = (3) If Q is unbounded then it is possible that —loguq(z) is not
an exhaustion function (although, by hypothesis, it is psh). Thus we set
®(2) = —logua(z) + |z|> where i is given by (2). Then ® will be a psh
exhaustion.
(9) = (3) We are assuming that 2 has C? boundary. If (3) is false, then the
Euclidean distance function dg(z) = dist(z, Q) (whichis C2on UNQ, U a
tubular neighborhood of 0f2; see Exercise 4 at the end of the chapter) has
the property that —log dq is not psh.

So plurisubharmonicity of —logdg fails at some z € ). Since {2 has a
psh exhaustion function if and only if it has one defined near 0f) (exercise),
we may as well suppose that z € U N 2. So the complex Hessian of — log dg
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has a negative eigenvalue at z. Quantitatively, there is a direction w so that

2

—logd (z+(w)‘ =\>0.
ocac =0

To exploit this, we let ¢(() = logda(z + (w) and examine the Taylor
expansion about ¢ =0 :

2 2
g dn(z +w) = 6(0) = 0(0) + 2Re { S200)- ¢+ 55000+ }
+ 0 0T rollcP)
oCac
= logdq(z) + Re{AC + B¢*} (6.1)
+ A|IC]? + o([¢]), (6.5.5.1)

where A, B are defined by the last equality.
Now choose a € C" such that z + a € 0Q and |a| = do(z). Define the
function

V() = 2+ Cw + aexp(A¢ + B¢?), ¢ € C small,
and notice that ¢(0) = z + a € 99Q. Also, by (6.5.5.1),

do(¢(¢)) = da(z + Cw) — la| - [exp(AC + BCY)|
> do(2) - [exp(AC + B[ exp (A[C]* + o(|¢[*))
— lal - [exp(A¢ + B¢?)|

> |a| - |exp(A¢ + B¢?)| {exp(A[¢]?/2) — 1}
=0 (6.5.5.2)

if ¢ is small. These estimates also show that, up to reparametrization,
describes an analytic disc which is contained in € and which is internally
tangent to 02. The disc intersects 0f) at the single point z + a (see Figure
6.5.).

On geometrical grounds, then, (9/9¢)(dq o ¥)(0) = 0. In order for
(6.5.5.2) to hold, it must then be that (0%/9¢C)(dg o 1)(0) > 0 since the
term 2Re[(9?/9¢?)(dg o ¥)(0)¢?] in the Taylor expansion of dg o 1) is not of
constant sign.
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Figure 6.5: Analytic discs.

We have proved that the defining function

(2) = —do(2) if z€QNU
PEIZY dealz) if zeQnU

does not satisfy the Levi pseudoconvexity condition at z + a = 1(0) € 0
in the tangent direction ¢’(0). that is a contradiction. (See the important
remark at the end of the proof of the theorem.)

(3) = (4) Let ® be the psh function whose existence is hypothesized in (3).
Let Q. = {z € Q: ®(2) + |2]?> < ¢},c € R. Then each Q. CC Q, by the
definition of exhausting function, and ¢ > ¢ implies that Q. CC Q.. Let
0<¢eCx(C),[¢=1,6¢polyradial [i.e. ¢(z1,...,2,) = &(|z1], ..., |zal)]-
We may assume that ¢ is supported in B(0,1). Pick ¢; > 0 such that
€; < dist(2j11,09). For z € Q44 set

@,(z) = / B(C) + CPIe ™6 (2 — )y AV(C) + |2 + 1.

Then ®; is €' and strictly psh on ;41 (use Proposition 2.1.12). We know
that ®,(¢) > ®(¢) + [¢]? on Q;. Let x € C*(R) be a convex function with
x(t) =0 when t <0 and x'(¢), x"(t) > 0 when ¢ > 0. Observe that ¥;(z) =
x(®;(2) — (j—1)) is positive and psh on Q;\ Q;_; and is, of course, C*°. Now
we inductively construct the desired function ®'. First, &g > ® on €. If a4 is
large and positive, then ®| = ®g+a, ¥y > @ on ;. Inductively, if ay, ..., ap—1
have been chosen, select a;, > 0 such that ¢, = &y + Z§=1 a;W; > ® on ().
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Since Wy, = 0 on Qy,k > 0, we see that @, , = @), ,, on € for any
k, k" > 0. So the sequence @/, stabilizes on compacta and ®' = limy_., P} is a
C° strictly psh function that majorizes ®. Hence @' is the smooth, strictly
psh exhaustion function that we seek.

(4) = (5) Immediate from the definition of convexity with respect to a family
of functions.

(5) = (6) Let d C € be a closed analytic disc and let u € P(). Let
¢ : D — d be a parametrization of d. Then u o ¢ is subharmonic, so for any
2 € D,

uo P(z) < sup u(().
CedD

It follows that, for any p € d,

u(p) < sup u(§).
ccod

Therefore d C 8ag). Thus if {d, }aea is a family of closed analytic discs in
Q, then Ud, C (Ua0da)po)- Hence (6) holds.
(6) = (7) If not, there is a closed analytic disc ¢ : D — d C €2 and a distance

o

function p such that po(d) < pe(dd). Note that, because the continuous
image of a compact set is compact, d is both closed and bounded.

Let po Eé be the p—nearest point to 2. We may assume that ¢(0) = po.
Choose zy € 0N so that u(py — 20) = pa(po). It follows that the discs
d; = d+ (1 —(1/7))(20 — po) satisty Udd; CC Q whereas Ud; DO {(1 —
(1/9)z0 + (1/4)po} — 20 € 092 This contradicts (6).

(7) = (1) (This ingenious proof is due to Hartogs.)

It is enough to check plurisubharmonicity at a fixed point zo € €2, and
for any distance function . Fix a vector a € C" : we must check the subhar-
monicity of ¢ : ( — —log uq(zo+ a(), ¢ € C small. If |a| is small enough, we
may take |¢| < 1. We then show that

1 o 0
w0 <5 [ v,

Now |, is continuous. Let € > 0. By the Stone-Weierstrass theorem, there
is a holomorphic polynomial p on C such that if h = Rep then

sup [$(¢) = h(Q)] < e

¢edD
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We may assume that h > 1 on 9D. Let b € C" satisty pu(b) < 1. Define a
closed analytic disc

¢:C»—>ZO+Ca+be_p(o, I < 1.

Identifying ¢ with its image d as usual, our aim is to see that d C €. If we
can prove this claim, then the proof of (1) is completed as follows: Since b
was arbitrary, we conclude by setting ¢ = 0 that zy + be P € Q for every
choice of b a vector of p length not exceeding 1. It follows that the ball with
p—radius |e™P©| and center z is contained in 2. Thus

pa(z0) 2 |70 = 7O,
Equivalently,

Lo I
¥(0) = —log ua(z0) < h(0) = /0 h(e)do < %/0 Y (e®)df + e.

S or

Letting ¢ — 0T then yields the result.

It remains to check that d C Q. The proof we present will seem unnec-
essarily messy. For it is fairly easy to see that dd lies in 2. The trouble is
that, while the spirit of (7) suggests that we may then conclude that d itself
lies in €2, this is not so. There are no complex analytic obstructions to this
conclusion; but there can be topological obstructions. To show that d in its
entirety lies in €2, we must demonstrate that it is a continuous deformation of
another disc that we know a priorilies in €. Thus there are some unpleasant
details.

We define the family of discs

d,\:C»—>ZO—I—Ca—|—)\be_p(o,0§)\§1.

Let S={A:0< X< 1andd C Q}. We claim that S = [0, 1]. Of course
d; = d so that will complete the proof. We use a continuity method.
First notice that, by the choice of a, 0 € S. Hence S is not empty.
Next, if P € dy choose {; € D so that d((;) = P. If \; — X then
dy,(¢o) = P; — P. So the disc d, is the limit of the discs dy; in a natural
way. Moreover Up<x<10dy CC (2 because

1t ((20 + Ca) — (z0 + Ca+ Moe9)) = p(Abe )
(O
-

pa(zo + Ca).

AN VAN
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We may not now conclude from (7) that Up<x<10dy CC §2 because the Kon-
tinuitatssatz applies only to discs that are known a priori to lie in €. But
we may conclude from the Kontinuitatssatz and the remarks in the present
paragraph that S is closed.

Since 2 is an open domain, it is also clear that S is open.

We conclude that S = [0, 1] and our proof is complete.

(1) = (2) Trivial.

(4) = (11) Let @ be as in (4). The level sets {z € 2 : ®(z) < ¢} may not
all have smooth boundary; at a boundary point where V& vanishes, there
could be a singularity. However Sard’s theorem ([KRP1]) guarantees that
the set of ¢’s for which this problem arises has measure zero in R. Thus we
let Q; = {z € Q: ®(2) < \;}, where \; — +oo are such that each ; is
smooth. Since ® is strictly psh, each (2; is strongly pseudoconvex.

(11) = (10) It is enough to prove that a strongly pseudoconvex domain
D with smooth boundary is Hartogs pseudoconvex. But this follows from
(8) = (3) = (4) == (5) = (6) = (1) = (2) above (see Figure 7.4 to
verify that we have avoided circular reasoning).

(10) = (2) Let § be the Euclidean distance. By (2) = (3) = (4) = (5) =
(6) = (1) above, —logdq, is psh for each j. Hence —logdq is psh and €2 is
Hartogs pseudoconvex.

(7) = (8) Trivial.

(8) = (6) Let u be the distance function provided by (8). If (6) fails then
there is a sequence {d;} of closed analytic discs lying in Q with puq(0d;) >
do > 0 whereas ,ug(((ij) — 0. that is a contradiction.

(1) = (9) Let ¢ be Euclidean distance. If 9 is C?, then dq(-) is C* at points

P that are sufficiently near to 992 (see [KRP1]). Consider such a P € Q and
w € C". By (1), —logdg is psh on . Hence

n

> (-t (Pryae (P + ) (5240)) (24 ) wm o

Jk=1

Multiply through by dq(P), and restrict attention to w that satisfy

> (0dqa/0z;)(P)w; = 0.
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Letting P — 0f2, the inequality becomes

"L 9%dg

k=1 Ik

for all P € 012, all w € C" satisfying
ddg

But the function

—do(z) if 2€Q
pl2) = { deg(z) if 2¢Q

is a C? defining function for z near 9Q (which may easily be extended to all
of C*). Thus (6.5.5.3) simply says that 2 is Levi pseudoconvex. 0

6.6 The Idea of Domains of Holomorphy

Capsule: A domain 2 in C or C" is a domain of holomorphy if
it is the natural domain of definition of some holomorphic func-
tion. In other words, there is an f holomorphic on €2 that cannot
be analytically continued to any larger domain. It is natural to
want to give an extrinsic geometric characterization of domains
of holomorphy. In one complex variable, any domain whatever is
a domain of holomorphy. But in several variables the question is
genuine: for some domains are domains of holomorphy and some
not. The concept of pseudoconvexity turns out to be the right
differential geometric measure for distinguishing these important
domains.

We now direct the machinery that has been developed to derive several
characterizations of domains of holomorphy. These are presented in Theorem
6.6.5. As an immediate consequence, we shall see that every domain of holo-
morphy is pseudoconvex. This leads to a solution of the Levi problem: that
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is, to see that every pseudoconvex domain is a domain of holomorphy. Thus
Theorems 6.6.5 and 6.5.5, together with the solution of the Levi problem,
give a total of 22 equivalent characterizations of the principal domains that
are studied in the theory of several complex variables.

Recall that a domain of holomorphy is a domain in C" with the property
that there is a holomorphic function f defined on €2 such that f cannot be
analytically continued to any larger domain. There are some technicalities
connected with this definition that we cannot treat here; see [KRA4] for
the details. It raises many questions because other reasonable definitions of
“domain of holomorphy” are not manifestly equivalent to it. For instance,
suppose that €2 C C™ has the property that 02 may be covered by finitely
many open sets {Uj}‘é\il so that Q2 N U; is a domain of holomorphy, j =
1,..., M. Is Q then a domain of holomorphy? Suppose instead that to each
P € 002 we may associate a neighborhood Up and a holomorphic function
fp:UpNQ — C so that fp cannot be continued analytically past P. Is €2
then a domain of holomorphy?

Fortunately, all these definitions are equivalent to the original definition
of domain of holomorphy, as we shall soon see. We will ultimately learn that
the property of being a domain of holomorphy is purely a local one.

In what follows, it will occasionally prove useful to allow our domains of
holomorphy to be disconnected (contrary to our customary use of the word
“domain”). We leave it to the reader to sort out this detail when appropriate.
Throughout this section, the family of functions O = O(2) will denote the
holomorphic functions on 2.

If K is a compact set in €2 then we define

Ko={z€Q:|f(2)| <sup|f(w)| for all f € O(Q)}.
we

We call IA(O the hull of K with respect to O. We say that the domain (2 is
convex with respect to O if, whenever K CC (2, then Ko CC Q.
By way of warming up to our task, let us prove a few simple assertions

about Ko when K CC 2 (note that we are assuming, in particular, that K
is bounded).

Lemma 6.6.1 The set Ko is bounded (even if 2 is not).

Proof: The set K is bounded if and only if the holomorphic functions
fi(z) = z1,..., fu(z2) = z, are bounded on K. This, in turn, is true if and
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only if fi,..., f, are bounded on [A(@; and this last is true if and only if [A(@
is bounded. O

Lemma 6.6.2 The set IA(O 1s contained in the closed convex hull of K.

Proof: Apply the definition of IA(O to the real parts of all complex linear
functionals on C™ (which, of course, are elements of O). Then use the fact
that |exp(f)| = exp(Re f). O

Prelude: Analytic discs turn out to be one of the most useful devices for
thinking about domains of holomorphy. This next lemma captures what is
most interesting about an analytic disc.

Lemma 6.6.3 Let d C €2 be a closed analytic disc. Then d C 8/(59

Proof: Let f € O. Let ¢ : D — d be a parametrization of d. Then fo ¢ is
holomorphic on D and continuous on D. Therefore it assumes its maximum
modulus on 0D. It follows that

sup | f(2)| = sup |f(2)]. O

zed zeod

Exercise for the Reader:

Consider the Hartogs domain Q = D?*(0, 1) \ D (0 / ) Let K =
{(0,3¢"/4) : 0 < 0 < 2w} cC Q. Verify that Ko = {(0,7¢¥) : 0 < 0 <
27 % <r< 4} which is not compact in €.

It is sometimes convenient to calculate the hull of a compact set K with
respect to an arbitrary family F of functions. The definition is the same:

Kr={ze€Q:|f(2)| < sup |f(w)| for all f € F(Q)}.
weK

Sometimes, for instance, we shall find it useful to take F to be the family of
plurisubharmonic functions.

Now we turn our attention to the main results of this section. First, a
definition is needed. This is a localized version of the definition of domain of
holomorphy.
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Definition 6.6.4 Let U C C" be an open set. We say that P € 90U is
essential if there is a holomorphic function h on U such that for no connected
neighborhood Us of P and nonempty U; C UsNU is there an hy holomorphic
on Uy with h = hy on Uj.

Prelude: Just as for pseudoconvexity, it is useful to have many different
ways to think about domains of holomorphy. And the proofs of their equiv-
alence are some of the most basic arguments in the subject.

Theorem 6.6.5 Let 0 C C" be an open set (no smoothness of 9§) nor
boundedness of €2 need be assumed). Let O = O(2) be the family of holo-
morphic functions on ). Then the following are equivalent.

(1) Q is convex with respect to O.

(2) There is an h € O that cannot be holomorphically continued past any
P € 09 (i.e. in the definition of essential point the same function h
can be used for every boundary point P).

(3) Each P € 01) is essential (2 is a domain of holomorphy ).

(4) Each P € 02 has a neighborhood Up such that Up N is a domain of
holomorphy.

(5) Each P € 092 has a neighborhood Up so that Up N ) is convex with
respect to Op = {holomorphic functions on Up N 2}.

(6) For any f € O, any K CC ), any distance function p, the inequality
lf(2)| < palz), Vze K

implies that -
1f(2)] < pa(z), Vze Ko.

(7) For any f € O, any K CC (Q, and any distance function p, we have

s nh )= o o)
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3 < 2 <« 1
v T
6 > 9 > 10 » 11
v

7 » 8

Figure 6.6: Scheme of the proof of Theorem 6.6.5.

(8) If K CC Q then, for any distance function p,
o (K) = po (f(o) :

(9) Same as (6) for just one distance function .
(10) Same as (7) for just one distance function .

(11) Same as (8) for just one distance function pu.

Remark: The scheme of the proof is shown in Figure 6.6. Observe that
(4) and (5) are omitted. They follow easily once the Levi problem has been
solved. O

We shall defer the proof of Theorem 6.6.5 while we discuss its many
consequences.

6.6.1 Consequences of Theorems 6.5.5 and 6.6.5

Corollary 6.6.6 If 2 C C" is a domain of holomorphy, then €2 is pseudo-
convex.

Proof: By part (1) of Theorem 6.6.5, €2 is holomorphically convex. It fol-
lows a fortiori that € is convex with respect to the family P(2) of all psh
functions on 2 since |f| is psh whenever f is holomorphic on 2. Thus, by
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part (5) of Theorem 6.5.5, € is pseudoconvex. O

Corollary 6.6.7 Let {2, }aca be domains of holomorphy in C". If Q =
NacaSly is open, then €2 is a domain of holomorphy.

Proof: Use part (8) of Theorem 6.6.5. O

Corollary 6.6.8 If ) is geometrically convex, then 2 is a domain of holo-
morphy.

Proof: Let P € 09Q. Let (ay,...,a,) € C" be any unit outward nor-
mal to 02 at P. Then the real tangent hyperplane to 02 at P is {z :

Re [Z;;l(zj — Pj)aj:| = 0}. But then the function
1
(52— P)as)

is holomorphic on € and shows that P is essential. By part (3) of Theorem
6.6.5, 2 is a domain of holomorphy. O

fr(z) =

Exercise for the Reader:
Construct another proof of Corollary 6.6.8 using part (1) of Theorem 6.6.5.

Remark: Corollary 6.6.8 is a poor man’s version of the Levi problem. The
reader should consider why this proof fails on, say, strongly pseudoconvex
domains: Let 2 C C" be strongly pseudoconvex, p the defining function for
Q. For P € 0192,

n

pz) = p(P)+2Re {Z FE(P) = P)

Ly~ &

2 = 020z,
= azjaik

(P)(zj — Pj)(z2k — Pk)}

+ (P)(zj — P;)(Z — Pi) + o]z — PP).
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Define

Zazj Z azk (2 = P)(zi = P).

The function Lp(z) is called the Levi polynomml at P. For |z — P| sufficiently
small, z € 0, we have that Lp(z) = 0 if and only if z = P. For Lp(z) = 0
means that p(z) > C|z — P]*> + o(|]z — P|?). Hence Lp is an ersatz for fp
in the proof of Corollary 6.6.8 near P. In short, P is “locally essential.” It
requires powerful additional machinery to conclude from this that P is (glob-
ally) essential. 0

6.6.2 Consequences of the Levi Problem

Assume for the moment that we have proved that pseudoconvex domains
are domains of holomorphy (we did prove the converse of this statement in
Corollary 6.6.6.). Then we may quickly dispatch an interesting question. In
fact, historically, this result played a crucial role in the solution of the Levi
problem.

Prelude: In classical studies of the Levi problem, the Behnke-Stein theorem
was basic. It gave a method of reducing the question to the study of strongly
pseudoconvex domains.

Theorem 6.6.9 (Behnke-Stein) Let 2; C Qs C --- be domains of holo-
morphy. Then ) = U;(); is a domain of holomorphy.

Proof: Each ; is pseudoconvex (by 6.6.6) hence, by Proposition 6.5.7, € is
pseudoconvex. By the Levi problem, €2 is a domain of holomorphy. O

Remark: It is possible, but rather difficult, to prove the Behnke-Stein theo-
rem directly, without any reference to the Levi problem. Classically, the Levi
problem was solved for strongly pseudoconvex domains and then the fact that
any weakly pseudoconvex domain is the increasing union of strongly pseu-
doconvex domains, together with Behnke-Stein, was used to complete the
argument. See [BER] for a treatment of this approach. 0
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Proof of Theorem 6.6.5

(2) = (3) Trivial.

(11) = (1) Trivial.

(1) = (2) Choose a dense sequence {w;}32; C € that repeats every point
infinitely often. For each j, let D; be the largest polydisc D" (w,, r) contained
in €2. Choose a sequence K1 CC Ky CC K3 CC --- with U‘;‘;lKj = (). For

each 7, (I/(\J)o CC 2 by hypothesis. Thus there is a point z; € D; \ (I/(\J)@
This means that we may choose an h; € O such that h;(z;) =1, ‘ hj|Kj <L

By replacing h; by hMj, M; large, we may assume that |h;|,. | < 277. Write
j j j JlK;

h(z) =[] - hy)

J=1

Then the product converges uniformly on each Kj, hence normally on €2,
and the limit function A is not identically zero (this is just standard one vari-
able theory—see, for instance, L. Ahlfors [1]). By the choice of the points
wj, every D; contains infinitely many of the z, and hence contains points at
which A vanishes to arbitrarily high order. Any analytic continuation of A
to a neighborhood of a point P € 0f2 is a continuation to a neighborhood of
some D; and hence would necessitate that i vanish to infinite order at some
point. This would imply that h = 0, which is a clear contradiction.

(3) = (6) Fix r = (rq,...,7,) > 0. Define a distance function p"(z) =
maxi<;<n{|2j|/r;}. We first prove (6) for this distance function. Let f €
O, K cC Q satisty |f(2)| < ph(2), 2 € K. We claim that for all g € O, all

p € Kp, it holds that ¢ has a normally convergent power series expansion on

{zeC":p (z—p) <|f®|} =D (1. If®)] - r1) X - X D' (pn, | f(P)] - 7).

This implies (6) for this particular distance function. For if |f(p)| > uo(p)
for some p € Ko, then D(py, |f(p)|-r1) X -+ x D (pn, | f(p)| - ) has points
in it which lie outside Q (to which every g € O extends analytically!). That
would contradict (3). To prove the claim, let 0 <t < 1, let g € O, and let

So= ULz eCh iy (z—k) <t )]}

keK
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Since S; CC 2 by the hypothesis on f, there is an M > 0 such that |g] < M
on S;. By Cauchy’s inequalities,

(2) ool et

< -
= FelalFR)er
But then the same estimate holds on IA(O. So the power series of g about
p € Ko converges on D'(py,t|f(p)| - r1) x --+ x DY(pn,t|f(p)] - rn). Since
0 < t < 1 was arbitrary, the claim is proved. So, in the special case of
distance function p”, the implication (3) = (6) is proved.
Now fix any distance function p. Define, for any w € C",

Vk € K, all multi-indices a.

Sa(z) =sup{r e R:z+71w e, V|r| <r,7 € C}.

Then, trivially,
puo(z) = inf Sg(z). (6.6.5.1)

m(w)=1
If we prove (6) for S& instead of g, w fixed, then the full result follows from
(6.6.5.1).
After a rotation and dilation, we may suppose that w = (1,0,...,0). If
k € N, we apply the special case of (6) to the n—tuple r* = (1,1/k,...,1/k).
Notice that yfy, / S¥ as k — +oo. Let K CC Q. Assume that | f(z)| < S(z)
for z € K. Let € > 0. Define

,r.k
Ap =1z ()] < (L + )pg (2)}-
Then {Ax} is an increasing sequence of open sets whose union contains K.
Thus one of the sets Ay, covers K. In other words,

f < 1+ i’ (2), 2 € K.

By what we have already proved for the ",

FE < 0+ oun' (2) < (1+6)S8(2), Vz € Ko.
Letting € — 07 yields |f(2)| < S&(z),z € Ko, as desired.
(6) = (9) Trivial.
(9) = (10) Trivial.
(10) = (11) Apply (10) with f = 1.
(7) = (8) Apply (7) with f = 1.
(8) = (11) Trivial.
(6) = (7) Trivial. O
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Chapter 7

Canonical Complex Integral
Operators

Prologue: In the function theory of one complex variable the ob-
vious “canonical” integral kernels are the Cauchy kernel and the
Poisson kernel. The Cauchy kernel may be discovered naturally
by way of power series considerations, or partial differential equa-
tions considerations, or conformality considerations. The Poisson
kernel is the real part of the Cauchy kernel. It also arises nat-
urally as the solution operator for the Dirichlet problem. It is
rather more difficult to get one’s hands on integral reproducing
kernels.

There are in fact a variety of formal mechanisms for generating
canonical kernels. These include those due to Bergman, Szego,
Poisson, and others. Thus arises a plethora of canonical kernels,
both in one and several complex variables. In one complex vari-
able, all these different kernels boil down to the Cauchy kernel or
the Poisson kernel. In several variables they tend to be different.

There are also non-canonical methods—due to Henkin, Ramirez,
Kerzman, Grauert, Lieb, and others—for creating reproducing
kernels for holomorphic functions. Thus there exist, in principle,
infinitely many kernels worthy of study on any domain (satisfy-
ing reasonable geometric conditions) in C". In general (in several
variables), these kernels will be distinct.

It is a matter of considerable interest to relate the canonical

155
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kernels described above to the non-canonical ones. The canonical
kernels have many wonderful properties, but tend to be difficult to
compute. The non-canonical kernels are more readily computed,
but of course do not behave canonically.

There are also kernels that can be constructed by abstract
methods of function algebras. It is nearly impossible to say
anything concrete about these kernels. In particular, nothing
is known about the nature of their singularities. But it can be
shown abstractly that every domain has a kernel holomorphic in
the free variable (like the Cauchy kernel) that reproduces holo-
morphic functions.

It is difficult to create an explicit integral formula, with holomorphic
reproducing kernel, for holomorphic functions on a domain in C". This dif-
ficulty can be traced back to the Hartogs extension phenomenon: the zeros
of a holomorphic function of several variables are never isolated, and thus
the singularities of the putative kernel are difficult to control (contrast the
Cauchy kernel 1/(¢ — z) of one variable, which has an isolated singularity at
¢ = z). Early work on integral formulas in several variables concentrated on
the polydisc and on bounded symmetric domains—see [WEI].

There are special classes of domains—such as strongly pseudoconvex
domains—on which the creation of integral formulas may be carried out quite
constructively. We cannot treat the details here, but see [KRA4, Ch. 5]. We
now examine one of several non-constructive (but canonical) approaches to
the matter.! One of the main points of the present book is to study some
of these canonical kernels on the Siegel upper half space and the Heisenberg
group.

It may be noted that the explicitly constructible kernels and the canoni-
cal kernels on any given domain (in dimension greater than 1) are in general
different. On the disc in C' they all coincide. This is one of the remark-
able facts about the function theory of several complex variables, and one
that is not yet fully understood. The papers [KST1] and [KST2| explore
the connection between the two types of kernels on strongly pseudoconvex
domains.

'One cannot avoid observing that, in one complex variable, there is an explicit repro-
ducing formula—the Cauchy formula—on every domain. And it is the same on every
domain. Such is not the case in several complex variables.
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The circle of ideas regarding canonical kernels, which we shall explore in
the present chapter, are due to S. Bergman ([BERG] and references therein)
and to G. Szeg6 (see [SZE]; some of the ideas presented here were anticipated
by the thesis of S. Bochner [BOC1]). They have profound applications to the
boundary regularity of holomorphic mappings. We shall say a few words
about those at the end.

7.1 Basics of the Bergman Kernel

Capsule: Certainly the Bergman kernel construction was one
of the great ideas of modern complex function theory. It not
only gives rise to a useful and important canonical reproducing
kernel, but also to the Bergman metric. The Bergman kernel
and metric are expedient in the study of biholomorphic map-
pings (again because of its invariance) and also in the study of
elliptic partial differential equations. In the hands of Charles Fef-
ferman [FEFS|, the Bergman theory has given rise to important
biholomorphic invariants. The Bergman kernel is closely related
philosphically, and sometimes computationally, to the Szegd ker-
nel. The Bergman kernel deals with integration over the solid
region () while the Szeg6 kernel deals with integration over the
boundary 0f). Each kernel looks at a different function space.
We close by noting (see [FEFT7]) that Bergman metric geodesics
carry important information about biholomorphic mappings and
about complex function theory and harmonic analysis.

In this section we shall construct the Bergman kernel from first principles
and prove some of its basic properties. We shall also see some of the invari-
ance properties of the Bergman kernel. This will lead to the definition of the
Bergman metric (in which all biholomorphic mappings become isometries).
The Bergman kernel has certain extremal properties that make it a powerful
tool in the theory of partial differential equations (see S. Bergman and M.
Schiffer [BERS]). Also the form of the singularity of the Bergman kernel (cal-
culable for some interesting classes of domains) explains many phenomena of
the theory of several complex variables.
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Let Q C C" be a domain. Define the Bergman space
A%(Q) = {f holomorphic on €2 : / 1f(2)PdV(2)Y? = | fllaz(e) < oo} .
Q

Remark that A? is quite a different space from the space H? that is con-
sidered in our Chapter 8. The former is defined with integration over the
2n-dimensional interior of the domain, while the latter is defined with re-
spect to integration over the (2n — 1)-dimensional boundary.

Prelude: The entire Bergman theory hinges on the next very simple lemma.
In fact Aronsajn’s more general theory of Bergman space with reproducing
kernel (see [ARO]) also depends in a key manner on this result.

Lemma 7.1.1 Let K C Q C C" be compact. There is a constant Cx > 0,
depending on K and on n, such that

sulg|f(2)| < Crlfllaz@ » all f e A*(Q).
ze

Proof: Since K is compact, there is an r(K) = r > 0 so that we have, for
any z € K, that B(z,7) C Q. Therefore, for each 2 € K and f € A%(Q),
) = =

B s, SOV )
V(B ) 2 fll 2
C(n)r™"(| fll a2(e)

Ck| flla2() -

1

AN A

Lemma 7.1.2 The space A*(Q)) is a Hilbert space with the inner product

(f,9) = Jo f(2)g(2) AV (2).

Proof: Everything is clear except for completeness. Let {f;} C A% be a
sequence that is Cauchy in norm. Since L? is complete there is an L? limit
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function f. We need to see that f is holomorphic. But Lemma 7.1.1 yields
that norm convergence implies normal convergence (uniform convergence on
compact sets). And holomorphic functions are closed under normal limits
(exercise). Therefore f is holomorphic and A?(Q) is complete. 0

Remark 7.1.3 It fact it can be shown that, in case €2 is a bounded domain,
the space A%(Q) is separable (of course it is a subspace of the separable space
L*(€)). The argument is nontrivial, and the reader may take it as an exercise
(or see [GRK12]). 0

Lemma 7.1.4 For each fixed z € (), the functional
©.: f e f2), fe€ANQ
is a continuous linear functional on A%((Q).

Proof: This is immediate from Lemma 7.1.1 if we take K to be the singleton

{z}. 0

We may now apply the Riesz representation theorem to see that there is
an element k, € A?(Q2) such that the linear functional ®, is represented by
inner product with k, : if f € A?(Q) then for all z € Q then we have

f(z2) = @:(f) = ([, k2).

Definition 7.1.5 The Bergman kernel is the function K(z,() = k.((), z,( €
Q). It has the reproducing property

f(z) = / K(=OfQdV(0), Vf € A(Q).

Prelude: There are not many domains on which we can calculate the
Bergman kernel explicitly. In any presentation of the subject, the disc and
the ball are the two primary examples. Also the polydisc can be handled
with the same calculations. In the seminal work [HUA], the kernel on the
bounded symmetric domains of Cartan is considered. Absent a transitive
group of holomorphic automorphisms, it is virtually impossible to get a for-
mula for the kernel. What one can sometimes do instead is to derive an
asymptotic ezpansion—see for example [FEF7] or [KRPE].
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Proposition 7.1.6 The Bergman kernel K(z,() is conjugate symmetric:

K(z,¢) = K(¢, 2).

Proof: By its very definition, K(¢,-) € A%(Q) for each fixed ¢. Therefore
the reproducing property of the Bergman kernel gives

/Q K(H)KG DAV () = K(C,2).

On the other hand,

/Q K ORC.H V() = / KRG DAV ()

O

Prelude: Part of the appeal of the Bergman theory is that these simple and
elegant results that have beautiful, soft proofs. The next result is important
in giving us a number of means to construct the Bergman kernel.

Proposition 7.1.7 The Bergman kernel is uniquely determined by the prop-
erties that it is an element of A?(Q) in z, is conjugate symmetric, and repro-
duces A%(Q).

Proof: Let K'(z,() be another such kernel. Then

K(2¢) = K(C.2) = / K'(z ) K(C.D dV (1)

- [ KCoREDav (@

= K'(2,¢) = K'(2,¢) . O

Since A*(€2) is separable, there is a complete orthonormal basis {¢;}52,
for A%(Q).
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Prelude: The next method of constructing the Bergman kernel is particu-
larly appealing. It is rarely useful, however, because it is not often that we
can write down an orthonormal basis for the Bergman space. Even in cases
where we can (such as the annulus), it is generally impossible to sum the
series.

Proposition 7.1.8 The series
> 6i(2)6;(C)
j=1

sums uniformly on E X E to the Bergman kernel K(z,() for any compact
subset £ C ).

Proof: By the Riesz-Fischer and Riesz representation theorems, we obtain

- 1/2
sup <Z |¢j(2)|2> = sup {65(2)}52]| 2

zelE

= sup Zajgbj(z)
e}l =1 | 5=
zeE
= sup |f(2)|<Cg. (7.1.8.1)
171 42 =1

z€E

In the last inequality we have used Lemma 7.1.1. Therefore

0o 00 172 / 1/2
> [64(206,(0)| < <Z |¢j<z>|2> <Z |¢j<<>|2>

and the convergence is uniform over z,{ € E. For fixed z € €, (7.1.8.1)
shows that {¢;(2)}32; € £*. Hence we have that ) ¢;(2)¢;(¢) € A%(Q) as a
function of ¢. Let the sum of the series be denoted by K'(z, (). Notice that
K’ is conjugate symmetric by its very definition. Also, for f € A%(2), we
have

[ K0R0av©) = Y Fies) = 10
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where convergence is in the Hilbert space topology. [Here f(]) is the j*®
Fourier coefficient of f with respect to the basis {¢,}.] But Hilbert space
convergence dominates pointwise convergence (Lemma 7.1.1) so

f(z) = / K'(20f(Q)dV(Q), all f € AX(Q).

Therefore, by 7.1.7, K’ is the Bergman kernel. O

Remark: It is worth noting explicitly that the proof of 7.1.8 shows that

> 6,(2)6;(0)

equals the Bergman kernel K(z,() no matter what the choice of complete
orthonormal basis {¢;} for A%(Q). O

Proposition 7.1.9 If() is a bounded domain in C" then the mapping

Pifis /Q K(- Q) F(Q)dV(Q)

is the Hilbert space orthogonal projection of L*(Q), dV') onto A%*(QQ).

Proof: Notice that P is idempotent and self-adjoint and that A?(Q) is pre-
cisely the set of elements of L? that are fixed by P. O

Definition 7.1.10 Let 2 C C" be a domain and let f : 2 — C" be a holo-
morphic mapping, that is f(z) = (fi(2),..., fu(z)) with fi,..., f,, holomor-
phic on Q. Let w; = f;(2),5 = 1,...,n. Then the holomorphic (or complez)
Jacobian matriz of f is the matrix

8(w1, ce ,wn)

Jef = Ozt zn)

Write z; = xj +1y;, wy = & +ink, j, k = 1,...,n. Then the real Jacobian
matriz of f is the matrix

_ 8(6177717 s >€n>77n)
a($1>y17 s >In>yn).

Jrf
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Prelude: The next simple fact goes in other contexts under the guise of
the Lusin area integral. It is central to the quadratic theory, and has many
manifestations and many consequences.

Proposition 7.1.11 With notation as in the definition, we have
det Jrf = |det Jof|?
whenever f is a holomorphic mapping.

Proof: We exploit the functoriality of the Jacobian. Let w = (wy, ..., w,) =

f(Z) = (fl(z)>>fn(z)) Write Zj = Xj +iyj>wj = gj +'”7J>] = 17 n.
Then
d&y Ndny N -+ NdE, N dn, = (det Jrf(z,y))dey Adyy A -+ Adxy, A dyy,.
(7.1.11.1)
On the other hand, using the fact that f is holomorphic,
d€1 N d771 VANKIEEIAN d§n VAN d?]n (71)
= 1 d@l/\dwl/\---/\dmn/\dwn
(20)"
= 2 (det Jof(2))(det Jof(2))dzy Adzy A -+~ NdZ, A dzy,
7
= |det Jof(2)Pdxy Adyy A -+ Adxy A dy, .
(7.1.11.2)
Equating (7.1.11.1) and (7.1.11.2) gives the result. O

Exercise for the Reader:

Prove Proposition 7.1.11 using only matrix theory (no differential forms).

This will give rise to a great appreciation for the theory of differential forms
(see [BER] for help).

Now we can prove the holomorphic implicit function theorem:
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Theorem 7.1.12 Let fj(w,2),j = 1,...,m be holomorphic functions of
(w,2) = ((wi, ..., W), (21,...,2,)) near a point (w°, 2) € C"xC". Assume
that

fi(w® %) =0, j=1,...,m,

and that ap ™
det (i) £0 at (w’2°).
jk=1

8wk

Then the system of equations

filw,z)=0 , j=1,....m,

has a unique holomorphic solution w(z) in a neighborhood of 2° that satisfies

w(2%) = w’.

Proof: We rewrite the system of equations as
Re fj(w,z) =0 , Imfj(w,2) =0

for the 2m real variables Re wy, Imwy, k = 1,..., m. By Proposition 7.1.11
the determinant of the Jacobian over R of this new system is the modulus
squared of the determinant of the Jacobian over C of the old system. By our
hypothesis, this number is non-vanishing at the point (w?, 2°). Therefore the
classical implicit function theorem (see [KRP2]) implies that there exist C'!
functions wy(2),k = 1,...,m, with w(z°) = w® and that solve the system.
Our job is to show that these functions are in fact holomorphic. When
properly viewed, this is purely a problem of geometric algebra:
Applying exterior differentiation to the equations

Ozfj(’LU(Z),Z), j:1>"'>m>

yields that
0=df; = Z 8de +Zaf”dz

There are no dz;’s and no dwk S because the f;’s are holomorphic.

The result now follows from linear algebra only: the hypothesis on the
determinant of the matrix (0f;/0wy) implies that we can solve for dwy, in
terms of dz;. Therefore w is a holomorphic function on z. O
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A holomorphic mapping f : ; — 9 of domains ; C C",Qy C C™ is
said to be biholomorphic if it is one-to-one, onto, and det Jc f(z) # 0 for ev-
ery z € ;. Of course these conditions entail that f will have a holomorphic
inverse.

Exercise for the Reader:

Use Theorem 7.1.11 to prove that a biholomorphic mapping has a holo-
morphic inverse (hence the name).

Remark: It is true, but not at all obvious, that the non-vanishing of the
Jacobian determinant is a superfluous condition in the definition of “biholo-
morphic mapping;” that is, the non-vanishing of the Jacobian follows from
the univalence of the mapping (see [KRA4]). There is great interest in prov-
ing an analogous result for holomorphic mappings in infinite dimensions; the
problem remains wide open. O

In what follows we denote the Bergman kernel for a given domain €2 by
Kq.

Prelude: Next is the famous transformation formula for the Bergman ker-
nel. The Bergman metric is an outgrowth of this formula. The invariance
of the kernel is also key to many of Bergman’s applications of the kernel to
partial differential equations.

Proposition 7.1.13 Let 21,2y be domains in C". Let f : €y — (s be
biholomorphic. Then

det Je f(2) Ko, (f(2), f(Q))det Jo f(C) = K, (%, ).
Proof: Let ¢ € A%(2;). Then, by change of variable,

/Q det Je f(2) Koy (£(2), £(C))det TeF(Q)(C) dV(C)

_ / det Jo f(2) Ko, (f(2), O)det Je fF(F(C)d(f(0))

xdet Jrf1(¢) AV (C).
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By Proposition 7.1.11 this simplifies to

detef(2) [ Kou(52.0 { (der s @) "o (1) } v,

Qo

By change of variables, the expression in braces { } is an element of A%(Q).
So the reproducing property of Kq, applies and the last line equals

= det Jof(2) (det Je f(2)) ™ 6 (F(F(2)) = 6(2).

By the uniqueness of the Bergman kernel, the proposition follows. O

Proposition 7.1.14 For z € Q CC C" it holds that Kq(z,z) > 0.

Proof: Let {¢;} be a complete orthonormal basis for A?(2). Now
Kao(z,2)=>_l¢;(z)] > 0.
=1

If in fact K(z,2) = 0 for some z then ¢;(z) = 0 for all j hence f(z) = 0 for
every f € A?(Q). This is absurd. O

It follows from this last proposition that log K(z, z) makes sense on ()
and is smooth.
Definition 7.1.15 For any 2 C C" we define a Hermitian metric on €2 by

2

94(2) = 557
1 J

log K(z,z), zé€qQ.

This means that the square of the length of a tangent vector £ = (&1, ...,&,)
at a point z € () is given by

|f|2B,z = Zgij(z)gigj- (7.1.15.1)
1,J

The metric that we have defined is called the Bergman metric.
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In a Hermitian metric {g;;}, the length of a C' curve v : [0,1] — Q is

given by
. . 1/2
=/ |7;'(t)|B,“/(t)dt:/0 <Zgi,j(7(t))%(t)%(t)> dt.
0 v

If P,@Q are points of € then their distance do(P, Q) in the metric is defined
to be the infimum of the lengths of all piecewise C'!' curves connecting the
two points.

It is not a priori obvious that the Bergman metric (7.1.15.1) for a
bounded domain 2 is given by a positive definite matrix at each point. See
[KRA4] for a sketch of the proof of that assertion.

Prelude: Here we see that the Bergman theory gives rise to an entirely new
way to construct holomorphically invariant metrics. This is the foundation of
Kahler geometry, and of many other key ideas of modern complex differential
geometry.

Proposition 7.1.16 Let (21,05 C C" be domains and let f : Q; — Qs be a
biholomorphic mapping. Then f induces an isometry of Bergman metrics:

€|B.- = [(Jcf)é|B.sz)

for all z € Q1,6 € C". Equivalently, f induces an isometry of Bergman
distances in the sense that

Proof: This is a formal exercise but we include it for completeness:
From the definitions, it suffices to check that

> a2 (f(2) (Jef(2)w )(ch ) Zg 2) Wi, (7.1.16.1)
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for all z € Q,w = (wy, ..., w,) € C". But, by Proposition 7.1.13,

2

65! (2) = go=lon Ko (2,2)

2
8zi§j
2

= log Ko, (f(2), f(2)) (7.1.16.2)

log {|det Je f(2)* Ko, (f(2), f(2)) }

since log |det Je f(2)|? is locally
log (det Jc f) + log (det Jc f) + C

hence is annihilated by the mixed second derivative. But line (7.1.16.2) is
nothing other than

S (1) LD 2]

tm 8zz 8§j
lm

and (7.1.16.1) follows. O

Proposition 7.1.17 Let 2 CC C" be a domain. Let z € Q. Then

f(2)]?
K2 = sp L0 G 1pe
fEA2(Q) ||f||A2 1 £1l 42(0)=1

Proof: Now
K(z,2) = ) lo;(2)
B <II{;}ITIIZZ=1 ZQSj(Z)aj

= sup [f(x),
141 42=1

)2

gear [1f1%e
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7.1.1 Smoothness to the Boundary of K

It is of interest to know whether Kq is smooth on  x Q. We shall see below
that the Bergman kernel of the disc D is given by

Kp(z,¢) = %ﬂfﬁ

It follows that Kp(z, z) is smooth on D x D\ (boundary diagonal) and blows
up as z — 17. In fact this property of blowing up along the diagonal at the
boundary prevails at any boundary point of a domain at which there is a
peaking function (apply Proposition 7.1.17 to a high power of the peaking
function). The reference [GAM] contains background information on peaking
functions.
However there is strong evidence that—as long as €2 is smoothly bounded—

on compact subsets of

QxQ\ ((0Q x ) N{z=(}),

the Bergman kernel will be smooth. For strongly pseudoconvex domains,
this statement is true; its proof (see [KER]) uses deep and powerful methods
of partial differential equations. It is now known that this property fails for
the Diederich-Fornaess worm domain (see [DIF] and [LIG] as well as [CHE]
and [KRPE]).

Perhaps the most central open problem in the function theory of several
complex variables is to prove that a biholomorphic mapping of two smoothly
bounded domains extends to a diffeomorphism of the closures. Fefferman
[FEFT7] proved that if €, {2, are both strongly pseudoconvex and & : 0y —
s is biholomorphic then ® does indeed extend to a diffeomorphsm of €,
to . Bell/Ligocka [BELL] and [BEL], using important technical results of
Catlin [CAT1], [CAT3], proved the same result for finite type domains in any
dimension. The basic problem is still open. There are no smoothly bounded
domains in C" for which the result is known to be false.

It is known (see [BEB]) that a sufficient condition for this mapping prob-
lem to have an affirmative answer on a smoothly bounded domain 2 C C"
is that for any multi-index « there are constants C' = C, and m = m,, such
that the Bergman kernel K¢ satisfies

(e}

S Ko2.0)| < Cd(e) "
z

sup
zeQ
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for all ¢ € Q. Here do(w) denotes the distance of the point w € 2 to the
boundary of the domain.

7.1.2 Calculating the Bergman Kernel

The Bergman kernel can almost never be calculated explicitly; unless the
domain €2 has a great deal of symmetry—so that a useful orthonormal basis
for A%(Q2) can be determined (or else 7.1.13 can be used)—there are few
techniques for determining Kg,.

In 1974 C. Fefferman [FEF7] introduced a new technique for obtain-
ing an asymptotic expansion for the Bergman kernel on a large class of do-
mains. (For an alternative approach see L. Boutet de Monvel and J. Sjéstrand
[BMS].) This work enabled rather explicit estimations of the Bergman metric
and opened up an entire branch of analysis on domains in C" (see [FEFS],
[CHM], [KLE], [GRK1]-[GRKI11] for example).

The Bergman theory that we have presented here would be a bit hollow
if we did not at least calculate the kernel in a few instances. We complete
the section by addressing that task.

Restrict attention to the ball B C C”. The functions 2%, o a multi-index,
are each in A%(B) and are pairwise orthogonal by the symmetry of the ball.
By the uniqueness of the power series expansion for an element of A?(B),
the elements z* form a complete orthogonal system on B (their closed linear
span is A%(B)). Setting

o = / 22 AV (2),
B

we see that {2%/,/7a} is a complete orthonornal system in A%(B). Thus, by
Proposition 7.1.8,

zaza
’704.

KB(Z>C) = Z

«

If we want to calculate the Bergman kernel for the ball in closed form, we need
to calculate the 7,s. This requires some lemmas from real analysis. These
lemmas will be formulated and proved on RY and By = {x € RY : |z| < 1}.
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Prelude: The next simple fact has many different proofs. It is important to
know the integral of the Gaussian, as it arises fundamentally in probability
theory and harmonic analysis.

Lemma 7.1.18 We have that

/ e el gy = 1.
RN

Proof: The case N = 1 is familiar from calculus (or see [STG1]). For the
N —dimensional case, write

_ 2 _ 2 _ 2
/ el d:B:/e mldzl---/e TEN dx
RN R R

and apply the one dimensional result. O

Let o be the unique rotationally invariant area measure on Sy_1 = 0By
and let wy_1 = o(9B).

Lemma 7.1.19 We have

where

is Fuler’s function.

Proof: Introducing polar coordinates we have

o0
lgl? 2 N
1= el dy = do e PN
RN SN-1 0

1 *° 2 dr
_ e ’T’N—.
(.UN_l 0 T

Letting s = 72 in this last integral and doing some obvious manipulations
yields the result. O

or
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Now we return to B C C™. We set

77(1{:):/ |21 do | N(l{:):/|zl|2de(z) , k=0,1,....
OB B

Lemma 7.1.20 We have

2(k) k!
—n ) Nk = .
) = g YW =T
Proof: Polar coordinates show easily that n(k) = 2(k + n)N(k). So it is
enough to calculate N (k). Let z = (21, 22, ..., 2n) = (21, 2"). We write

N(E) = /| Jatare)

_ /Wl </|21|<\/W|Zl|% dV(zl)> dv (')

1—|2/ |2
= 27T/ / r?*rdr dV (2')
|2/]<1

/| )k—l—l
_ 27T/ (Sl i
i ' 2\k+1, 2n—3
= k—_l_lujgn_gfo (1—7’) T d’f’
T ! ds
= — Woy 1— k+1 n—1"°
l{:—l—lw2 3/0 ( s)s 2s
T
= e aB(n—1,k+2),

where (3 is the classical beta function of special function theory (see [CCP]
or WHW]). By a standard identity for the beta function we then have

T I'(n—1)I(k+2)
2+ 1) T+ k+ 1)
T 27" T(n— DT (k +2)
2k+1)T(n—1) T(n+k+1)
k!
(k+n)!

N(k) =
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This is the desired result. O

Lemma 7.1.21 Let z € B C C" and 0 < r < 1. The symbol 1 denotes the
point (1,0,...,0). Then

n! 1
KB(Z)T].) == ﬁ—(l — /r’zl)'fH'l‘

Proof: Refer to the formula preceding Lemma 7.1.18. Then

2%(r1)® > zfrk
Kp(z,rl) = =
; Y ,;0 N (k)
1 < k (k+n)
—— ;(ml) !
' o0
T n
k=0
B n! 1
o (1 =zt
This is the desired result. O

Theorem 7.1.22 Ifz,( € B then

n! 1
Kp(2,¢) = EW’

where 2 - ( = 21(; + 20(s + 4+ 20(,,.

Proof: Let z = rz € B, where r = |z] and |Z] = 1. Also, fix ( € B. Choose
a unitary rotation p such that pz = 1. Then, by Lemmas 7.1.13 and 7.1.21
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we have

Kp(z,¢) = Kp(rz,¢)=K(rp '1,()
= K(rl,p¢) = K(p¢,r1)

oo

™ (1 — 7’(,0_(’)1)nJrl
_on

T (1- (1) - (p0)"
_ n !

" (1 . (’f’p_l]_) ) Z)n—l—l

n! 1

™ (1-— Z.Z)nﬂ'

Corollary 7.1.23 The Bergman kernel for the disc is given by

1

KD(%C):%'W-

Prelude: As with the Bergman kernel, the Bergman metric is generally
quite difficult (or impossible) to compute. The paper [FEF7| gives a very
useful asymptotic formula for the Bergman metric on a strongly pseudocon-
vex domain.

Proposition 7.1.24 The Bergman metric for the ball B = B(0,1) C C" is
given by
n+1 _
9ij(2) = A= 22 [(1 = 121%)di; +Ziz)] -

Proof: Since K(z,z) = n!/(7"(1 — |z|*)"™!), this is a routine computation
that we leave to the reader. O
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Corollary 7.1.25 The Bergman metric for the disc (i.e., the ball in dimen-
sion one) is
2 o
9ij(z) = SEEA 1,
This is the well-known Poincaré, or Poincaré-Bergman, metric.

Proposition 7.1.26 The Bergman kernel for the polydisc D"(0,1) C C" is

the product

K0 ==

n

J

T 1
=1 (1 - Zij)z‘

Proof: Exercise for the Reader:. Use the uniqueness property of the Bergman
kernel. O
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Exercise for the Reader:

Calculate the Bergman metric for the polydisc.

It is a matter of great interest to calculate the Bergman kernel on var-
ious domains. This is quite difficult, even for domains in the plane. Just
as an instance, an explicit formula for the Bergman kernel on the annulus
involves elliptic functions (see [BERG]). In several complex variables matters
are considerably more complicated. It was a watershed event when, in 1974,
Charles Fefferman [FEF7] was able to calculate an asymptotic expansion for
the Bergman kernel on a strongly pseudoconvex domain. Thus Fefferman
was able to write

K(z,¢) = P(z,0) + E(2,(),

where P is an explicitly given principal term and E is an error term that is
measurably smaller, or more tame, than the principal term. Our material on
pseudodifferential operators (see Appendix 2) should give the reader some
context in which to interpret these remarks. Fefferman used this asymptotic
expansion to obtain information about the boundary behavior of geodesics
in the Bergman metric. This in turn enabled him to prove the stunning re-
sult (for which he won the Fields Medal) that a biholomorphic mapping of
smoothly bounded, strongly pseudoconvex domains will extend to a diffeo-
morphism of the closures.

Work continues on understanding Bergman kernels on a variety of do-
mains in different settings. One recent result of some interest is that Krantz
and Peloso [KRPE] have found an asymptotic expansion for the Bergman
kernel on the worm domain (see [DIF]) of Diederich and Fornaess.?

7.2 The Szego Kernel

Capsule: The Szeg6 kernel is constructed with a mechanism
similar to that used for the Bergman kernel, but focused on a

2This was an important example from 1976 of a pseudoconvex domain with special
geometric properties—namely the closure of the worm does not have a Stein neighborhood
basis. In recent years the worm has proved to be important in studies of the 0 operator
and the Bergman theory. The book [CHS] provides an excellent exposition of some of
these ideas.
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different function space (H? instead of A?). The Szegd kernel
does not have all the invariance properties of the Bergman kernel;
it does not give rise to a new invariant metric. But it is still a
powerful tool in function theory. It also gives rise to the not-very-
well-known Poisson-Szegé kernel, a positive reproducing kernel
that is of considerable utility.

The basic theory of the Szegd kernel is similar to that for the Bergman
kernel—they are both special cases of a general theory of “Hilbert spaces
with reproducing kernel” (see N. Aronszajn [ARO]). Thus we only outline
the basic steps here, leaving details to the reader.

Let 2 C C" be a bounded domain with C? boundary. Let A(£2) be those
functions continuous on € that are holomorphic on €. Let H?(0Q) be the
space consisting of the closure in the L?(99, do) topology of the restrictions
to 0N of elements of A()) (see also our treatment in Chapter 8). Then
H?(09Q) is a proper Hilbert subspace of L?(9, dc). Here do is the (2n — 1)-
dimensional area measure (i.e., Hausdorff measure—see Subsection 9.9.3) on
Q. Each element f € H*(9Q) has a natural holomorphic extension to
given by its Poisson integral Pf. We prove in the next chapter that, for
o-almost every ¢ € 012, it holds that

lim f(¢ —ewg) = f(C).

e—0t

Here, as usual, v, is the unit outward normal to 02 at the point (.
For each fixed z € 2 the functional

Ve HY(Q) 3 f = Pf(2)

is continuous (why?). Let k.(¢) be the Hilbert space representative (given
by the Riesz representation theorem) for the functional v,. Define the Szegé
kernel S(z, () by the formula

S(Z>C) :kZ(C) >Z€Q> CE@Q

If f € H*(09) then

Pf(z) = /a 8,050 )
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for all z € Q2. We shall not explicitly formulate and verify the various unique-
ness and extremal properties for the Szeg6 kernel. The reader is invited to

consider these topics, referring to Section 7.1 for statements.
Let {¢;}52, be an orthonormal basis for H?(912). Define

82,0 = 0i(2)65(0) » z(eQ

For convenience we tacitly identify here each function with its Poisson ex-
tension to the interior of the domain. Then, for K C ) compact, the series
defining S’ converges uniformly on K x K. By a Riesz-Fischer argument,
S'(+,¢) is the Poisson integral of an element of H?*(9)) and S'(z,-) is the
conjugate of the Poisson integral of an element of H?(9Q). So S’ extends to
(Qx Q)U(Q x Q), where it is understood that all functions on the boundary
are defined only almost everywhere. The kernel S’ is conjugate symmetric.
Also, by Riesz-Fischer theory, S’ reproduces H?(92). Since the Szegd kernel
is unique, it follows that S = 5.
The Szego6 kernel may be thought of as representing a map

S:f ., f(©)S5(- ¢)do(C)

from L?*(0Q) to H?(0R). Since S is self-adjoint and idempotent, it is the
Hilbert space projection of L?(0€2) to H*(992).

The Poisson-Szeg6 kernel is obtained by a formal procedure from
the Szeg6 kernel: this procedure manufactures a positive repro-
ducing kernel from one that is not in general positive. Note in
passing that, just as we argued for the Bergman kernel in the
last section, S(z, z) is always positive when z € Q. The history of
the Poisson-Szegé is obscure, but seeds of the idea seem to have
occurred in [HUA] and in later work of Koranyi [KOR3].

Proposition 7.2.1 Define

P(z,() = w, z €0, €.

S(z, z)
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Then P is positive and, for any f € A(Q)) and z € €, it holds that
f(z) = ) f(QOP(z,¢)do(¢)-
Q

Proof: Fix z € ) and f € A(Q)) and define

Then u € H%(09) hence

f(z) = u(z)

= [ 80u0d©
a0
- [ P00,
a0
This is the desired formula. a

Remark: In passing to the Poisson-Szego kernel we gain the advantage of
positivity of the kernel (for more on this circle of ideas, see Chapter 1 of
[KAT]). However we lose something in that P(z, () is no longer holomorphic
in the 2z variable nor conjugate holomorphic in the ¢ variable. The literature
on this kernel is rather sparse and there are many unresolved questions. O

As an exercise, use the paradigm of Proposition 7.2.1 to construct a
positive kernel from the Cauchy kernel on the disc (be sure to first change
notation in the usual Cauchy formula so that it is written in terms of arc
length measure on the boundary). What familiar kernel results?

Like the Bergman kernel, the Szeg6 and Poisson-Szeg6 kernels can almost
never be explicitly computed. They can be calculated asymptotically in a
number of important instances, however (see [FEF7], [BMS]). We will give
explicit formulas for these kernels on the ball. The computations are similar
in spirit to those in Section 7.1; fortunately, we may capitalize on much of
the work done there.

Lemma 7.2.2 The functions {z*}, where a ranges over multi-indices, are
pairwise orthogonal and span H*(0B).
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Proof: The orthogonality follows from symmetry considerations. For the
completeness, notice that it suffices to see that the span of {z*} is dense in
A(B) in the uniform topology on the boundary. By the Stone-Weierstrass
theorem, the closed uniform algebra generated by {z*} and {Z“} is all of
C'(0B). But the monomials 2%, « # 0, are orthogonal to A(B) (use the power
series expansion about the origin to see this). The claimed density follows. O

Lemma 7.2.3 Let 1 = (1,0,...,0). Then

(n—1)! 1
2mn (1—2’1)”‘

S(z,1) =

Proof: We have that

Lemma 7.2.4 Let p be a unitary rotation on C". For any z € B,( € 0B,
we have that S(z,() = S(pz, pC).

Proof: This is a standard change of variables argument and we omit it. O

Theorem 7.2.5 The Szegé kernel for the ball is

(n—1)! 1
T

5(z,¢) =
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Proof: Let z € B be arbitrary. Let p be the unique unitary rotation such
that pz is a multiple of 1. Then, by 8.2.4,

S(z,¢) = S(p'1,0)

= S(LpC)

= S(p¢,1)
(n—1)! 1

Corollary 7.2.6 The Poisson-Szegé kernel for the ball is

(0= 1)1 (1 - |22y
2 =g

P(z,¢) =

Exercise for the Reader:

Calculate the Szeg6 and Poisson-Szegd kernel for the polydisc.
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Chapter 8

Hardy Spaces Old and New

Prologue: The theory of Hardy spaces dates back to G. H. Hardy
and M. Riesz in the early twentieth century. Part of the inspi-
ration here is the celebrated theorem of P. Fatou that a bounded
holomorphic function on the unit disc D has radial (indeed non-
tangential) boundary limits almost everywhere. Hardy and Riesz
wished to expand the space of holomorphic functions for which
such results could be obtained.

The motivation, and the ultimate payoff, for this work on
the disc is obvious. For theorems like those described in the last
paragraph link the holomorphic function theory of the disc to
the Fourier analysis of the boundary. The result is a deep and
powerful theory that continues even today to fascinate and to
yield new and profound ideas.

In several variables the picture is a bit reversed. By dint
of a huge effort by A. Koranyi, E. M. Stein, and many others,
there has arisen a theory of Hardy spaces on domain in C". But
this was done in the absence of a pre-existing Fourier analysis
on the boundary. That was developed somewhat later, using
independent techniques. There is still a fruitful symbiosis between
the boundary theory and the holomorphic function theory on
the interior, but this is still in the developmental stages. Work
continues on this exciting path.

The work described in the last paragraph was facilitated on
the unit ball B C C" because the boundary of the ball may be

183
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canonically identified with the Heisenberg group. Of course the
Heisenberg group is a natural venue (as we now understand, and
as is explained in the last two chapters of this book) for harmonic
analysis. On the boundary of a general strongly pseudoconvex
domain there is generally no group action, so no natural Fourier
analysis is possible. There are, however, various approximation
procedures that can serve as a substitute (see [FOST1]). Also
the work [NAS] provides a calculus of pseudodifferential opera-
tors that can serve on the boundaries of strongly pseudoconvex
domains and also certain finite type domains.

There are now several different approaches to the study of
the boundary behavior of holomorphic functions on domains in
C". Certainly Koranyi [KOR1], [KOR2] and E. M. Stein [STE4]
were the pioneers of the modern theory (there were earlier works
by Zygmund and others on special domains). Barker [BAR] and
Krantz [KRA7] and Lempert [LEM] have other approaches to the
matter. Di Biase [DIB| has made some remarkable contributions
using graph theory. The ideas continue to develop.

The study of the boundary behavior of holomorphic functions on the
unit disc is a venerable one. Beginning with the thesis of P. Fatou in
1906—in which the boundary behavior of bounded holomorphic functions
was considered—the field has blossomed and grown to consider other classes
of holomorphic functions, and a variety of means of deriving the boundary
limits. This work has both aesthetic appeal and manifold applications to
various parts of function theory, harmonic analysis, and partial differential
equations. This chapter provides an introduction to the key ideas both in
one complex variable and several complex variables.

8.1 H? on the Unit Disc

Capsule: The Hardy space (HP?) theory was born on the unit
disc in the complex plane. In that context the Cauchy kernel
and the Poisson kernel are familiar tools, and they both play a
decisive role in the development of the theory. The set of ideas
transfers rather naturally to the upper halfplane by way of the
Cayley transform. In RY on the unit ball there is certainly a
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theory of boundary values for harmonic functions; but the range
of p for which the theory is valid is restricted to p > 1. Certainly,
with suitable estimates on the Poisson kernel (see [KRA4, Ch. §)),
these ideas can be transferred to any domain in R with smooth
boundary. For domains in C", Koranyi began his investigations
in 1969 (see also [KRA3| from 1965). Stein made his decisive
contribution in 1972. Barker’s contribution was in 1978 and the
work of Lempert and Krantz was later still. Di Biase’s thesis was
published in 1998. And the book of Di Biase and Krantz [DIK]
is forthcoming.

Throughout this section we let D C C denote the unit disc. Let 0 < p <
0o. We define

2
HP(D) = {f holomorphic on D : sup / | f(re®)[Pd0? = || fl|lg» < oo}
0

0<r<1

Also define

H>(D) = {f holomorphic on D :sup |f| = ||f|lgr < oo}
D

The fundamental result in the subect of H?, or Hardy, spaces (and also one
of the fundamental results of this section) is that if f € H?(D) then the limit

lim f(re”) = f(e”)
exists for almost every 6 € [0,27). For 1 < p < oo, the function f can
be recovered from f by way of the Cauchy or Poisson (or even the Szegd)
integral formulas; for p < 1 this “recovery” process is more subtle and must
proceed by way of distributions. Once this pointwise boundary limit result is
established, then an enormous and rich mathematical structure unfolds (see
[KAT], [HOF], [GAR)).
Recall from Chapter 1 that the Poisson kernel for the disc is

. 1 1—172
P(e”) = — :
(e”) 271 — 2rcos@ + r?

Our studies will be facilitated by first considering the boundary behavior of
harmonic functions.
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Let

1 2 ' 1/p
h?(D) = {f harmonic on D : sup {—/ |f(7’ew)|pd9] = || fllne < oo}
0

0<r<1 | 2T

and
h*>(D) = {f harmonic on D :sup |f| = || f|lu» < oo}
D

Throughout this section, arithmetic and measure theory on [0, 27) (equiva-
lently on 0D by way of the map @ — ¢¥) is done by identifying [0, 27r) with
R/27Z. See [KAT| for more on this identification procedure.

Prelude: It is important here to get the logic sorted out. Our primary
interest is in the boundary behavior of holomorphic (i.e., H?) functions. But
it turns out to be useful as a tool to study at first the boundary limits of
harmonic functions. And that topic has its own interest as well.

The harmonic functions (in h?) are well behaved when 1 < p < co. But
the holomorphic functions (in H?) work out nicely for all 0 < p < co. The
details of these assertions are fascinating, for they give a glimpse of a number
of important techniques. And they also lead to important new ideas, such
as the real variable theory of Hardy spaces (for which see [KRAB5]).

Proposition 8.1.1 Let 1 < p < oo and f € hP(D). Then there is an
f € LP(OD) such that

= [ Fenpeei

Proof: Define f.(e?) = f(re?’),0 < r < 1. Then {f,}o<r<1 is a bounded
subset of (L” (0D))*,p' = p/(p — 1). By the Banach-Alaoglu theorem (see

[RUD3]), there is a subsequence f,, that converges weak-x to some f in
LP(OD). For any 0 <r <1, let r <r; < 1. Then

Fre®) = £, ((rfry)é! / foy(€) P,y (€40 dy

because f., € C(D). Now P,/,, € C(0D) C L¥(dD). Thus the right hand
side of the last equation is

/ fri(e (e™) P, (e'0=¥)) dw-l-/ fri(e [ (6i(9—¢))_pr(ei(9—w))} di.



8.1. HY ON THE UNIT DISC 187

As j — oo, the second integral vanishes (because the expression in brackets
converges uniformly to 0) and the first integral tends to

[ Fepeea
This is the desired result. O

Remark: It is easy to see that the proof breaks down for p = 1 since L' is
not the dual of any Banach space. This breakdown is not merely ostensible:
the harmonic function

f(re”) = P.(e")
satisfies

2
sup / | f(re)|df < oo,
0

0<r<1

but the Dirac ¢ mass is the only measure of which f is the Poisson integral. O
Exercise for the Reader:

If f € h! then there is a Borel measure p; on 9D such that f(re®) =
ADICL

Proposition 8.1.2 Let f € LP(0D),1 < p < oco. Then lim, - P,f = f in
the LP norm.

Remark: The result is false for p = oo if f is discontinuous. The correct
analogue in the uniform case is that if f € C(0D) then P.f — f uniformly.
As an exercise, consider a Borel measure y on 0D. Show that its Poisson
integral converges in the weak-* topology to p.
Note that we considered results of this kind, from another point of view
(i.e., that of Fourier series), in Chapter 2. O

Proof of Proposition 8.1.2: If f € C(9D), then the result is clear by the
solution of the Dirichlet problem. If f € LP(9D) is arbitrary, let ¢ > 0 and
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Figure 8.1: A nontangential approach region.

choose g € C(9D) such that || f — g|| < €. Then

[Pof = fllee < NI = 9)llee + 1Prg — gllr + g = fllzo
< NPl llf = gllee + 1Pg — gllr + €
<

e+o(l) ¢

asr — 17. O

We remind the reader of the following result, which we saw earlier in
another guise in Chapter 2. In that context we were not considering harmonic
extensions, but were rather concerned with pointwise summability of Fourier
series. We will see that all these different points of view lead us to the same
place.

First we recall the definition of the nontangential approach regions.

Definition 8.1.3 Let « > 1 and P € 9D. The nontangential approach
region in D with aperture « is given by

Iw(P)={2z€D:|z—P|<a(l—|z])}.
See Figure 8.1.

Prelude: Even in the original and seminal paper [FAT], nontangential ap-
proach regions are considered. For a variety of reasons—from the point of
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view both of boundary uniqueness and boundary regularity—montangential
approach is much more powerful and much more useful than radial approach.
See [GAR] and [KOO)] for some of the details.

Theorem 8.1.4 Let f € h?(D) and 1 < p < co. Let f be as in Proposition
8.1.1 and 1 < o < oo. Then
lim  f(z) = f(e) , a.e.e®€dD.
Ta(eif)3z—eif

The informal statement of Theorem 8.1.4 is that f has non-tangential bound-
ary limits almost everywhere. We shall prove this result as the section de-
velops. Recall from Chapter 2 that we can pointwise majorize the Poisson
integral by the Hardy-Littlewood maximal function. That result serves us,
together with Functional Analysis Principle II, in good stead here to prove
the last result.

We shall need a basic covering lemma in order to control the relevant
maximal function. See Lemma A1.6.2.

Definition 8.1.5 If f € L'(9D), let
1 [F ,
Mf(0) =sups— [ [f(e"®)|dv.
r>0 2R J R

The function M f is called the Hardy-Littlewood maximal function of f.

Definition 8.1.6 Let (X, 1) be a measure space and f : X — C be measur-
able. We say that f is of weak typep,0 < p < oo, if u{x : |f(x)| > A\} < C/N,
all 0 < A < oco. The space weak type oo is defined to be L*°.

Lemma 8.1.7 (Chebycheff’s Inequality) If f € LP(X,du), then f is
weak type p,1 < p < oco.

Proof: Let A > 0. Then

pla [ f(@)] > A} < /{ o) [f @)/ X du(x) < AP(fIIL- O

Exercise for the Reader

There exist functions that are of weak type p but not in I”,1 < p < oo.
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Definition 8.1.8 An operator 7' : LP(X,du) — {measurable functions} is
said to be of weak type (p,p),0 < p < oo, if

pla T f(2)| > AL < CIflL./N . all fell, A>0.
Proposition 8.1.9 The operator M is of weak type (1,1).

Proof: Let A > 0. Set S\ = {6 : [Mf(e%)| > A\}. Let K C Sy be a compact
subset with 2m(K) > m(S)). For each k € K| there is an interval I}, 5 k with
| Tt flk |f(e™)|dy > X. Then {Ik}keK is an open cover of K. By Proposition

8.1.5, there is a subcover {Ik 7, of K of valence not exceeding 2. Then

m(Sy) < 2m(K) < 2m <U ij> <2 m(Iy,)

j=1
M
2 )
<33 e
§||f||L1 . -
(8.1)
(8.1.10.1)

Definition 8.1.10 If ¢ € 9D, 1 < a < oo, then define the Stolz region (or
non-tangential approach region or cone) with vertex e and aperture a to be

Loy ={z€D:|z—e" < a(l —|z|)}.

Proposition 8.1.11 If ¢? € 9D,1 < a < oo, then there is a constant
Cy > 0 such that if f € L*(OD), then

sup |Prf(6i¢)| < CaMf(ew)'

ret®ely (eif)

Proof: This result is treated in detail in Appendix 1. See particularly Propo-
sition A1.6.4 and its proof at the end of the Appendix. O

Capsule: Now we turn our attention to extending 8.1.4 to Hardy
spaces H? when 0 < p < 1. In the classical setting, the primary
device for establishing such a result is the Blaschke products.
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Definition 8.1.12 If a € C, |a| < 1, then the Blaschke factor at a is

z—a
Bal(2) = 1—az

It is elementary to verify that B, is holomorphic on a neighborhood of D
and that |B,(e?)| = 1 for all 6.

Lemma 8.1.13 If0 < r < 1 and f is holomorphic on a neighborhood of
D(0,7), let py,...,px be the zeros of f (listed with multiplicity) in D(0,r).
Assume that f(0) # 0 and that f(re®) # 0, all t. Then

k 27
_ 1 i
g |(0) + log [ T iyl = 5 [ logl(re) .
j=1 0

Proof: Omitted. See [KRA4, Ch. §].

Notice that, by the continuity of the integral, Lemma 8.1.6 holds even if f
has zeros on {re’}.

Corollary 8.1.14 If f is holomorphic in a neighborhood of D(0,r) then

I :
log /(0)] < 5 [ togF(re .

Proof: Omitted. See [KRA4, Ch. §]. 0

Corollary 8.1.15 If f is holomorphic on D, f(0) # 0, and {p1,pa,...} are
the zeros of f counting multiplicities, then

2

| 1 [ .
log | £(0)] +logH— < sup — log™ | f(re™)|dt.

Py Pl T o<r<1 27 Jg

Proof: Omitted. See [KRA4, Ch. §]. 0
Prelude: The characterization of the zero sets of HP functions on the disc

is elegant and incisive. And it is extremely useful. Note particularly that the
condition is the same for every H? space, 0 < p < oo. Such is not the case
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in several complex variables. First, necessary and sufficient conditions for a
variety to be the zero set of an H? function are not known. Some sufficient
conditions are known, but they are so imprecise that we can only say that
the variety is the zero set of some H? function for some p—but we cannot
say which p.

Corollary 8.1.16 If f € H?(D),0 < p < oo, and {p1,pe, ...} are the zeros
of f counting multiplicities, then 22, (1 — |p;|) < oo.

Proof: Since f vanishes to some finite order £ at 0, we may replace f by
f(2)/2* and assume that f(0) # 0. It follows from Corollary 8.1.8 that

or [](1/|p;|) converges; hence [] |p;| converges. So 3_,(1 — |p;) < oo. 0

Proposition 8.1.17 If {p1,ps,... } C D satisty > (1 — |pj|) < co,p; # 0
for all j, then

converges normally on D.

Proof: Restrict attention to |z| < r < 1. Then the assertion that the infinite
product converges uniformly on this disc is equivalent with the assertion that

2.

J

by
2

1+ B:nj (2)

converges uniformly. But

P; il = |pi|B;2 + D2 — |ps)?
'”W pf(z)' ' nl(=25)
'<|pj| 251 - |pj|>'
Pl - 5)

(L+7)(1 — |p;)
1—7r

Y
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so the convergence is uniform. O

Corollary 8.1.18 Fix (0 < p < co. Ifa; are complex constants with »_(1—
la;|) < oo then there is an f € H?(D) with zero set {a;}.

Prelude: There is nothing like a theory of Blaschke products in several com-
plex variables. In fact it is only a recent development that we know that there
are inner functions in several complex variables—that is, holomorphic func-
tions with unimodular boundary values almost everywhere. Although these
inner functions can be used to effect a number of remarkable constructions,
they have not proved to be nearly as useful as the inner functions and the
corresponding canonical factorization in one complex variable. See [KRA4|
for the former and [HOF] for the latter.

Definition 8.1.19 Let 0 < p < 0o and f € HP(D). Let {p1,p2,...} be the
zeros of f counted according to multiplicities. Let

(where each p; = 0 is understood to give rise to a factor of z). Then B is a
well-defined holomorphic function on D by Proposition 8.1.10. Let F(z) =
f(2)/B(2). By the Riemann removable singularities theorem, F' is a well-
defined, non-vanishing holomorphic function on D. The representation f =
F' - B is called the canonical factorization of f.

Exercise for the Reader:

All the assertions of Definition 8.1.11 hold for f € N (D), the Nevanlinna
class (see [GAR] or [HOF] for details of this class of holomorphic functions—
these are functions that satisfy a logarithmic integrability condition).

Proposition 8.1.20 Let f € HP(D),0 < p < oo, and let f = F - B be its
canonical factorization. Then F' € H?(D) and || F||grp)y = || f || ur(D)-
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Proof: Trivially, |F| = |f/B| > |f|, so ||Fllur > ||fllge- T N =1,2,..., let
N

BN(Z) = —

pell 2]

Bpj (Z)

(where the factors corresponding to p; = 0 are just z).

Let Fy = f/By. Since |By(e™)| = 1, all ¢, it holds that ||Fx| ge = || f]|z»
(use Proposition 8.1.2 and the fact that By(re™) — By(e®) uniformly in ¢
asr — 17.) If 0 <r <1 then

2m
/ |F(re)[Pdtt/? =
0

< lim [[Fn|ar = || fllae.
N—oo

21

lim | Ey(ret)|Pdt'/?
N—oo /g

Therefore || F||lgr < || f]|me- O

Corollary 8.1.21 If {py,ps,...} is a sequence of points in D satisfying
>-;(1 = 1pjl) < oo and if B(z) = [1,(=p;/Ip;|)Bp;(2) is the corresponding
Blaschke product, then

lir? B(re™)

exists and has modulus 1 almost everywhere.

Proof: The conclusion that the limit exists follows from Theorem 8.1.4 and
the fact that B € H®. For the other assertion, note that the canonical
factorization for B is B = 1 - B. Therefore, by Proposition 8.1.12,

/|§(€it)l2dt”2 = [[Bllaz = [ =1

hence |B(e)| = 1 almost everywhere. 0

Theorem 8.1.22 If f € HP(D),0 < p < o0, and 1 < o < 00, then

1i
Fa(D)lgzl—ww f(Z)

exists for almost every ¢ € 9D and equals f(e). Also, f € LP(OD) and

~ 2 )
1Fllee = 1w = sup / Fre®)Pd6?.
0

0<r<1
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Proof: By Definition 8.1.10, write f = B - F' where F' has no zeros and
B is a Blaschke product. Then FP/? is a well-defined H? function and thus
has the appropriate boundary values almost everywhere. A fortiori, F' has
non-tangential boundary limits almost everywhere. Since B € H*, B has
non-tangential boundary limits almost everywhere. It follows that f does as
well. The final assertion follows from the corresponding fact for H? functions
(exercise). 0

8.2 The Essence of the Poisson Kernel

Capsule: According to the way that Hardy space theory is pre-
sented here, estimates on the Poisson kernel are critical to the
arguments. On the disc, the upper halfplane, and the ball, there
are explicit formulas for the Poisson kernel. This makes the esti-
mation process straightforward. On more general domains some
new set of ideas is required to gain workable estimates for this im-
portant kernel—an explicit formula is essentially impossible. The
work [KRA4| presents one technique, due to N. Kerzman, for es-
timating the Poisson kernel. The work [KRA10] gives a more
natural and more broadly applicable approach to the matter.

The crux of our arguments in Section 8.1 was the fact that the Poisson
integral is majorized by the Hardy-Littlewood maximal function. In this es-
timation, the explicit form of the Poisson kernel for the disc was exploited.
If we wish to use a similar program to study the boundary behavior of har-
monic and holomorphic functions on general domains in RY and C", then we
must again estimate the Poisson integral by a maximal function.

However there is no hope of obtaining an explicit formula for the Poisson
kernel of an arbitrary smoothly bounded domain. In this section we shall
instead obtain some rather sharp estimates that will suffice for our purposes.
The proofs of these results that appear in [KRA4] are rather classical, and
depend on harmonic majorization. It may be noted that there are modern
methods for deriving these results rather quickly. One is to use the theory
of Fourier integral operators, for which see [TRE|. Another is to use scaling
(see [KRA10)).
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Figure 8.2: Osculating balls.

The Poisson kernel for a C? domain Q C RY is given by P(z,y) =
—v,G(x,y),x € Q,y € 0. Here v, is the unit outward normal vector field
to 02 at y, and G(x,y) is the Green’s function for Q (see [KRA4] for full
details of these assertions). Recall that, for N > 2, we have G(x,y) =
calz —y| ™V 12 — F,(y), where F depends in a C?~¢ fashion on x and y jointly
and F is harmonic in y. It is known (again see [KRA4]) that G is C*~¢ on
Q x Q\ {diagonal} and G(z,y) = G(y, ). It follows that P(z,y) behaves
qualitatively like |z — y| =1, [These observations persist in R? by a slightly
different argument.|] The results enunciated in the present section will refine
these rather crude estimates.

We begin with a geometric fact:

GEOMETRIC FACT Let Q cc RY have C? boundary. There are
numbers r, 7 > 0 such that for each y € 0 there are balls B(c,,r) = B, C )
and B(¢,,7) = B, C Q that satisfy

(i) B(c,,")NQ={y};

(ii) B(c,,7)NQ = {y}.

See Figure 8.2.
Let us indicate why these balls exist. Fix P € 02. Applying the implicit
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Figure 8.3: Osculating balls radius smaller than diam €2/2.

function theorem to the mapping

0N x(-1,1) — RY
(C>t) = C—l—tl/g,

at the point (P,0), we find a neighborhood Up of the point P on which the
mapping is one-to-one. By the compactness of the boundary, there is thus a
neighborhood U of 0€) such that each x € U has a unique nearest point in
0. It further follows that there is an € > 0 such that if (;, (> are distinct
points of 092 then I} = {(1 +tve, @ [t] < 2¢} and Ir = {( +tyg, : [t] < 2¢} are
disjoint sets (that is, the normal bundle is locally trivial in a natural way).
From this it follows that if y € 02 then we may take ¢, = y—evy, ¢, = y+ev,,
and r =7 =e.

We may assume in what follows that r =7 < diam /2. See Figure 8.3.

We now consider estimates for Po(x,y). The proofs of these results are
technical and tedious, and we cannot treat them here. See [KRA4, Ch. §] for
the details.

Prelude: Just as with the Bergman kernel and other canonical kernels, we
have little hope of explicitly calculating the Poisson kernel on most domains.
In the case of a domain like the ball or the upper halfspace we can do it.
But generally not (see the paper [KRA10] for a consideration of some of
these issues). The next result gives a quantitative estimate for the size of the
Poisson kernel that proves to be of great utility in many circumstances. For
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a really precise and detailed asymptotic expansion, something like Fourier
integral operators is needed.

Proposition 8.2.1 Let Q C RY be a domain with C? boundary. Let P =
Po : Q x 020 — R be its Poisson kernel. Then for each x € () there is a
positive constant C, such that

C

< :
[z —y[¥ T ()N

0<C, <Pz,y) <

Here §(x) = dist (x, 012).

Prelude: This next is the most precise size estimate for the Poisson kernel
that is of general utility. Its proof is rather delicate, and details may be found
in [KRA4]. An alternative proof is in [KRA10]. Fourier integrals operators
give a more high-level, but in some ways more natural, proof. The reader
may find it enlightening to think about what this estimate says on the disc
and on the upper halfplane.

Next we have:

Proposition 8.2.2 If Q CC R" is a domain with C* boundary, then there
are constants 0 < ¢ < C' < oo such that

d(x) d(x)

lz —y[V

8.3 The Role of Subharmonicity

Capsule: One of E. M. Stein’s many contributions to this sub-
ject is to teach us that we may free ourselves from an artificial
dependence on Blaschke products (which really only work on the
disc and the halfplane in one complex dimension) by exploiting
subharmonicity and harmonic majorization. What is nice about
this new approach is that it applies in the classical setting but
it also applies to domains in RY (for the harmonic function the-
ory) and to domains in C" (for the holomorphic function theory).
It is a flexible methodology that can be adapted to a variety of
situations.
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Let Q C CV be a domain and f : Q — R a function. The function f
is said to have a harmonic majorant if there is a (necessarily) non-negative
harmonic v on Q with | f| < u. We are interested in harmonic majorants for
subharmonic functions. As usual, B denotes the unit ball in RY.

Prelude: There are various ways to think about the H? functions. The
standard definition is the uniform estimate on p*'-power means. But the
definition in terms of harmonic majorants—that a holomorphic function is
in H? if and only if |f|? has a harmonic majorant—is also of great utility.
Walter Rudin called this “Lumer’s theory of Hardy spaces.” There are also
interesting characterizations in terms of maximal functions—see [KRA5] and
[STE2].

Proposition 8.3.1 If f : B — R is subharmonic, then f has a harmonic
majorant if and only if

sup f(r¢)do(¢) < oo.

0<r<1 JoB

Proof: Let u be a harmonic majorant for f. Then

F(rO)do(¢) < / W(r¢)do(C) = wy 1 - u(0) = C < oo,
0B 0B

as claimed.
Conversely, if f satisfies

swp [ f(rQ)do(C) < o,
r JoB
then the functions f. : 9B — C given by f.({) = f(r¢) form a bounded
subset of L'(OB) € M(OB). Let f € M(IB)
point of the functions f,. Then F(r¢) = Pf(r¢)
any x € B and 1 > r > |z| we have

be a weak-* accumulation
is harmonic on B, and for

0< f(x) < / P(a/r,0)£+(C)do ()
. / Pz, O)df(C) = Fz) as r—1-
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A consequence of Proposition 8.3.1 is that not all subharmonic functions
have harmonic majorants. For instance, the function |e'/*=?)| on the disc
has no harmonic majorant. Harmonic majorants play a significant role in
the theory of boundary behavior of harmonic and holomorphic functions.
Proposition 8.3.1 suggests why growth conditions may, therefore, play a role.
The fact that f harmonic implies | f|? subharmonic only for p > 1 whereas f
holomorphic implies | f|P subharmonic for p > 0 suggests that we may expect
different behavior for harmonic and for holomorphic functions.

By way of putting these remarks in perspective and generalizing Propo-
sition 8.3.1, we consider h?(Q2) (resp. HP(2)), with 2 any smoothly bounded
domain in RY (resp. C"). First we require some preliminary groundwork.

Let Q cC RY be a domain with C? boundary. Let ¢ : R — [0, 1]
be a C* function supported in [—2,2] with ¢ = 1 on [—1,1]. Then, with
do(x) = dist(z, 092) and €y > 0 sufficiently small, we see that

o(z) = { —o(lz|/e0)da(|z]) — (1 — o(|x| /o)) %f x € Q
o(|z|/€0)da(|x|) + (1 — é(|x|/e0))  if v &

is a C? defining function for Q. The implicit function theorem implies that
if 0 <€ < ¢ then 00 = {x € Q: p(x) = —¢€} is a C* manifold that bounds
Qe ={z € Q:p(x) =p(x)+ e < 0}. Now let do. denote area measure on
0€.. Then it is natural to let

h?(Q2) = {f harmonic on € : sup /aQ | £(O)|Pdoc(O)VP

0<e<eg
= [[fllww@) <oo} ,  0<p<oo,
h*(Q2) = {f harmonic on  : 81618 |f(z)] = || fllne < oo}
In case €2 is a subdomain of complex space, we define
H?(Q) = h?(Q) N {holomorphic functions} , 0<p < co.

The next lemma serves to free the definitions from their somewhat arti-
ficial dependence on dg and p.
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Prelude: This simple-minded lemma is important, for it frees the discus-
sion from dependence on a particular defining function. The theory would
be unsatisfying without it.

Lemma 8.3.2 (Stein) Let py, p2 be two C? defining functions for a domain
QCRYN. Fore>0small andi = 1,2, let

QO ={z € Q:pi(r) < —€},
0N = {x € Q:pi(z) = —€}.

Let 0! be area measure on 0S)'. Then for f harmonic on Q) we have

sup [ 17(Pdol(6) < o0

e>0

if and only if
swp [ Q)P (0) < o
802

e>0

(Note: Since f is bounded on compact sets, equivalently the supremum is
only of interest as € — 0, there is no ambiguity in this assertion.)

Proof: By definition of defining function, grad p; # 0 on 9€). Since 0f2 is
compact, we may choose €y > 0 so small that there is a constant A,0 < A < 1,
with 0 < A < |grad p;(x)| < 1/A whenever x € €, dg(z) < €. If 0 < € < €,
then notice that, for z € 90?2, we have

B(x,Xe/2) C Q
and, what is stronger,
B(z,Ae/2) C {t:—=3e/X* < pi(t) < =X*-€/3} = S(e). (8.3.2.1)

Therefore
1

O < 533 o1y TV )
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As a result,

/ f(2)[Pdo?
002

IN

Ce™ PAV (t)do?
[ / L v 0ot

_ eV / ) /a | XsaaaOFOP @V (@)

Ce ™ / P / do?(2)dV (2)
S(e) 892NB(t,\e/2)

< NN / orave)

IN

< C"sup / F(6)Pda ().
o901

€

Of course the reverse inequality follows by symmetry. O

One technical difficulty that we face on an arbitrary €2 is that the device
(that was so useful on the disc) of considering the dilated functions f,(¢) =
f(r¢) as harmonic functions on € is no longer available. However this notion
is an unnecessary crutch, and it is well to be rid of it. As a substitute, we
cover () by finitely many domains €2y, ..., with the following properties:

(8.3.4) For each j, the set 92N 09Q; is an (N — 1)-dimensional manifold with
boundarys;

(8.3.5) There is an €y > 0 and a vector v; transversal to 92N 0S2; and pointing
out of Q such that Q; —ev; ={z—ev; : 2 € Q;} CCQ, all 0 < € < €.

We leave the detailed verification of the existence of the sets (2; satisfying
(8.3.3) - (8.3.5) as an exercise. See Figure 8.4 for an illustration of these
ideas. For a general C? bounded domain, the substitute for dilation will be
to fix j € {1,...,k} and consider the translated functions f.(z) = f(x —ev;),
fe:Q; —C,ase— 0.

Prelude: Asindicated earlier, there are several different ways to think about
H? and h? spaces. The next theorem considers several of them. We shall
make good use of them all in our ensuing discussions.
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Figure 8.4: Translatable subdomains.

Theorem 8.3.6 Let 0 C RY be a domain and f harmonic on €. Let 1 <
p < oo. The following are equivalent:

(8.3.6.1) f € h?(Q);
(8.3.6.2) If p > 1 then there is an f € LP(9S) such that

fz) = /a Pla)Fwdoty)

[resp.if p =1 then there is a u € M(I) such that

fz) = /a Pley)duly).

~

Moreover, || f |l = ||f||Lp

(8.3.6.3) |f|P has a harmonic majorant on Q.

Proof: (2) = (3) If p > 1, let

ba) = [ Plag)lFiw)ldoty)
o0
Then, treating P(x,-)do as a positive measure of total mass 1, we have

[f@)" = f(y) Pz, y)do(y)

o0

v | TP o) = )
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The proof for p =1 is similar.

(3) = (1) If € > 0 is small, xy €  is fixed, and Gg is the Green’s function
for , then G (xo, -) has non-vanishing gradient near df2 (use Hopf’s lemma).
Therefore B
Qe={r €Q: -Gq(r, ) < —¢€}

are well-defined domains for e small. Moreover (check the proof), the Poisson
kernel for QE is P.(z,y) = —V;GQ(ZL’,:I/). Here vy is the normal to 8?26 at
RS 8?26. Assume that € > 0 is so small that zy € QE. So if A is the harmonic
majorant for |f|P then

pan) = | —viGaann)hln)do(y) (8.3.6.4)

Let 7 : 8?26 — 0€) be normal projection for € small. Then
~yGaleo. 7 () — —v,Galzo, -)

uniformly on 9Q as € — 07. By 9.2.1, —v,Ga(xg, - ) > ¢z > 0 for some
constant c,,. Thus —viGao(xo, 77 (+)) are all bounded below by ¢, /2 if € is
small enough. As a result, (8.3.6.4) yields

/a  hly)day) < 2h(ao)/cs

for € > 0 small. In conclusion,

/a 1 WPdr(y) < 2h(ao) e,

(1) = (2) Let €; be as in (8.3.3) through (8.3.5). Fix j. Define on ;
the functions f.(z) = f(x — ev;),0 < € < €. Then the hypothesis and (a
small modification of) Lemma 8.3.2 show that {f.} forms a bounded subset
of LP(0%;). If p > 1, let j?; € LP(09);) be a weak-* accumulation point (for
the case p = 1, replace j?; by a Borel measure ;). The crucial observation
at this point is that f is the Poisson integral of j?; on €2;. Therefore f on €
is completely determined by j?; and conversely (see also the exercises at the

end of the section). A moment’s reflection now shows that fj = ﬁ almost
everywhere [do| in 0€Q; N0, NI so that f = f; on 092; N0 is well-defined.
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By appealing to a partition of unity on 0f2 that is subordinate to the open
cover induced by the (relative) interiors of the sets 0€2; N 02, we see that
fe = fom ! converges weak-* to fon 002 when p > 1 (resp. f. — p weak-x
when p = 1).

Referring to the proof of (3) = (1) we write, for zg € Q fixed,

f(ro) = /6 1 Galzo, ) f(1)do(y)
= /m —viGa (zo, 7 (y) f (77 (y)) T (y)do(y),

where J¢€ is the Jacobian of the mapping 7! : 9Q — 9. The fact that 9
is C? combined with previous observations implies that the last line tends to

/—nyQ(xo,y)f(y)dO(y)Z/ Pg(xo,y)f(y)da(y)
09 00

(resp. /a ) —v,Go(zo,y)dfi(y) = /a . Pg(xo,y)dﬁ(y))

as e — 0. 0
Exercise for the Reader:

1. Prove the last statement in Theorem 8.3.6.

2. Imitate the proof of Theorem 8.3.6 to show that if p is continuous and
subharmonic on €2 and if

sup /a W(OPdo(¢) <oo . p=1,

€

then u has a harmonic majorant h. If p > 1, then h is the Poisson integral
of an LPfunction h on 0. If p = 1, then h is the Poisson integral of a Borel
measure i on 0.

3. Let Q C RY be a domain with C? boundary and let p be a C? defining
function for Q. Define Q. = {x € Q : p(z) < —€},0 < € < €. Let 09
and do. be as usual. Let 7. : 02 — 0f) be orthogonal projection. Let
f e LP(02),1 < p < oo. Define

F(z) = /a Pale ) f(5)do(y).
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Prove that [, Po(z,y)do(y) =1, any z € Q.

There is a C' > 0 such that, for any y € 012,
/ Po(z,y)do(z) < C | any 0 < e < €p;
0.

There is a C" > 0 such that

/ |F(z)|Pdo. < C" any 0 < e < €;
09

If ¢ € C(Q) satisfies ||¢ — f|Lro0) < 7 and

Gz) = /8 Palan) (00) = £ (1) do3),

then
/ |G(z)|Pdo(z) < C'np any 0 <€ < €.
09,

. With ¢ as in part d. and ®(z) = [,, Po(x,y)¢(y)do(y), then

(®|yq,) 0o m. " — ¢ uniformly on O€.

Imitate the proof of Proposition 8.1.2 to see that F o7 ' — f in the
LP(02) norm.

8.4 Ideas of Pointwise Convergence

Capsule: There are two basic aspects to the boundary behavior
of holomorphic functions on a given domain. One is the question
of pointwise boundary convergence. And the other is the question
of norm boundary convergence. With Functional Analysis Prin-
ciples I and II in mind, we can imagine that these will depend
on different types of estimates. In the present section we shall
concentrate on pointwise convergence, and this will in turn rely
on a maximal function estimate.
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Figure 8.5: A nontangential approach region on a domain in R,

Let Q € RY be a domain with C? boundary. For P € 0Q,a > 1, we
define
Lo(P)={2z€Q:|r—P| <adg(z)}.

See Figure 8.5. This is the N-dimensional analogue of the Stolz region con-
sidered in Section 8.1.
Our theorem is as follows:

Prelude: Classically, Zygmund and others studied H? and h? spaces on par-
ticular, concrete domains. It is only with our useful estimates for the Poisson
kernel, and the maximal function approach, that we are now able to look at
all domains in RY.

Theorem 8.4.1 Let Q CcC RY be a domain with C? boundary. Let o > 1.
If1 <p<ooand f € hP, then

lim  f(z) = f(P) exists for almost every P € 0f).
T'o(P)32—P

Moreover,
| fllzeo0) Z 11 fllne@)-
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Proof: We may as well assume that p < co. We already know from (8.3.6.2)
that there exists an f € LP(9Q), ||fllzr = ||f|lne, such that f = Pf. It
remains to show that fsatisﬁes the conclusions of the present theorem. This
will follow just as in the proof of Theorem 8.1.11 as soon as we prove two
things: First,

sup |PF()] < Cadi J(P), (8.4.1.1)
z€l(P)
where .
M, f(P) = su / f(t)|do(t).
) =5 S BP R 009 Jupon
Second,
o{y €00 : M f(y) > A} < OM . all A>0.  (84.1.2)

Now (8.4.1.1) is proved just as in Proposition 8.1.10. It is necessary to use
the estimate given in Proposition 9.2.3. On the other hand, (8.4.1.2) is not
so obvious; we supply a proof in the paragraphs that follow. O

Prelude: One of the important developments of harmonic analysis of the
past fifty years is the prominent role of maximal functions in all aspects of the
subject. Generally speaking, maximal functions are studied and controlled
by way of covering lemmas. In this way profound questions of harmonic anal-
ysis are reduced to tactile and elementary (but by no means easy) questions
of Euclidean geometry. The theory of covering lemmas reaches into other
parts of mathematics, including computer graphics and graph theory.

Lemma 8.4.2 (Wiener) Let K C RY be a compact set that is covered by
the open balls { By }aca, Ba = B(Ca,Ta). Thereis asubcover By, Bay, - - -, Ba,,,
consisting of pairwise disjoint balls, such that

U B(ca;,3rq,) 2 K.
j=1

Proof: Since K is compact, we may immediately assume that there are
only finitely many B,. Let B,, be the ball in this collection that has the
greatest radius (this ball may not be unique). Let B,, be the ball that has
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greatest radius and is also disjoint from B,,. At the 7™ step choose the (not
necessarily unique) ball of greatest radius that is disjoint from B,,, ..., Ba,_,.
Continue. The process ends in finitely many steps. We claim that the B,
chosen in this fashion do the job.

It is enough to show that B, C UjB(Caj, 37’%) for every a. Fix an «. If
a = o for some j then we are done. If o & {«;}, let jo be the first index
with By, N By # (0 (there must be one, otherwise the process would not have
stopped). Then Tajy 2 Ta otherwise we selected B%‘o incorrectly. But then
clearly B (C%‘o’ 37’%0) D B(Ca,Ta) as desired. O

Corollary 8.4.3 Let K C 02 be compact, and let {B, N 0Q}aca, Ba =
B(ca,7a), be an open covering of K by balls with centers in 0S). Then there is

a pairwise disjoint subcover By, , Ba,, - . ., Bq,, such that U; { B(cq, 3ra) N 082} D
K.

Proof: The set K is a compact subset of R that is covered by {B,}. Apply
the preceding Lemma 8.4.2 and restrict to 0€). O

Lemma 8.4.4 If f € L'(09), then

o{x € 00 : My f(z )>>\}<C||f”L

all A > 0.

Proof: Let S\ = {z € 09 : M, f(x) > A}. Let K be a compact subset of S.
It suffices to estimate o(K). Now for each x € K, there is a ball B, centered

at x such that |

B /B L 0ldo() > (8.4.4.1)

The balls {092 N B, }.ex cover K. Choose, by Corollary 8.4.3, disjoint balls
B,.,B B,,, such that {0Q2N3B,,} cover K, where 35, represents the

X1y T2yt

theefold dilate of B,, (with the same center). Then

< ) 0(3B,,N0Q)
7=1

< i o Bm] N o),
7=1
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where the constant C' will depend on the curvature of 992. But (8.4.4.1)
implies that the last line is majorized by

. roa |f(®)]do(t) 171l
N, 09 o < C(N,09) 1
C(N,0 >; ) < C(N,00)7
This completes the proof of the theorem. O

8.5 Holomorphic Functions in Complex Do-
mains

Capsule: This section presents a “toy” version of our main re-
sult. We prove a version of pointwise boundary convergence—not
the most obvious or natural one. This is just so that we have a
boundary function that we can leverage to get the more sophis-
ticated results that we seek (regarding nontangential and admis-
sible convergence). It should be stressed that what is new here
is the case p < 1 for f € HP. The case p > 1 has already been
covered. To illustrate the value of the new result, we conclude
the section by proving a nontangential convergence result. Fi-
nally, we make some remarks about harmonic majorization. The
ultimate result—our real goal—is about admissible convergence;
that will be in the next section.

Everything in Section 8.4 applies a fortiorito domains (2 C C". However,
on the basis of our experience in the classical case, we expect H?(€2) functions
to also have pointwise boundary values for 0 < p < 1. That this is indeed
the case is established in this section by two different arguments.

First, if Q cC C" is a C* domain and f € HP()), we shall prove through
an application of Fubini’s theorem (adapted from the paper [LEM]) that f
has pointwise boundary limits in a rather special sense at o-almost every
¢ € 09Q. This argument is self-contained. After that, we derive some more
powerful results using a much broader perspective. We shall not further de-
velop the second methodology in this book, but we present an introduction
to it for background purposes. Further details may be found in [STE4] and
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[FES]. The logical progession of ideas in this chapter will proceed from the
first approach based on [LEM].

Prelude: In the classical theory on the disc, one makes good use of dilations
to reduce a Hardy space function to one that is continuous on the closure
of the disc. Such a simple device is certainly not available on an arbitrary
domain. It is a lovely idea (due to Stein) to instead consider the domains
2;. They are a bit harder to grasp, but certainly work just as well to give
the results that we need.

Proposition 8.5.1 Let Q CcC C" have C* boundary. Let 0 < p < oo and

f e H(Q). Write Q = Uj_,Q; as in (8.3.3) through (8.3.5), and let vy, . .., v

be the associated normal vectors. Then, for each j € {1,...,k}, it holds that
lim f(¢ —ev;) = f(Q)

e—0t

exists for o-almost every ¢ € 0€); N OSL.

Proof: We may suppose that p < oo. Fix 1 < j < k. Assume for convenience
that v; = vp = (1 +10,0,...,0), P € 0€);, and that P = 0. If z € C", write
2= (21,...,2n) = (21,2). We may assume that ; = U j1{(21,2') : 21 €
D..}, where D, C C is a diffecomorph of D C C with C*? boundary. For each
2/ <1,k e N,0 < 1/k < €, let bF, = (D, x {2'}) N {z € Q; : dist(z, 09;) =
1/k}. Define B* = U, j1b%. Now a simple variant of Lemma 8.3.2 implies
that

sup/ |f(O)|Pdoy, < Cp < o0 (8.5.1.1),
k JBk

where o}, is surface measure on B*. Formula (8.5.1.1) may be rewritten as
Sup/ £ (¢, ¢IPdR(C)dVan—2(¢) < Co, (8.5.1.2)
ko JI¢<1 /b

where &}, is surface (=linear) measure on bf,. If M > 0,k > ko > 1/eo, we
define

Spl =9 <1 (GO Pda(G) > M b (8.5.1.3)
bfg,
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Then (8.5.1.2), (8.5.1.3), and Chebycheff’s inequality together yield

C
Van_1 (SP) < =2

Now let

s = {c' AT <L [ UG eIPaG) < M
:

for only finitely many k}
- U
t=ko k=t

Then Vs, (SM) < Cy/M. Since M may be made arbitrarily large, we con-
clude that for V5, o almost every ¢’ € D"1(0,1), there exist ky < ko < - --
such that

/b’“m |f(&, ¢)Pdo,, (¢1) = O(1) as  m — 0o.
o

It follows that the functions f(-,¢") € HP (D) for Va,_o almost every (' €
D"1(0,1). Now Theorem 8.1.13 yields the desired result. O

At this point we could prove that f tends non-tangentially to the function
f constructed in Proposition 8.5.1. However, we do not do so because a much
stronger result is proved in the next section. The remainder of the present
section consists of a digression to introduce the reader to the second point
of view mentioned in the introduction. This second point of view involves
far-reaching ideas arising from the “real variable” school of complex analy-
sis. This methodology provides a more natural, and much more profound,
approach to the study of boundary behavior.

The results that we present are due primarily to [STE4]. To present
Stein’s ideas, we first need an auxiliary result of A. P. Caldéron, (see [STE4]),
and [WID]. Although it is well within the scope of this book to prove this
auxiliary result on a half-space, a complete proof on smoothly bounded do-
mains would entail a number of tedious ancillary ideas (such as the maximum



8.5. HOLOMORPHIC FUNCTIONS IN COMPLEX DOMAINS 213

principle for second-order elliptic operators). Hence we only state the needed
result and refer the reader to the literature for details. The paper [KRAY]
may be of particular interest.

Let Q cC RY be a domain with C? boundary and let v :  — C be
harmonic. If P € 9€) then we say that f is non-tangentially bounded at P if
there is a number o« > 1 and a constant C,, < oo such that

sup |f(x)| < C,.

z€lo(P)

Further, we say that f has a nontangential limit ¢ at P if, for each @ > 1, it
holds that
li =/.
o)
Notice that the idea of “nontangential boundedness” provides a single num-
ber a« > 1 for the point P, but the notion of “nontangential limit” gives a
condition for every a > 1.
Now the result is as follows:

Prelude: The next result finds its roots in ideas of A. P. Caldéron going
back to 1950. It teaches us a lot about the structure and nature of harmonic

functions. These ideas have been developed much further, for example, in
the paper [KRA9].

Theorem 8.5.2 Let @ cC RY have C? boundary. Let u : Q — C be
harmonic. Let & C 02 be a set of positive o-measure. Suppose that u is non-
tangentially bounded at o-almost every P € E. Then u has non-tangential
limits at o-almost every P € E.

We shall not prove this result, as it is technical and difficult and only of
ancillary interest for us right now.
Remarks:

(i) Obviously if u has a non-tangential limit at P € 0%, then u is non-
tangentially bounded at P.

(ii) Theorem 8.5.2 has no analogue for radial boundedness and radial limits,
even on the disc. For let £ C 9D be a F, set of first category and measure
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27. Let f : D — C be given by f(z) = sin <1+|z|) Then f is continuous,
bounded by 1 on D, and does not possess a radial limit at any point of
0D. Of course f is not holomorphic. But by a theorem of [BAS], there is a
holomorphic (!) function u on D with

lim |u(re®) — f(re®)| =0

r—1-

for every e € E. O

Prelude: Until Adam Koranyi’s work in 1969, the next result would have
been considered to be the “optimal” theorem for boundary behavior of holo-
morphic functions on multi-dimensional domains. Now this result is just the
beginning of our investigations.

Theorem 8.5.3 Let 2 CC C™ have C? boundary. Let f € HP(Q),0 < p <
00. Then f has non-tangential boundary limit at almost every P € 0f).

Proof: We may assume that p < oo. The function |f|?/? is subharmonic
and uniformly square integrable over 9Q,0 < € < €. So |f|?/? has a har-
monic majorant h € h*(Q). Since h € h? it follows that h has almost
everywhere non-tangential boundary limits. Therefore h is non-tangentially
bounded at almost every point of 9. As a result, |f[?/2, and therefore | f| it-
self, is non-tangentially bounded at almost every point of 9. So, by 8.5.2, f
has a non-tangential boundary limit f defined at almost every point of 9€2. O

We conclude this section with a recasting of the ideas in the proof of
8.5.3 to make more explicit the role of the maximal function. We first need
two lemmas.

Prelude: What follows is a simple measure-theoretic lemma. But it is fun-
damental, jsut because it brings the distribution function into play. The
maximal functions, singular integrals, and other artifacts of harmonic anal-
ysis are very naturally estimated and controlled using distribution functions.



8.5. HOLOMORPHIC FUNCTIONS IN COMPLEX DOMAINS 215

Lemma 8.5.4 Let {X, u} be a measure space with u > 0. Let f > 0 on X
be measurable and 0 < p < co. Then

[ tardute) = [ pustsas = = [,

where pp(s) = p{z : f(x) > s},0 < s < o0.

Proof: We have

f(z)P
/f VYPdu(x // dtdu(x
Fublm/ / t
{z:f(z) p>t}

t_Sp)/O Sp l,u{l’ ()>S}d$

(parts) _ / P (x) @)

Prelude: There are ways to show directly that the maximal operator is
bounded on L?. The methodology that we have used here is the traditional
one.

Lemma 8.5.5 The maximal operator M is bounded from L?*(9)) to L*(992).

Proof: We know that M; maps L™ to L™ (trivially) and is weakly bounded
on L'. After normalizing by a constant, we may suppose that

1
| Mifllpe < S\ fllzee all f e L®(09). (8.5.5.1)
3

Also we may assume that

a{(E@Q:|M1f(C)|>)\}§||f)|\|L1 . all A>0, feL'(o9).

(8.5.5.2)
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If f e L?(00),|fllzz=1,0 <t < oo, we write

F(Q) = F(O) - xqeur1<ty + F(C) - Xgcuronze = f1(C) + f3(C).

Then
sl = 2 " oan s ()AdA
< /OO Oary 2 (A/2)AdA +/OO Ty 1 (A/2)AdN
= IO+H. ’
Now

I < 2 / (L2 /3 AdA

_ 2/ / o () dtd
0 A
) t

_ 2/ af(t)/ dAdt
0 0

_ 2/ o (8) - tat
0
= |IflZ..

Furthermore, notice that since |f;(¢)| < A for all (, it follows that |M; f7(¢)]
< A/3. Hence oy, ;2 (A/2) = 0. Therefore 11 = 0. that finishes the proof. O

Let us now examine more closely the interplay between harmonic ma-
jorants and maximal functions to obtain a quantitative version of the non-
tangential boundedness. Let notation be as in Theorem 8.5.3. Let h be the
least harmonic majorant for |f|P/? (assuming that p < oo). Notice that the
dominated convergence theorem (or Fatou’s lemma) implies that f € LP(9).
(Ezercise: For a rigorous proof, you must either consider the Jacobian of 7!
or restrict attention to the €,’s). Now, for a > 1 fixed and P € 05, we have

[P = sup [f(x)P* < sup |h(z)] < CoaMih(P).
€L (P) z€l(P)



8.5. HOLOMORPHIC FUNCTIONS IN COMPLEX DOMAINS 217

Therefore

LT o) < Call Mih[Za o0,
< C Callhll72(00)

< C' sup /a HOPdo()

€

<cr / FOPdo(Q)

= NI o0 - (8.5.6)

Inequality (8.5.6) is valid for 0 < p < oco. It is central to the so-called
real variable theory of H? spaces. For instance, one has:

Prelude: The next result is the key to the real variable Hardy space theory
(see, for instance [KRA5]). It is this maximal function characterization of
Hardy spaces [BGS] that broke the subject open.

Theorem 8.5.7 Let u be a real harmonic function on D C C. Let 0 < p <
oo. Then u is the real part of an f € HP(D) if and only if, for some a > 1,

||u>{’a||Lp(aD) < 0.

Under these circumstances, ||uy®||zeao) = || f|l zr(p)-

Theorem 8.5.7 was originally proved by methods of Brownian motion
[BGS]. C. Fefferman and E. M. Stein [FES] gave a real-variable proof and
extended the result in an appropriate sense to RY. The situation in sev-
eral complex variables is rather more complicated (see [GAL], [KRA9], and
[KRL1]-[KRL3]).

This ends our digression about the real-variable aspects of boundary
behavior of harmonic and holomorphic functions. In the next section, we
pick up the thread of Proposition 8.5.1 and prove a theorem that is strictly
stronger. This requires a new notion of convergence.
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8.6 A Look at Admissible Convergence

Capsule: In the present section we are finally able to treat the
matter of admissible convergence. This involves a dramatically
new collection of approach regions. There are some subtleties
here. When the domain is the unit ball in C", the admissible
approach regions may be defined using an explicit formula. For
more general domains, there is some delicate geometry involved.
The definition is less explicit. There is also an issue of defining
corresponding balls in the boundary. Again, when the domain is
the unit ball this can be done with traditional formulas. On more
general domains the definition is less explicit. In the end the de-
cisive meshing of the balls in the boundary and the admissible
approach regions in the interior yields the boundary behavior re-
sult for holomorphic functions that we seek. The result certainly
requires, as we might expect, a maximal function estimate.

Let B C C" be the unit ball. The Poisson kernel for the ball has the
form

1— |z
P(Z> C) =Cny 9

|z = ¢

whereas the Poisson-Szego kernel has the form
(1—|=[»)"

P(z,¢) g
As we know, an analysis of the convergence properties of these kernels entails
dominating them by appropriate maximal functions. The maximal function
involves the use of certain balls, and the shape of the ball should be compat-
ible with the singularity of the kernel. That is why, when we study the real
analysis of the Poisson kernel, we consider balls of the form

Bi(¢,r)={€dB: |-l <r}, C€dB, r>0.

[Here the singularity of the kernel has the form | — (|—so it fits the balls.]
In studying the complex analysis of the Poisson-Szeg6 kernel (equiva-
lently, the Szegd kernel), it is appropriate to use the balls

Ba(C,r)={6€dB:|1-¢-C <}, C€0B, r>0.
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[Here the singularity of the kernel has the form |1 —¢-{|—so it fits the balls.]
These new non-isotropic balls are fundamentally different from the classical

(or isotropic) balls 31, as we shall now see. Assume without loss of generality
that ( =1 = (1,0,...,0). Write 2’ = (22,...,2,). Then

62(1,7’) = {56 0B : |1—€1| <’f’}.
Notice that, for £ € 9B,

€7 = 1-1al
= (I =]&ahd+ &)
< 21 -4

hence

Bo(1,7) C{E € 0B [1—&| <[] < Var).

A similar computation shows that

B(1,r) = {£€0B:1-&|<r[{|=+1-|G[*}
D OBN{&:|Im&| <r/2,1 —r/2 <Re& < 1,|¢| < r}.

In short, the balls we now are considering have dimension ~ r in the com-
plex space containing 7 and dimension ~ /r in the orthogonal complement
(see Figure 8.5). The word “non-isotropic” means that we have different
geometric behavior in different directions.

In the classical setup, on the domain the unit ball B, we considered cones
modeled on the balls (3 :

IW(P)={2z€B:|z—P|<a(l—|z)}, PeodB, a>1
In the new situation we consider admissible regions modeled on the balls (35 :
Au(P)={z€B:|1—-2-P|<a(l —|z|)}.

Our new theorem about boundary limits of H? functions is as follows:

Prelude: This next is a version of Adam Koranyi’s famous theorem that
changed the nature of Fatou theorems for domains in C™ forever. It is still a
matter of considerable study to determine the sharp Fatou theorem on any
domain in C" (see, for example, [DIK]).
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Y

Figure 8.6: The nonisotropic balls.

Theorem 8.6.1 Let f € HP(B),0 < p < co. Let @ > 1. Then the limit

dm ey =P

exists for o-almost every P € 0B.

Since the Poisson-Szeg6 kernel is known explicitly on the ball, then for
p > 1 the proof is deceptively straightforward: One defines, for P € 0B and
f e LY0B),

1
Myf(P) = sup o (Ba(P.1)) /ﬁz(m) | f(¢)]da(C).

Also set f(z) = [,5P(2.¢)f(¢)do(() for z € B. Then, by explicit computa-
tion similar to the proof of Proposition 8.4.1,

fy*(P) = s [f(2)| < Cadipf(P) . all feLY(0B).

This crucial fact, together with appropriate estimates on the operator Ms,
enables one to complete the proof along classical lines for p > 1. For p < 1,
matters are more subtle.

We forego the details of the preceding argument on B and instead de-
velop the machinery for proving an analogue of Theorem 8.6.1 on an arbitrary
C? bounded domain in C". In this generality, there is no hope of obtaining
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an explicit formula for the Poisson-Szeg6 kernel; indeed, there are no known
techniques for obtaining estimates for this kernel on arbitrary domains (how-
ever see [FEF] and [NRSW] for estimates on strongly pseudoconvex domains
and on domains of finite type in C?). Therefore we must develop more geo-
metric methods which do not rely on information about kernels. The results
that we present were proved on the ball and on bounded symmetric domains
by A. Koranyi [KOR1], [KOR2]. Many of these ideas were also developed
independently in Gong Sheng [GOS1], [GOS2|. All of the principal ideas for
arbitrary (2 are due to E. M. Stein [STE4].

Our tasks, then, are as follows: (1) to define the balls 32 on the boundary
of an arbitrary smoothly bounded 2; (2) to define admissible convergence
regions A,; (3) to obtain appropriate estimates for the corresponding max-
imal function; and (4) to couple the maximal estimates, together with the
fact that “radial” boundary values are already known to exist (see Theorem
8.4.1) to obtain the admissible convergence result.

If z, w are vectors in C™, we continue to write z - w to denote Zj 2.
(Warning: It is also common in the literature to use the notation z - w =
>, 2wy or (z,w) = 3. z;w0;.) Also, for @ C C" a domain with C? boundary,
P € 09, we let vp be the unit outward normal at P. Let Cvp denote the
complex line generated by vp : Cvp = {Cvp : ( € C}.

By dimension considerations, if Tp(0€2) is the (2n — 1)-dimensional real
tangent space to 02 at P, then ¢ = CvpNTp(01) is a (one-dimensional) real
line. Let

Tp(0Q) = {2€C":2-7p =0}
= {z€C":z-w=0Vw e Crp}.

A fortiori, Tp(0) C Tp(01) since Tp is the orthogonal complement of ¢ in
Tp. If z € Tp(09), then iz € Tp(02). Therefore 7p(0f2) may be thought
of as an (n — 1)-dimensional complex subspace of Tp(0f2). Clearly, 7p(052)
is the complex subspace of Tp(0f2) of maximal dimension. It contains all
complex subspaces of Tp(0€2). [The reader should check that 7p(0€) is the
same complex tangent space that was introduced when we first studied the
Levi form.|

Now let us examine the matter from another point of view. The complex
structure is nothing other than a linear operator J on R?" that assigns to
(1,9, ..., Ton_1,Ta,) the vector (—xg, 1, — T4, T3, ..., —Top, Ton—1) (think of

multiplication by ). With this in mind, we have that J : 7p(0Q) — Tp(0€)
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both injectively and surjectively. So J preserves the complex tangent space.
On the other hand, notice that Jvp € Tp(0f2) while J(Jvp) = —vp ¢
Tp(0R2). Thus J does not preserve the real tangent space.

We call Cvp the complex normal space to 02 at P and 7p(0f2) the
complex tangent space to 0 at P. Let Np = Cvp. Then we have Np L Tp
and

C" = Np®cTp
Tp = ]RJVP @RTP-

EXAMPLE 8.6.2 Let @ = B C C" be the unit ball and P = 1 =
(1,0,...,0) € 9. Then Cvp = {(z1,0,...,0) : 23 € C} and 7p = {(0, ) :
2 e Cv 1} 0

Exercise for the Reader:

1. Let Q C C" be a domain. Let J be the real linear operator on R?*"
that gives the complex structure. Let P € 0. Let z = (21,...,2,) =
(x1+1Y1, .o, T +1Yn) = (T1,Y1, . . -, Tn, Yn) be an element of C* = R?". The
following are equivalent:

(i) we To(9);
(il) Jw € Tp(Q);
(iii) Jw L vp and w L vp.

2. With notation as in the previous exercise, let A = 3, a;(2)0/92;, B =
> bj(2)0/0z; satisty Apl,q = 0, Bplyg = 0, where p is any defining function
for 2. Then the vector field [A, B] has the same property. (However note that

[A, B] does not annihilate p on 02 if Q is the ball, for instance.) Therefore
the holomorphic part of 7p is integrable (see [FOK]).

3. If @ =B g Cz,P = (1’1 +z'y1,a72 —I—Z’yg) ~ (l’l,yl,l’g,yg) € 83, then
vp = (x1, Y1, 2, y2) and Jvp = (—y1, T1, —Y2, x2). Also Tp is spanned over R
by (y27I27 —Yi1, _$1) and (_$2>y27I17 _yl)
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The next definition is best understood in light of the foregoing discussion
and the definition of 32(P,r) in the boundary of the unit ball B. Let Q@ cC C”
have C? boundary. For P € 99, let 7p : C" — Np be (real or complex)
orthogonal projection.

Definition 8.6.3 If P € 901) let

Bi(Pr) = {Ce€dN:|(—P[<r};
Bo(Pyr) = {C€dQ:|mp((—P)|<r|(—P|< 7’1/2}.

Exercise for the Reader:

The ball Gy(P,r) has diameter ~ /r in the (2n — 2) complex tangential
directions and diameter ~ r in the one (complex normal) direction. Therefore

2B Por) (VP2 O
If z € Q,P € 09, we let
dp(z) = min{dist(z, 09), dist(z, Tp(2))}.
Notice that, if €2 is convex, then dp(z) = dq(z2).
Definition 8.6.4 If P € 00, > 1, let
Aos=1{2€Q:|(z = P)-Up| < adp(2), |z — P|* < adp(2)}.

Observe that dp is used because, near non-convex boundary points, we still
want 4, to have the fundamental geometric shape of (paraboloid x cone)
as shown in Figure 8.6. We call A,(P) an admissible approach region at
the point P. It is strictly larger than a nontangential approach region. Any
theorem about the boundary behavior of holomorphic functions that is ex-
pressed in the language of A, will be a stronger result than one expressed in
the language of T',.

Definition 8.6.5 If f € L'(092) and P € 99 then we define

r>0

M) =spolB, P [ 1sOle(Q) =12
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Figure 8.7: Shape of the admissible approach region.

Definition 8.6.6 If f € C(Q2), P € 052, then we define

f4(P) = sup [f(z)].

z€A(P)

The first step of our program is to prove an estimate for Ms. This will
require a covering lemma (indeed, it is known that weak type estimates for
operators like M; are logically equivalent to covering lemmas—see [CORF1],
[CORF2]). We exploit a rather general paradigm due to K. T. Smith [SMI]:

Definition 8.6.7 Let X be a topological space equipped with a positive
Borel measure m, and suppose that for each x € X, each » > 0, there is a
“ball” B(z,r). The “K. T. Smith axioms” for this setting are:

(8.6.8.1) Each B(x,r) is an open set of finite, positive measure which con-
tains x.

(8.6.7.2) If r; <1y then B(z,7r1) C B(x,12).

(8.6.7.3) There is a constant ¢y > 0 such that if B(z,r) N B(y,s) # 0 and
r > s then B(x,cor) 2 By, s).

(8.6.7.4) There is a constant K such that m(B(zg,cor)) < Km(B(zo,7))
for all r.

Now we have
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Theorem 8.6.8 Let the topological space X, measure m, and balls B(x, )
be as in Definition 8.6.7. Let K be a compact subset of X and { B(Za, 7o) }aca
a covering of K by balls.

THEN

there is a finite pairwise disjoint subcollection B(Zqy,Tay);- - B(Tan, Tam)
such that K C U;?ZIB(:EQ],, CoTa;)-
It follows that if we define

M = sup (B(z,r))"" / Wl e (X dm),

r>0

then

£l

m{z: Mf(x) > A} <C )

Proof: Exercise for the Reader:. Imitate the proofs of Lemmas 8.4.2 and
8.4.4. a

Thus we need to see that the (P, r) on X = 02 with m = o satisfy
(8.6.7.1)—(8.6.7.4). Now (8.6.7.1) and (8.6.7.2) are trivial. Also (8.6.7.4)
is easy if one uses the fact that 9 is C? and compact (use the Exercise for
the Reader: following Definition 8.6.3). Thus it remains to check (8.6.7.3)
(in many applications, this is the most difficult property to check).

Suppose that Go(x,7) N B2(y, s) # (. Thus there is a point a € Ba(x,r) N
B2(y, s). We may assume that r = s by (8.6.7.2). We thus have |z — a| <
/2 ly—a| < r'/2 hence |z —y| < 2r'/2. Let the constant M > 2 be chosen so
that ||m, — 7| < M|z —y|. (We must use here the fact that the boundary is
C?.) We claim that Bs(z, (3 +4M)r) D Ba(y, ). To see this, let v € Ba(y, 7).

The easy half of the estimate is

lz—v| < |z —y|+ |y —v| < 272 4012 =312

Also

Tp(x —v) = m(x — a) + my(a —v) + {m, — Ty }Ha —v).
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Therefore

|72 (2 — )| T+ 2r + |7y — myllla — |
3r+ Mz —y| - |a —v|
3r+ M2r'%(la —y| + |y — v])

(3+4M)r.

VAN VAR VAN VAN

This proves (8.6.7.3). Thus we have the following:
Corollary 8.6.9 If f € L'(09), then

1f 1|z o0

o{Cew: Myf(¢) > A} <C ;) ;

all > 0.

Proof: Apply the theorem. O

Corollary 8.6.10 The operator My maps L*(0Q) to L*(9)) boundedly.

Proof: Exercise. Use the technique of Lemma 8.5.5. O

Remark: In fact there is a general principal at work here. If a linear operator
T is bounded from L* to L* and is also weak type (1, 1) then it is bounded
on [P, 1 < p < oo. Of course M, is not linear. Instead it is sublinear:
My(f + g)(x) < Mayf(x) + Mag(z). This is sufficient for the result stated.
The results mentioned in the last paragraph are instances of “interpola-
tion” theorems for operators. For a more thorough discussion of this topic,
see [STG1] or [BERL]. 0

The next lemma is the heart of the matter: it is the technical device
that allows us to estimate the behavior of a holomorphic function in the
interior (in particular, on an admissible approach region) in terms of a maxi-
mal function on the boundary. The argument comes from [STE4] and [BAR].

Prelude: One of the triumphs of Stein’s approach to Fatou-type theorems
is that he reduced the entire question of boundary behavior of holomorphic
functions to a result on plurisubharmonic functions like the one that follows.
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Figure 8.8: A canonical polydisc.

Lemma 8.6.11 Let u € C(f) be non-negative and plurisubharmonic on ).
Define f = ul,g, . Then

uy*(P) < CaMay(Myf)(P)
for all P € 02 and any a > 1.

Proof: After rotating and translating coordinates, we may suppose that
P =0 and vp = (1 +10,0,...,0). Let o > «. Then there is a small
positive constant k such that if z = (21 + iy, 22,...,2,) € Aa(P) then
D(z) = D(z1, —kx1) x D" ((22,...,20), V—kz1) C Au(P) (see Figure 8.7).

We restrict attention to z €  so close to P = 0 that the projection
along vp given by

z=(x1 4+ iy, ..., Tn+iyn) — (T1 +1Y1, T2+ 1Yoy . .., Ty + 1Y,) = 2 € 0N

makes sense. [Observe that points z that are far from P = 0 are trivial
to control using our estimates on the Poisson kernel.] The projection of
D(z) along vp into the boundary lies in a ball of the form (5(z, Kxy)—this
observation is crucial.

Notice that the subharmonicity of w implies that u(z) < Pf(z). Also
there is a > 1 such that z € A,/(0) = z € I'3(2). Therefore the standard
argument leading up to (8.4.1.1) yields that

[u(z)| < |Pf(2)] < CaMif(Z). (8.6.11.1)
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Now we bring the complex analysis into play. For we may exploit the
plurisubharmonicity of |u| on D(z) by invoking the sub-averaging property
in each dimension in succession. Thus

el < (elkn ) (rv ) [ oiaveo
= Co"t u(C)|dV(().
[ v

Notice that if z € A, (P) then each ¢ in the last integrand is in A,/ (P). Thus
the last line is

< Clapnt . )le@)dwo

< CMayptt -551/ M, f(t)do(t)
B2(Z,Kx1)

IN

g / My f(t)do (1)
B2(0,K'x1)

IN

O™ (0 (5a(0, K'21))) / My f(£)do(t)

B2(0,K'x1)
< C"My(Myf)(0).

O

Prelude: Next is a version of Stein’s main theorem. The result is not sharp,
because the formulation of the optimal result will depend on the Levi ge-
ometry of the domain in question (see [DIK]). Even so, this theorem was
revolutionary. The idea of proving a result of this power on an arbitrary
domain was virtually unheard of.

Now we may prove our main result:

Theorem 8.6.12 Let 0 < p < oo. Let o > 1. If Q cC C" has C? boundary
and f € HP(Q)), then for o-almost every P € 0€) we have

l.

exists. In fact the limit equals the function f that we constructed in Theo-
rems 8.4.1, 8.5.2, 8.5.3.
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Proof: We already know that the limit exists almost everywhere in the
special sense of Proposition 8.5.1. Call the limit function f. We need only
consider the case p < 0o. Let 2 = Uleﬂj as usual. It suffices to concentrate
on €. Let v = vy be the outward normal given by (8.3.5). Then, by 8.5.1, the

Lebesgue dominated convergence theorem implies that, for 00 = 90N 0y,

lim |f(¢ —ev)— f(Q)|Pdo(¢) = 0. (8.6.12.1)

e—0 851

For each j, k € N, consider the function fj : & — C given by

fin(2) = 1f(z = v]j) = f(z = v/E) P

Then f;; € C(Q1) and is plurisubharmonic on ;. Therefore a trivial variant
of Lemma 8.6.11 yields

/ (R (OPdo(C) < Ca / MM, f(0) o ()
0! 0!

Ql Q1

c /a M (O)Pdo(©)

Q4

e /a 1 fu(OPdo(©),

Q1

IN

where we have used Corollary 8.6.9, Lemma 8.3.5, and the proof of Lemma
8.3.5. Now let j — oo and apply (8.6.11.1) to obtain

/ sup |£(2) = f(z — v/R)Pdo(() < C" / FO) = £(C — v/k)Pdo(C).
0! 0!

ﬁl ZGAa(C) ﬁl ( )
8.6.12.2
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Let € > 0. Then
o{¢ €90 : limsup [f(z) — F(Q)| > ¢}

Aa(¢)32—¢
< o{¢ €0 : limsup |f(2) — f(z —v/k)| > ¢/3}
Aa(()32—¢
+o{Ced : limsup |f(z—v/k)— f(C—v/k)| > ¢€/3}
Aa(()22—¢
+o{¢ €0+ limsup |£(C—v/k) — f(C)] > €/3}
Aa(()22—¢
< c / Csup [f(2) = [z — v/R)Pda(C) /e
001 z€A4(C)
+0

e /a IO~ (¢ = vibPds(o)e

where we have used (the proof of) Chebycheff’s inequality. By 8.6.12.2, the
last line does not exceed

c / RO = FC = v/RPdo(C) /e,
o0

Now (8.6.11.1) implies that, as k& — oo, this last quantity tends to 0. Since
€ > 0 was arbitrary, we conclude that

limsup |f(z) — f(¢)| =0

Aa(¢)32—¢

almost everywhere. O

The theorem says that f has “admissible limits” at almost every bound-
ary point of 2. The considerations in the next section (indeed, an inspection
of the arguments in the present section) suggest that Theorem 8.6.12 is best
possible only for strongly pseudoconvex domains. At the boundary point
(1,0) of the domain {(z1, 22) : |21|* + |22/*™ < 1}, the natural interior poly-
discs to study are of the form

{(1-64+&,8%) & <c-d,|&] <c-8'/*m}.

This observation, together with an examination of the proof of 8.6.10, sug-
gests that the aperture in complex tangential directions of the approach
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regions should vary from boundary point to boundary point—and this aper-
ture should depend on the Levi geometry of the point. A theory of boundary
behavior for H? functions taking these observations into account, for a spe-
cial class of domains in C? is enunciated in [NSW]. A more general paradigm
for theories of boundary behavior of holomorphic functions is developed in S.
G. Krantz [KRAT7]. Related ideas also appear in [KRAS8] and [KRA9]. The
key tool in the last two references is the Kobayashi metric.

8.7 The Real Variable Point of View

Capsule: In this section, looking ahead to the next, we provide a
bridge between the (classical) holomorphic-functions viewpoint of
Hardy space theory and the more modern real-variable viewpoint.
The two approaches stand on their own, but the richest theory
comes from the interaction of the two. Because this gives a mar-
riage of two sets of techniques and yields powerful new kinds of
results. The atomic theory for Hardy spaces, just as an instance,
arises from the real-variable point of view.

This chapter is not part of the main stream of the book. It is provided
in order to give the reader some perspective on modern developments in the
subject. Thus far in the book we have measure the utility and the effective-
ness of an integral operator by means of the action on L” spaces. This point
of view is limited in a number of respects; a much broader perspective is
gained when one expands the horizon to include real variable Hardy spaces
and functions of bounded mean oscillation (and, for that matter, Lipschitz
spaces). We stress that we shall not actually prove anything about real vari-
able Hardy spaces or BMO in this book. We could do so, but it would take
us far afield. Our purpose here is to provide background and context for the
ideas that we do present in detail.

Hardy spaces are a venerable part of modern analysis. Originating in
work of M. Riesz, O. Toeplitz, and G. H. Hardy in the early twentieth cen-
tury, these spaces proved to be a fruitful venue both for function theory and
for operator-theoretic questions. In more recent times, thanks to work of
Fefferman, Stein, and Weiss (see [STG2|, [FES], [STE2]), we see the Hardy
spaces as artifacts of the real variable theory. In this guise, they serve as
substitutes for the L” spaces when 0 < p < 1. Their functional analytic
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properties have proved to be of seminal importance in modern harmonic
analysis.

In the present chapter we first review the classical point of view concern-
ing the Hardy spaces. Then we segue into the more modern, real variable
theory. It is the latter which will be the foundation for our studies later in
the book. The reader should make frequent reference to Section 8.1 and the
subsequent material to find context for the ideas that follow.

8.8 Real-Variable Hardy Spaces

Capsule: In this section we give a very brief introduction to the
real-variable theory of Hardy spaces. Inspired by the theorem of
Burkholder-Gundy-Silverstein about a maximal function charac-
terization of the real parts of classical Hardy space functions on
the unit disc in the plane, this is a far-reaching theory that can
define Hardy spaces even on an arbitrary manifold or Lie Group
(see, for instance, [COIW1], [COIW2]). Today it is safe to say
that the real variable Hardy spaces are more important than the
classical holomorphic Hardy spaces. The main reason is that we
understand clearly how the important classes of integral opera-
tors act on the real variable Hardy spaces; this makes them part
of our toolkit.

We saw in Section 8.1 that a function f in the Hardy class H?(D) on the
disc may be identified in a natural way with its boundary function, which we
continue to call f. Fix attention for the moment on p = 1.

If $ € L'(OD) and is real-valued, then we may define a harmonic function
u on the disc by

) 1 2 ) 1— 7’2
A i)
u(re”) = 27 /0 ol )1 —2rcos(d — ) +r? &

Of course this is just the usual Poisson integral of ¢. As was proved in Section
8.1, the function ¢ is the “boundary function” of v in a natural manner. Let
v be the harmonic conjugate of u on the disc (we may make the choice of v
unique by demanding that v(0) = 0). Thus h = u + iv is holomorphic. We
may then ask whether the function v has a boundary limit function g;
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To see that g; exists, we reason as follows: Suppose that the original
function ¢ is non-negative (any real-valued ¢ is the difference of two such
functions, so there is no loss in making this additional hypothesis). Since the
Poisson kernel is positive, it follows that © > 0. Now consider the holomor-
phic function

F = 6—u—iv‘

The positivity of v implies that F'is bounded. Thus F' € H*. By Theorem
8.1.14, we may conclude that F' has radial boundary limits at almost every
point of D. Unraveling our notation (and thinking a moment about the
ambiguity caused by multiples of 27), we find that v itself has radial boundary
limits almost everywhere. We define thereby the function g;

Of course the function h = u + iv can be expressed (up to an additive
factor of 1/2 and a multiplicative factor of 1/2—see our calculations at the
end of Section x.y) as the Cauchy integral of ¢. The real part of the Cauchy
kernel is the Poisson kernel (again up to a multiplicative and additive factor
of 1/2—see the calculation following), so it makes sense that the real part of
F on D converges back to ¢. By the same token, the imaginary part of F is
the integral of ¢ against the imaginary part of the Cauchy kernel, and it will
converge to ¢. It behooves us to calculate the imaginary part of the Cauchy
kernel.

Of course we know from our studies in Chapter 2 that this leads to a
conjugate kernel and thence to the kernel of the Hilbert transform. That, in
turn, is the primordial example of a singular integral kernel.

And our calculations will now give us a new way to think about the
Hardy space H'(D). For if ¢ and ¢ are, respectively, the boundary functions
of Re f and Im f for an f € H', then ¢, 5 € Ll,Nand our preceding discussion
shows that (up to our usual correction factors) ¢ = H¢. But this relationship
1s worth special note: We have already proved that the Hilbert transform is
not bounded on L!, yet we see that the functions ¢ that arise as boundary
functions of the real parts of functions in H! have the property that ¢ € L*
and (notably) H¢ € L'. These considerations motivate the following real-
variable definition of the Hardy space H*:

Definition 8.8.2 A function f € L' (on the circle, or on the real line) is
said to be in the real-variable Hardy space Hy, if the Hilbert transform of f
is also in L'. The H}, norm of f is given by

[z, = Nf e+ [TH Iz
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In higher dimensions the role of the Hilbert transform is played by a
family of N singular integral operators. On RY, let

Kyl =2

- N.
N

Notice that each K; possesses the three defining properties of a Caldéron-
Zygmund kernel: it is smooth away from the origin, homogeneous of degree
—N, and satisfies the mean-value condition because 2;(z) = z;/|z| is odd.
We set R;f equal to the singular integral operator with kernel K; applied
to f, and call this operator the j*" Riesz transform. Since the kernel of the
5 Riesz transform is homogeneous of degree — N, it follows that the Fourier
multiplier for this operator is homogeneous of degree zero (see Proposition
2.2.8). It is possible to calculate (though we shall not do it) that this multi-
plier has the form c - &;/[€| (see [STE1] for the details). Observe that on R!
there is just one Riesz transform, and it is the Hilbert transform.

It turns out that the N-tuple (K;(x),... Kn(x)) behaves naturally with
respect to rotations, translations, and dilations in just the same way that
the Hilbert kernel 1/t does in R' (see [STE1] for the particulars). These
considerations, and the ideas leading up to the preceding definition, give us
the following:

Definition 8.8.3 (Stein-Weiss [STG2]) Let f € L'(RY). We say that f
is in the real-variable Hardy space of order 1, and write f € H} , if R;f € L',
j=1,...,N. The norm on this new space is

[z, = 1Al + R flle + - + 1Ry fl o

We have provided a motivation for this last definition by way of the
theory of singular integrals. It is also possible to provide a motivation via
the Cauchy-Riemann equations. We now explain:

Recall that, in the classical complex plane, the Cauchy-Riemann equa-
tions for a C*', complex-valued function f = u + iv with complex variable
z =T+ 1y are

ov _ ou
oy Oz
ov ou

dr oy



8.8. REAL-VARIABLE HARDY SPACES 235

The function f will satisfy this system of two linear first-order equations if
and only if f is holomorphic (see [GRK12] for details).
On the other hand, if (v,u) is the gradient of a real-valued harmonic
function F' then
ou  O*F O*F v
or  0xdy Oydxr Oy

and

ou  O?°F 0*F ov

dy  oy2  0z2 Oz
[Note how we have used the fact that AF = 0.] These are the Cauchy-
Riemann equations. One may also use elementary ideas from multi-variable
calculus (see [GRK12]) to see that a pair (v,u) that satisifies the Cauchy-
Riemann equations must be the gradient of a harmonic function.

Passing to N variables, let us now consider a real-valued function f €

HE (RY). Set fo = f and f; = R;jf, j = 1,...,N. By definition, f; €
LYRYM), j=1,...,N. Thus it makes sense to consider

uj(x,y) = Py * fj(x) , 7=0,1,..., N,

where

_ Y
by(r) = CN(|I|2 + ) (N+D/2

is the standard Poisson kernel for the upper half-space
RY = {(z,y) : z € RN,y > 0}.

See also [KRA10].
A formal calculation (see [STG1]) shows that

ouj  Oug
— = 8.8.4
Ox,  Ox; ( )
for j,k=0,1,..., N and

N o,

j

= 0. 8.

— Oz, (8.8.5)
J=1

These are the generalized Cauchy-Riemann equations. The two conditions
(8.8.4) and (8.8.4) taken together are equivalent to the hypothesis that the
(N + 1)-tuple (ug,u1,...,un) be the gradient of a harmonic function F' on
RYT. See [STG1] for details.
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Both the singular integrals point of view and the Cauchy-Riemann equa-
tions point of view can be used to define Hf, for 0 < p < 1. These definitions,
however, involve algebraic complications that are best avoided in the present
book. [Details may be found in [FES] and [STG2].] In the next section we
present another point of view for Hardy spaces that treats all values of p,
0 < p <1, simultaneously.

8.9 The Maximal-Function Characterization
of Hardy Spaces

Capsule: This section is an outgrowth of the last two. It concen-
trates on the maximal function approach to Hardy spaces; this
is of course an aspect of the real-variable theory. We shall see in
the next section how this in turn leads to the atomic theory of
Hardy spaces.

Recall (see Section 2.5) that the classical Hardy-Littlewood maximal

function '
M) = sup s / G

is not bounded on L!. Part of the reason for this failure is that L' is not
a propitious space for harmonic analysis, and another part of the reason is
that the characteristic function of a ball is not smooth. To understand this
last remark, we set ¢ = [1/m(B(0,1)] - Xp(0,1), the normalized characteris-
tic function of the unit ball, and note that the classical Hardy-Littlewood
maximal operator

M () = sup | (") = J(x)
R>0
(where ot is the dilation operator defined in Section 3.2).! It is natural to ask
what would happen if we were to replace the expression ¢ = [1/m(B(0,1)] -
XB(0,1) in the definition of M f with a smooth testing function ¢. This we
now do.

LObserve that there is no loss of generality, and no essential change, in omitting the
absolute values around f that were originally present in the definition of M. For if M is
restricted to positive f, then the usual maximal operator results.
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We fix a function ¢y € C°(RY) and, for technical reasons, we assume
that [ ¢odx = 1. We define

* = sup | (aFy) * f(z
f(ff)—};g\( ¢o) * f(x)|

for f € LYRY). We say that f € HL _(RY) if f* € L*. The following
theorem, whose complicated proof we omit (but see [FES] or [STE2]), justifies
this new definition:

Theorem 8.9.1 Let f € LY(RY). Then f € H} (RY) if and only if f €
HL (RM).

max

It is often said that, in mathematics, a good theorem will spawn an
important new definition. That is what will happen for us right now:

Definition 8.9.2 Let f € LL (RY) and 0 < p < 1. We say that f €
H? (RN)if f* € L2,

max

It turns out that this definition of H? is equivalent to the definitions
using singular integrals or Cauchy-Riemann equations that we alluded to,
but did not enunciate, at the end of the last section. For convenience, we
take Definition 8.9.2 to be our definition of H? when p < 1. In the next
section we shall begin to explore what has come to be considered the most
flexible approach to Hardy spaces. It has the advantage that it requires
a minimum of machinery, and can be adapted to a variety of situations—
boundaries of domains, manifolds, Lie groups, and other settings as well.
This is the so-called atomic theory of Hardy spaces.

8.10 The Atomic Theory

Capsule: An atom is in some sense the most basic type of Hardy
space function. Based on an idea of C. Fefferman, these ele-
ments have been developed today into a sophisticated theory (see
[COIW1], [COIW2]). Any element of Hf may be written as a
sum—in a suitable sense—of atoms in H},. Thus any question,
for instance, about the action of an integral operator can be re-
duced to that same question applied only to atoms. Atoms are
also very useful in understanding the duals of the Hardy spaces.
Today much of this theory may be subsumed into the modern
wavelet theory.
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We first formulate the basic ideas concerning atoms for p = 1. Then we
shall indicate the generalization to p < 1. The complete story of the atomic
theory of Hardy spaces may be found in [STE2]. Foundational papers in the
subject are [COIW1], [COIW2], [COI], and [LATT].

Although the atomic theory fits very naturally into the context of spaces
of homogeneous type (see Chapter 9), we shall conent ourselves for now with
a development in RY. Let a € L*(RY). We impose three conditions on the
function a:

(8.10.1) The support of a lies in some ball B(z,7);

(8.10.2) We have the estimate

for every t.

(8.10.3) We have the mean-value condition

/a(t) dt = 0.

A function a that enjoys these three properties is called a 1-atom.

Notice the mean-value-zero property in Axiom (8.10.3). Assuming that
atoms are somehow basic or typical H' functions (and this point we shall
treat momentarily), we might have anticipated this vanishing-moment con-
dition as follows. Let f € H'(RY) according to the classical definition using
Riesz transforms. Then f € L' and R;f € L' for each j. Taking Fourier
transforms, we see that

FfeC, and éﬁ(g)—cg—ﬂ()eoo, j=1,...,N.

The only way that the last N conditions could hold—in particular that
€/1€1] - ( ) could be continuous at the origin—is for f( ) to be 0. But
this says that | f(¢)dt = 0. That is the mean-value-zero condition that we
are now mandating for an atom.
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Now let us discuss p-atoms for 0 < p < 1. It turns out that we must
stratify this range of p’s into infinitely many layers, and treat each layer
separately. Fix a value of p, 0 < p < 1. Let a be a measurable function. We
impose three conditions for a to be a p-atom:

(8.10.4,) The support of a lies in some ball B(z,);

(8.10.5,) We have the estimate

1
< - for all ¢.
la(t)| < (B ) or all ¢

(8.10.6,) We have the mean-value condition

/a(t) P dt =0 for all multi-indices 3 with |3] < N - (p~' —1).

The aforementioned stratification of values of p now becomes clear: if k
is a non-negative integer then, when

- < <
N+tk+1l P>Ntk

we demand that a p-atom a have vanishing moments up to and including
order k. This means that the integral of a against any monomial of degree
less than or equal to £ must be zero.

The basic fact about the atomic theory is that a p-atom is a “typical”
HY,, function. More formally:

Prelude: The atomic theory of Hardy spaces is something that C. Feffer-
man offered as a comment in a conversation. It has turned out to be an
enormously powerful and influential approach in the subject. In particular,
it has made it possible to define Hardy spaces on the boundaries of domains
and, more generally, on manifolds.

Theorem 8.10.7 Let 0 < p < 1. For each f € HE (RY) there exist p-atoms
a; and complex numbers 3; such that

f=>_8a (8.10.7.1)
j=1
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and the sequence of numbers {3;} satisfies 3, |3j|P < oo. The sense in which
the series representation (8.10.7.1) for f converges is a bit subtle (that is, it
involves distribution theory) when p < 1, and we shall not discuss it here.
When p = 1 the convergence is in L*.

The converse to the decomposition (8.10.7.1) holds as well: any sum as
in (8.10.7.1) represents an Hk (R™) function (where we may take this space
to be defined by any of the preceding definitions).

If one wants to study the action of a singular integral operator, or a
fractional integral operator, on H?, then by linearity it suffices to check the
action of that operator on an atom.

One drawback of the atomic theory is that a singular integral operator
will not generally send atoms to atoms. Thus the program described in the
last paragraph is not quite as simple as it sounds. To address this problem,
a theory of “molecules” has been invented. Just as the name suggests, a
p-molecule is an agglomeration of atoms—subject to certain rules. And it is
a theorem that a singular integral operator will map molecules to molecules.
See [TAW] for further details.

In Section 9.8, when we introduce spaces of homogeneous type, we shall
continue our development of the atomic theory in a more general setting.

As an exercise, the reader may wish to consider what space of functions
is obtained when the mean-value condition (Axiom (8.10.3)) is omitted from
the definition of 1-atom. Of course the resulting space is L', and this will
continue to hold in Chapter 9 when we are in the more general setting of
spaces of homogeneous type. Matters are more complicated for either p < 1
or p> 1.

8.11 A Glimpse of BMO

Capsule: One of the results that opened up the modern real-
variable theory of Hardy spaces was C. Fefferman’s theorem that
the dual of Hy, is the space BMO of John and Nirenberg. This
is a truly profound and original theorem, and the techniques for
proving it are important for the subject. The paper [FES] con-
tains this result, and really launched a whole new era of work on
real-variable Hardy spaces.
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The space of functions of bounded mean oscillation was first treated by F.
John and L. Nirenberg (see [JON]) in their study of certain non-linear partial
differential equations that arise in the study of minimal surfaces. Their ideas
were, in turn, inspired by deep ideas of J. Moser [MOS1], [MOS2].

A function f € L] _(RY) is said to be in BMO (the functions of bounded
mean oscillation) if

T zsgp“l,ﬁ| /Q (@) — fol dz < oo. (8.11.1)

Here () ranges over all cubes in RV with sides parallel to the axes and
fo = [1/|Q]] fQ f(t)dt denotes the average of f over the cube @Q; we use
the expression |@| to denote the Lebesgue measure, or volume, of ). There
are a number of equivalent definitions of BMO; we mention two of them:

1
inf sup —/ |f(x) —c|dr < o0 (8.11.2)
cC q Q| Jo
and
1 1/q
sup {—/ |f(z) — fol dz] < oo, somel<g< oo. (8.11.3)
Q LIQlJg

The latter definition, when ¢ = 2, is particularly useful in martingale and
probability theory.

It is easy to see that definition (8.11.2) for BMO implies the original
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definition (8.11.1) of BMO. For

|Q|/|f ~ folde
1
AL C'd“@/'C‘fQ'd‘”
1
= — d - dt| d
|@|/Q'f( ~d “|@| |@|/Qf(t) t‘ v

1 1
- d
|@|/Q'f( ~ “|@|

—/[c— £#)] dt‘ dz

1
_— d dtd
< |@|/Q'f( ~cl “|@| Q|Q|/'C ()] dt dv
1
— d d
< |Q|/Q|f( _d x+|Q|/|c (0)] dt.

The converse implication is immediate. Also definition definition (8.11.3) of
BMO implies the original definition (8.11.1) by an application of Holder’s
inequality. The converse implication requires the John-Nirenberg inequality
(see the discussion below, as well as [JON]); it is difficult, and we omit it.

It is obvious that L> C BMO. A non-trivial calculation (see [JON])
shows that In || € BMO(R). It is noteworthy that (In |z|)-sgnx ¢ BMO(R).
We invite the reader to do some calculations to verify these assertions. In
particular, accepting these facts we see that the BMO “norm” is a measure
both of size and of smoothness.

Observe that the || ||« norm is oblivious to (additive) constant func-
tions. So the BMO functions are really defined modulo additive constants.
Equipped with a suitable quotient norm, BMO is a Banach space. Its first
importance for harmonic analysis arose in the following result of Stein: If T
is a Caldéron-Zygmund operator, then 7" maps L™ to BMO (see [FES]| for
the history of this result). If we take Stein’s result for granted, then we can
begin to explore how BMO fits into the infrastructure of harmonic analysis.

To do so, we think of H}, in the following way:

Hy, > f «— (f, Bif, Raf, ..., By f) € (LN T (8.11.4)

Suppose that we are interested in calculating the dual of the Banach space
Hi.. Let 8 € (Hg,)*. Then, using (8.11.4) and the Hahn-Banach theorem,
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there is a continuous extension of § to an element of [(LY)N*1]*. But we
know that the dual of L', so we know that the extension (which we continue
to denote by (3) can be represented by integration against an element of
(L*)N+L Say that (go, g1,...,9n5) € (L=°)NV*! is the representative for 3.
Then we may calculate, for f € H},, that

80 = [ (FRfee Ry o) da
N
- RNf-godI+;AN(ij)gde

N
= /. f-godr — Zf(Rjgj)d:B.
j=1

Here we have used the elementary observation that the adjoint of a con-
volution operator with kernel K is the convolution operator with kernel
K(x) = K(—x). We finally rewrite the last line as

N
B(f) :/RNf 90— > Rjg;
j=1

But, by the remarks two paragraphs ago, R;g; € BMO for each j. And
we have already noted that L> C BMO. As a result, the function

dx.

N
QQ—ZRjgj € BMO.

j=1

We conclude that the dual space of H}, has a natural embedding into BMO.
Thus we might wonder whether [Hy,|* = BMO. The answer to this question
is affirmative, and is a deep result of C. Fefferman (see [FES]). We shall not
prove it here. However we shall use our understanding of atoms to have a
look at the result.

The atomic theory has taught us that a typical Hy, function is an atom
a. Let us verify that any such 1-atom a pairs with a BMO function ¢. We
suppose for simplicity that a is supported in the ball B = B(0,r).

To achieve our goal, we examine

/RN a(zx)p(x) dr = / a(x)p(x) dx

B
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for ¢ a testing function. We use the fact that a has mean-value-zero to write
this last as

[ al)o(w) - o) de
B
Here ¢p is the average of ¢ over the ball B. Then

/RN a(r)p(r)dr| < /B|a(a:)||¢(g;)_¢3|dI

1
< @@as(x)—%mx
< ol

This calculation shows that ¢ pairs with any atom, and the bound on
the pairing is independent of the particular atom (indeed it depends only on
the || ||« norm of ¢). It follows by linearity that any BMO function will pair
with any Hp, function.

A fundamental fact about BM O functions is the John-Nirenberg inequal-
ity (see [JON]). It says, in effect, that a BMO function ¢ has distribution
function p that is comparable to the distribution function of an exponentially
integrable function (i.e., a function f such that e/l is integrable for some
small positive constant ¢). Here is a more precise statement:

Prelude: The space of functions of bounded mean oscillation (BMO) were
invented in the paper [JON]. They arose originally in the context of the study
(in the context of minimal surfaces) of partial differential equations of gra-
dient type with L*° coefficients. Today, in harmonic analysis, the space is
important because (Fefferman’s theorem—see [KRA5]) it is the dual of the
real variable Hardy space Hp,. The John-Nirenberg inequality was the first
hard analytic fact about the space that demonstrated its centrality and im-
portance.

Theorem 8.11.1 (The John-Nirenberg Inequality) Let f be a func-
tion that lies in BMO(Qq), where Q is a fixed cube lying in RY (here
we are mandating that f satisfy the BMO condition for subcubes of ()
only). Then, for appropriate constants c,cs > 0,

m{z € Qo : |f(z) — fo,] > A} < c1e7MQo. (8.11.1.1)
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Lurking in the background here is the concept of distribution function.
This will be of interest for us later, so we say a little about it now. Let f be
a measurable, nonnegative, real-valued function on R". For ¢ > 0 we define

M) = At) = m{z € RY : f(z) > t}.

It is a fact, which the reader may verify with an elementary argument (or
see [SAD]) that

/f(:v)pda?:/ooptp_l-)\(t) dtz—/oootpdA(t).

0

The John-Nirenberg theorem is a statement about the distribution function
of a BMO function.

It follows from (8.11.1.1) that f is in every LP class (at least locally)
for p < oo (exercise). But, as noted at the beginning of this section, BMO
functions are not necessarily L>.

We have noted elsewhere that the function f(z) = log|z| is in BMO.
It is a remarkable result of Garnett and Jones [GAJ] that any BMO func-
tion is a superposition of logarithmic functions. Their proof uses the John-
Nirenberg theorem in a key manner. Theirs is a useful structure theorem for
this important space.

For many purposes, BMO functions are the correct ersatz for L> in
the context of harmonic analysis. For instance, it can be shown that any
Caldéron-Zygmund operator maps BMO to BMO. By duality (since the
adjoint of a Caldéron-Zygmund operator is also a Caldéron-Zygmund op-
erator) it follows that any Caldéron-Zygmund operator maps Hg, to Hp,.
Thus we see that the space Hp, is a natural substitute for L' in the context
of harmonic analysis. The last assertion can be seen very naturally using
atoms.

The study of real-variable Hardy spaces, and corresponding constructs
such as the space BMO of John and Nirenberg, has changed the face of
harmonic analysis in the past twenty-five years. We continue to make new
discoveries about these spaces (see, for example [CHKS1], [CHKS2]).
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Chapter 9

Introduction to the Heisenberg
Group

Prologue: This chapter and the next constitute the climax of
the present book. We have tried to lay the groundwork so that
the reader may see how it is natural to identify the boundary of
the unit ball in C" with the Heisenberg group and then to do
harmonic analysis on that group.

Analysis on the Heisenberg group is fascinating because it
topologically Euclidean but analytically non-Euclidean. Many
of the most basic ideas of analysis must be developed again from
scratch. Even the venerable triangle inequality, the concept of di-
lation, and the method of polar coordinates, must be re-thought.
One of the main points of our work will be to define, and then to
prove estimates for, singular integrals on the Heisenberg group.

One of the really big ideas here is that the critical singularity—
the singularity for a singular integral kernel—will not be the same
as the topological dimension of the space (recall that, on R¥,
the critical index is ). Thus we must develop the concept of
“homogeneous dimension.” It is also the case that the Fourier
transform—while it certainly exists on the Heisenberg group—is
not nearly as useful a tool as it was in classical Euclidean analysis.
The papers [GEL1]-[GEL3] and [GELS] provide some basis for
analysis using the Fourier transform on the Heisenberg group.
While this theory is rich and promising, it has not borne the sort

247
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of fruit that classical Euclidean Fourier theory has.

The reader will see in this chapter all the foundational ideas
that we have laid in the preceding nine chapters—brought into
sharp focus by their application in a new context. It is hoped
that the resulting tapestry will prove to be both enlightening and
rewarding.

9.1 The Classical Upper Halfplane

Capsule: It almost seems like a step backward—after all the
machiner we have built up—to now revert to the classical upper
halfplane. But we shall first understand the Heisenberg group as a
Lie group that acts on the boundary of the Siegel upper halfspace.
And that is a direct generalization of the classical upper halfplane.
So our first task is to understand that halfplane in a new light,
and with somewhat new language. We shall in particular analyze
the group of holomorphic self-maps of the upper halfplane, and
perform the Iwasawa decomposition for that group (though of as a
Lie group). This will yield a new way to think about translations,
dilations, and Mo6bius transformations.

As usual, we let U = {¢ € C : Im({ > 0} be the upper halfplane. Of
course the unit disc D is conformally equivalent to U by way of the map

c:D — U
o 1-¢
¢ — 1 ¢

If Q is any planar domain then we let Aut (€2) denote the group of con-
formal self-maps of {2, with composition as the binary operation. We call
this the automorphism group of €. We equip the automorphism group with
a topology by using uniform convergence on compact sets (equivalently, the
compact-open topology). Then the automorphism groups of D and U are
canonically isomorphic (both algebraically and topologically) by way of

Aut(D) 3> o+ copoc ! € Aut(U).
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We now wish to understand Aut (D) by way of the so-called [wasawa
decomposition of the group. This is a decomposition of the form

Aut(D)=K-A-N,

where K is compact, A is abelian, and N is nilpotent. We shall use the
Iwasawa decomposition as a guide to our thoughts, but we shall not prove
it here (see [HEL| for the chapter and verse on this topic). We also shall
not worry for the moment what “nilpotent” means. The concept will be
explained in the next section. In the present context, the “nilpotent” piece
is actually abelian, and that is a considerably stronger condition.

Now let K be those automorphisms of D that fix the origin. By Schwarz’s
lemma, these are simply the rotations of the disc. And that is certainly a
compact group, for it may be canonically identified (both algebraically and
topologically) with the unit circle.

To understand the abelian part A of the group, it is best to work with
the unbounded realization U. Then consider the group of dilations

as(§) = 6§

for 6 > 0. This is clearly a subgroup of the full automorphism group of U,
and it is certainly abelian. Let us examine the group that it corresponds to
in the automorphism group action on D. Obviously we wish to consider

a5(¢) =ctoasoce€ Aut(D). (10.1.1)

We know that ¢71(£) = [i — £]/[i +&]. So we may calculate the quantity in
(10.1.1) to find that

(1-0)+¢(1+9)

)= T8 i =9

(10.1.2)

This is the “dilation group action” on the disc. Clearly the dilations are
much easier to understand, and the abelian nature of the subgroup more
transparent, when we examine the action on the upper halfplane U.

Next we look at the nilpotent piece, which in the present instance is in
fact abelian. We again find it most convenient to examine the group action
on the upper halfplane U. This subgroup is the translations:

7/:&(6) :€+a>
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where a € R. Then the corresponding automorphism on the disc is
() =ctoT,0ce Aut(D).

With some tedious calculation we find that

—a+((2i—a) 2i—a (+a/(a—2)
(2i+a)+al  2i+a 1+a/(a+2i)]¢

7a(() =

Again, the “translation” nature of the automorphism group elements is much
clearer in the group action on the unbounded realization U, and the abelian
property of the group is also much clearer.

Notice that the group of translations acts simply transitively on the
boundary of U. For if 7, is a translation then 7,(0) = a+i0 € 0U. Conversely,
if x +40 € OU then 7,(0) = z + 0. So we may identify the translation group
with the boundary, and vice versa. This simple observation is the key to
Fourier analysis in this setting.

We will use these elementary calculations of the Iwasawa decomposi-
tion in one complex dimension as an inspiration for our more sophisticated
calculations on the ball in C™ that we carry out in the next section.

9.2 Background in Quantum Mechanics

The Heisenberg group derives its name from the fact that the commutator
relations in its Lie algebra mimic those satisfied by the classical operators
of quantum theory. The details of these assertions are too technical for
the present context, and we refer the reader to [STE2, pp. 547-553] for the
details.

9.3 The Role of the Heisenberg Group in Com-
plex Analysis

Capsule: In this section we begin to familiarize ourselves with
the unit ball in C". We examine the automorphism group of the
ball, and we detail its Iwasawa decomposition. The subgroup of
the automorphism group that plays the role of “translations” in
the classical setting turns out to be the Heisenberg group. There



9.3. THE ROLE OF THE HEISENBERG GROUP IN COMPLEX ANALYSIS251

are certainly other ways to discover the Heisenberg group, but
this one turns out to be most natural for us. It is important to
understand that the Heisenberg group acts simply transitively on
the boundary; this makes possible the identification of the group
with the boundary. One may also do harmonic analysis on the
boundary by exploiting the unitary group action. We shall not
explore that approach here, but see [FOL].

Complex analysis and Fourier analysis on the unit disc D = {¢ € C :
|| < 1} work well together because there is a group—mnamely the group of
rotations—that acts naturally on 9D. Complex analysis and Fourier analysis
on the upper halfplane U = {¢ € C : Im{ > 0} are symbiotic because there
is a group—mamely the group of translations—that acts naturally on OU.!
We also might note that the group of dilations ( — ¢ acts naturally on U
for 6 > 0. One of the main points here is that the disc D and the upper
halfplane U are conformally equivalent. The Cayley transform

c:D—-U

is given explicitly by
o1
C(C) =1- m .

Notice that ¢ is both one-to-one and onto. Its inverse is given by

_ i H
it

¢ ()

We would like a similar situation to obtain for the unit ball B = {(z1,...,2,) €
C":|z1|*+ -+ |2n|* < 1}. Tt turns out that, in this situation, the unbounded
realization? of the domain B is given by

U={(w,...,w,) € C": Imw; > Z|wj|2}.

j=2

Tt must be noted, however, that the rotations on the disc and the translations on the
upper half plane do not “correspond” in any natural way; certainly the Cayley transform
does not map the one group to the other. This anomaly is explored in the fine text [HOF].

2We use here the classical terminology of Siegel upper halfspaces. Such an upper
halfspace is defined with an inequality using a quadratic form. The resulting space is
unbounded. However, when the quadratic form is positive definite then the domain has
a bounded realization—that is to say, it is biholomorphically equivalent to a bounded
domain. See [KAN] for details of this theory.
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It is convenient to write w' = (wy, ..., w,). We refer to our domain U as the
Siegel upper half space, and we write its defining equation as Imw; > |w'|?.

Now the mapping that shows B and U/ to be biholomorphically equivalent
is given by

o:B — U
(21, 2n) +— (z

1—2 29 Zn
L+z' 1427 142z )

We leave it to the reader to perform the calculations to verify that ® maps
B to U in a holomorphic, one-to-one, and onto fashion. The inverse of the
mapping ® may also be calculated explicitly.

Just as in one dimension, if @ C C" is any domain, we let Aut (£2) denote
the collection of biholomorphic self-mappings of 2. This set forms a group
when equipped with the binary operation of composition of mappings. In
fact it is a topological group with the topology of uniform convergence on
compact sets (which is the same as the compact-open topology). Further, it
can be shown that, at least when € is a bounded domain, Aut (2) is a real
Lie group (never a complex Lie group—see [KOB]). We shall not make much
use of this last fact, but it a helpful touchstone in our discussions. There is
a natural isomorphism between Aut (B) and Aut (i) given by

Aut (B) 3 o+ ®opod ! e Aut(U). (10.3.1)

It turns out that we can understand the automorphism group of B more
completely by passing to the automorphism group of &/. We used this tech-
nique earlier in the present chapter to understand the automorphism group
of the disc. We shall again indulge in that conceit right now. We shall use,
as we did in the more elementary setting of the disc, the idea of the Iwasawa
decomposition G = KAN.

The compact part of Aut (B) is the collection of all automorphisms that
fix the origin. It is easy to prove, using a version of the Schwarz lemma
(see [RUD]), that any such automorphism is a unitary rotation. This is an
nxn complex matrix whose rows (or columns) form a Hermitian orthonormal
basis of C". Let us denote this subgroup by K. We see that the group
is compact just using a normal families argument: if {p;} is a sequence
in K then Montel’s theorem guarantees that there will be a subsequence
converging uniformly on compact sets. Of course the limit function will be
a biholomorphic mapping that fixes 0 (i.e., a unitary transformation).
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Implicit in our discussion here is a fundamental idea of H. Cartan: If €2
is any bounded domain and {¢;} a sequence of automorphisms of €, and if
the ¢; converge uniformly on compact subsets of €2, then the limit mapping
o is either itself an automorphism, or else it maps the entire domain €2
into the boundary. The proof of this result (which we omit, but see [NAR))
is a delicate combination of Hurwitz’s principle and the open mapping the-
orem. In any event, since the mappings in the last paragraph all fix the
origin, then it is clear that the limit mapping cannot map the entire domain
into the boundary. Hence, by Cartan, the limit mapping must itself be an
automorphism.

One may utilize the isomorphism (10.3.1)—this is an explicit and ele-
mentary calculation—to see that the subgroup of Aut (/) that corresponds
to K is K which is the subgroup of automorphisms of U that fixes the point
(,0,...,0). Although K is a prioria compact Lie group, one may also verify
this property by a direct argument as in the last two paragraphs.

Thus we have disposed of the compact piece of the automorphism group
of the unit ball. Now let us look at the abelian piece. For this part, it is
most convenient to begin our analysis on . Let us consider the group of
dilations, which consists of the nonisotropic mappings

as U — U

given by
as(wr, ..., wy) = (8%wy, Swy, Sws, . .., 6wy,)

for any 6 > 0. Check for yourself that as maps U to U. We call these
mappings nonisotropic (meaning “acts differently in different directions”)
because they treat the w; variable differently from the ws, ..., w, variables.
The group is clearly abelian. It corresponds, under the mapping ®, to the
group of mappings on B given by

as(z1,...,2n) = @1 ods 0 ®(2). (10.3.2)
Now it is immediate to calculate that
o~ (w) = (?‘wl, L I ) .
T+ w1+ w 14+ Wy

Of course it is just a tedious algebra exercise to determine ais. The answer is

(=6 + z1(1+07) 2029 202,
as(z) = ((1 102 +a(1-02) (1402 +21(1—02) " (1+02) + (1 — 52))
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One may verify directly that z € B if and only if as(z) € B.

It is plain that the dilations are much easier to understand on the un-
bounded realization &. And the group structure, in particular the abelian
nature of the group, is also much more transparent in that context.

We shall find that the “nilpotent” piece of the automorphism group is
also much easier to apprehend in the context of the unbounded realization.
We shall explore that subgroup in the next section.

9.4 The Heisenberg Group and its Action on
U

Capsule: Here we study the action of the Heisenberg group on
the Siegel upper half space and on its boundary. We find that the
upper half space decomposes into level sets that are “parallel” to
the boundary (similar to the horizontal level lines in the classical
upper halfplane), and that the Heisenberg group acts on each of
these. We set up the basics for the convolution structure on the
Heisenberg group.

If G is a group and g, h € GG, then we define a first commutator of g and h
to be the expression \(g, h) = ghg~'h™'. [Clearly if the group is abelian then
this expression will always equal the identity; otherwise not.| If g,h, k € G
then a second commutator is an expression of the form A(A(g,h), k). Of
course higher order commutators are defined inductively.?

Let m be a nonnegative integer. We say that the group G is nilpotent
of order m (or step-m) if all commutators of order m + 1 in G are equal to
the identity, and if m is the least such integer. Clearly an abelian group is
nilpotent of order 0. It turns out that the collection of “translations” on Ol is
a nilpotent group of order 1. In fact that group can be identified in a natural
way with OU (in much the same way that the ordinary left-right translations
of the boundary of the classical upper halfspace U can be identified with
OU). We now present the details of this idea.

3In some sense it is more natural to consider commutators in the Lie algebra of the
group. By way of the exponential map and the Campbell-Baker-Hausdorff formula (see
[SER]), the two different points of view are equivalent. We shall develop the Lie algebra
approach in the material below. For now, the definition of commutators in the context of
the group is a quick-and-dirty way to get at the idea we need to develop right now.
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The Hewsenberg group of order n— 1, denoted H,,_1, is an algebraic struc-
ture that we impose on C" ! xR. Let (¢,t) and (£, s) be elements of C* 1 xR.
Then the binary Heisenberg group operation is given by

(1) (&,8) = (C+&t+s+2Im(C-E)).

It is clear, because of the Hermitian inner product ¢-& = (&, +---+Cu_1€,,_ 1,
that this group operation is non-abelian (although in a fairly subtle fashion).
Later on we shall have a convenient means to verify the nilpotence, so we
defer that question for now.

Now an element of U has the form (Re wq+i|(wa, . . ., w,)|* wa, ..., wy,) =
(Rew; + i|w'|, w'), where w’' = (ws,...,w,). We identify this boundary el-
ement with the Heisenberg group element (w’, Rew;), and we call the corre-
sponding mapping ¥. Now we can specify how the Heisenberg group acts on
oU. If w= (wy,w') € 0U and g = (2',t) € H,_; then we have the action

glw] =7 g U(w)] = ¥ g (v, Rew)] = ¥[(2,1) - (w', Rews)] .
More generally, if w € U is any element then we write

w = (wy,w, ..., wy) = (wy,w)

= ((Rew1 +i|w'|?) + i(Imw;, — [w'[?), w,, . .. ,wn)
= (Rew1 - z'|w'|2,w') - (z’(Imwl —|w'),0,... ,0) .

It is convenient to let p(w) = Imw; — |w'|>. We think of p as a “height
function”.
Now we let g act on w by

glw] = gKRew1 +z’|w’|2,w') + (z’(Imwl — |w'»),0,... 0)]
= gKRew1 +z’|w'|2,w')] + (z'(Imwl — |w'»),0,... ,0) )

In other words, we let g act on level sets of the height function.
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It is our job now to calculate this last line and to see that it is a holo-
morphic action on Y. We have, for g = (2, ),

glw]

= g{(Rewl +z’|w’|2,w')] - (z’(Imwl — |w’|2),0,...,0)
= U lg- (v, Rewy)] + (z’(Imwl —|w'[?),0,... ,0)

— oyl {(z’ +w',t+ Rew; + 2Im (' -@'))] + (i(Imwy — [w'[*),0,...,0)

= (t+Rew, + (=i)[z - W — 7 - w4+
+i|w'|? + 2iRe 2’ - W' + ilmw;, — i|w'|)?, 2/ +w')
= (t4+w +i|]* +i[2ReZ - w' 4 2iImZ - w'], 2’ +w')
= (t+ilZPP+w +i27 w2 ).
This mapping is plainly holomorphic in w (but not in z!). Thus we see
explicitly that the action of the Heisenberg group on U is a biholomorphic
mapping.
As we have mentioned previously, the Heisenberg group acts simply tran-
sitively on the boundary of 4. Thus the group may be identified with the

boundary in a natural way. Let us now make this identification explicit.
First observe that 0 = (0,...,0) € OU. If g = (¢, t) € H,,_; then

gl0] = ¥ (2, 1) - (01,0)] = WTH[(, )] = (¢t +i||*, =) € OU.
Conversely, if (Rew; + i|w'|?, w’) € OU then let g = (w', Rew,). Hence
g[0] = U [(w', Rew)] = (Rew; +i|w'|*,w') € OU.

Compare this result with the similar, but much simpler result for the classical
upper halfplane U that we discussed in the last section.

The upshot of the calculations in this section is that analysis on the
boundary of the ball B may be reduced to analysis on the boundary of the
Siegel upper half space . And that in turn is equivalent to analysis on the
Heisenberg group H,,_;. The Heisenberg group is a step-one nilpotent Lie
group. In fact all the essential tools of analysis may be developed on this
group, just as they were in the classical Euclidean setting. That is our goal
in the next several sections.

(t +Rew; + 2Im (2 - @) + il +w']?, 2 + w') + (i(Imw, — |w'|?),0,...
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9.5 The Geometry of U

Capsule: The boundary of the classical upper halfplane is flat.
It is geometrically flat and it is complex analytically flat. In
fact it is a line. Not so with the Siegel upper half space. It
is strongly pseudoconvex (in point of fact, the upper half space
is biholomorphic to the unit ball). This boundary is naturally
“curved” in a complex analytic sense, and it cannot be flattened.
These are ineluctable facts about the Siegel upper half space that
strongly influence the analysis of this space that we are about to
learn.

The boundary of the Siegel upper halfspace U is strongly pseudoconvex.
This fact may be verified directly—by writing out the Levi form and calcu-
lating its eigenvalues—or it may be determined by invoking an important
theorem of S. Bell [BEL].

As such, we see that the boundary of U cannot be “flattened”. That is
to say, it would be convenient if there were a biholomorphic mapping of U
to a Euclidean halfspace, but in fact this is impossible. Because the boundar
of a Euclidean halfspace is Levi flat. And Bell’s paper says in effect that a
strongly pseudoconvex domain can only be biholomorphic to another strongly
pseudoconvex domain.

There are other ways to understand the geometry of OU/. In Section 9.7
we discuss the commutators of vector fields—in the context of the Heisen-
berg group. The main point of that discussion is that the Heisenberg group
is a step-one nilpotent Lie group. This means that certain first-order commu-
tators in the Heisenberg group are nonzero, but all other commutators are
zero. This idea also has a complex-analytic formulation which we now treat
briefly.

For simplicity let us restrict attention to C2. And let Q = {z € C? :
p(z) < 0} € C? be a smoothly bounded domain. If P € 9 satisfies
0p/0z1(P) # 0 then the vector field

L_@ppa 8,0P8

N 8—2’1 82’1 82’2 8—2’1

is tangent to O at P just because Lp(P) = 0. Likewise L is also a tangent
vector field.
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If P is a strongly pseudoconvex point then it may be calculated that
the commutator [L, L]p(P) is not zero—that is to say, [L, L] has a nonzero
component in the normal direction. This is analogous to the Lie algebra
structure of the Heisenberg group. And in fact Folland and Stein [FOST1I]
have shown that the analysis of a strongly pseudoconvex point may be ac-
curately modeled by the analysis of the Heisenberg group. It is safe to say
that much of what we present in the last two chapters of the present book is
inspired by [FOST1].

The brief remarks made here will be put into a more general context,
and illustrated with examples, in Section 9.7.

9.6 The Role of the Heisenberg Group

Capsule: Here we set the stage for our future program on the
Heisenberg group.

We have tried to set the groundwork for the following assertion: The
Heisenberg group plays the same role in the automorphism group action on
the ball or the Siegel upper halfspace that the elementary group of transla-
tions plays on the disc or the classical upper halfplane. Of course the trans-
lation group on the upper halfplane is the key to one-dimensional Fourier
analysis, to the Poisson integral formula, to the Cauchy integral formula,
and to all the central tools in complex analysis in that setting. We wish
now to carry out a similar program, and to develop analogous tools, in the
multi-variable setting of the ball B and the Siegel upper halfspace U.

9.7 The Lie Group Structure of the Heisen-
berg Group H"

Capsule: The Heisenberg group is a step-one nilpotent Lie group.
This is a very strong statement about the complexity of the Lie
algebra of the group. In particular, it says something about the
Lie brackets of invariant vector fields on the group. These will in
turn shape the analysis that we do on the group. It will lead to
the notion of homogeneous dimension.
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Let us denote the element of C* x R as [(, ], ( € C" and t € R. Then
the space C" x R has the group structure defined as follows:

[C, ] - [¢" 7] = [+ ¢t + " +2Im( - €,

where ¢ - ¢* = (¢ + - - - + (uC,.. The identity element is [0,0] and [¢, ]! =
[—(, —t]. Check the associativity:

[Z>t]([w>s][77>u]) = [Z>t][w+77>$+u+21mwﬁ]
= [z+w+nt+s+u+20mw- -7+ 2Imz - (w+ n)]

and

([z: 2] - [w,s]) - [n,u] = [z 4+ w,t+ s+ 2Imz W] - [, u]
= [z+w+nt+s+u+2lmz-w+ 2lm(z +w) -7 .

9.7.1 Distinguished 1-parameter subgroups of the Heisen-
berg Group

The Heisenberg group H" ! has 2n — 1 real dimensions and we can define
the differentiation of a function in each direction consistent with the group
structure by considering 1-parameter subgroups in each direction.

Let g = [¢,t] € H"!, where ¢ = ({1, +,Cu1) = (1 + @Y1, - o, Tyt +
iYn—1) and t € R. If we let

ng_l(s) = [(0,...,$+'é0,...,0),0]
v2i(s) = [(0,...,041s,...,0),0]

for 1 < j <n —1 and the s term in the j* slot, and if we let
Yan-1(8) = ve(s) = [0, 5]

[with (n — 1) zeros and one s, then each forms a one-parameter subgroup of
H". Just as an example,

[(0, ..., s+i0,...,0),0]-[(0,...,5+i0,...,0),0] = [(0, ..., s+s'+i0,...,0),0].
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We define the differentiation of f at g = [(,t] in each one-parameter
group direction as follows:

Xifla) = (s
- %f([(zl_l_,éyl)"‘?Ij‘I’S‘l"éyj,...,l’n_l—l—z'yn_l)’t_l_2yjs])
s=0
d %)
- (a—jﬂwa—{)[c,t], 1<j<n-—1,
J
d
Viflo) = foemle|
= d%f([(:ﬂl+z'y1,...,:rj+z'(yj+s),...,:rn_1 + iYn-1),t — 21;5])
s=0
9 %)
- (a—;—%ja—{)[c,t], 1<j<n-1,
J
_d
Tf(g) = goflo-uls))|

d
()

_ of

s=0

9.7.2 Commutators of Vector Fields

Central to geometric analysis and symplectic geometry is the concept of the
commutator of vector fields. We review the idea here in the context of RV.
A wector field on a domain U C RY is a function

AU —RY

with A(z) = Z;VZI a;j(x)0/0x;. We think of 0/0x1,...,0/0xN as a basis for
the range space RY. If \;, Ay are two such vector fields then we define their
commutator to be

A M) = Ao — Aohs . (9.7.2.1)

Of course a vector field is a linear partial differential operator. It acts
on the space of testing functions. So, if ¢ € C° then it is useful to write
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(9.7.2.1) as
[A1, Aa]o = Ar(A2p) — Aa(Aip) -

Let us write this out in coordinates. We set

and

Then

(A A2 = A(Qap) — Aa(Ai)

The main thing to notice is that [A;, A2] is ostensibly—by its very definition—
a second order linear partial differential operator. But in fact the top-order
terms cancel out. So that in the end [A1, \o] is a first-order linear partial dif-
ferential operator. In other words—and this point is absolutely essential—the
commutator of two vector fields is another vector field. This is what will be
important for us in our study of the Heisenberg group.
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9.7.3 Commutators in the Heisenberg Group

Let
X; = a%wyj% 1<j<n-—1,
Y, = 8%—2%% 1<j<n—1,
0
T = pr

See Subsection 9.7.1. Note that [X;, X;| = [Y;,Ys] = [X;,T] = [Y;,T] =0
for all 1 < j,k <n and [X},Y,] =0 if j # k. The only nonzero commutator
in the Heisenberg group is [X;,Y;], and we calculate that right now:

0 0 0 0 0 0 0 0
il = (g 2n) (o~ 2501) = (= 2) (o 2001)

_ (2.9 _5(9 O
- 0x; 7 ) ot ay; " ) ot

0
= —4—.
ot
Thus we see that 9
[ X5, Y] = —45, = —4T.
To summarize: all commutators [X;, Xi] for j # k and [X;,T] equal
0. The only nonzero commutator is [X;,Y;] = —47. One upshot of these

simple facts is that any second-order commutator [[A, B], C] will be zero—
just because [A, B] will be either 0 or —47". Thus the vector fields on the
Heisenberg group form a nilpotent Lie algebra of step-one.

9.7.4 Additional Information about the Heisenberg Group
Action
We have discussed in Section 9.4 how the Heisenberg group acts holomorphi-

cally on the Siegel upper half space. Here we collect some facts about the
invariant measure for this action.

Definition 9.7.1 Let GG be a topological group that is locally compact and
Hausdorff. A Haar measure on G is a Radon measure that is invariant under
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the group operation. Among other things, this means that if K is a compact
set and g € G then the measure of K and the measure of - K = {g-k : k € K}
are equal.

Exercise for the Reader:

In H", Haar measure coincides with the Lebesgue measure. [This is an
easy calculation using elementary changes of variable.|

Let g = [2,¢] € H""!. The dilation on H""! is defined to be
asg = [62,0°t].
We can easily check that a; is a group homomorphism:
as ([2,t] - [, t7]) = as|z,t] - as[2", t7] .
A ball with center [z, t] and radius r is defined as
B[z, t],7) = {[G ] 1¢ — #[* + |5 — > < 2}

[Later on, in Section 9.9, we shall examine this idea in the language of the
Heisenberg group norm.|] For f,g € L'(H"), we can define the convolution
of f and g:

fgla) = / ™ 2)g(y)dy.

9.8 A Fresh Look at Classical Analysis

Capsule: In this section we begin to re-examine the most el-
ementary artifacts of analysis for our new context. Dilations,
translations, the triangle inequality, polar coordinates, differen-
tiation, and integration are just some of the tools that we must
re-configure for our new mission. The path is both entertaining
and enlightening, for it will cause us to see the Euclidean tools
that we already know in a new light. The result is a deeper
understanding of the analytic world.

In preparation for our detailed hard analysis of the Heisenberg group in
Section 9.9, we use this section to review a number of ideas from classical
real analysis. This will include the concept of space of homogeneous type,
and various ideas about fractional integration and singular integrals.
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9.8.1 Spaces of Homogeneous Type

These are fundamental ideas of K. T. Smith [SMI] and L. Hérmander [HOR4|
which were later developed by R.R. Coifman and Guido Weiss [COIW1],
[COIW2].

Definition 9.8.1 We call a set X a space of homogeneous type if it is
equipped with a collection of open balls B(z,r) and a Borel reqular measure
1, together with positive constants Cy, Cy, such that

(9.8.1.1) The Positivity Property: 0 < u(B(z,r)) < oo for x € X
and r > 0;

(9.8.1.2) The Doubling Property: u(B(z,2r)) < Ciu(B(z,r)) forxz €
X and r > 0;

(9.8.1.3) The Enveloping Property: If B(z,r)N\B(y,s) # 0 andr > s,
then B(z,Car) 2 B(y, s).

We frequently use the notation (X, ) to denote a space of homogeneous type.

EXAMPLE 9.8.2 The Euclidean space R is a space of homogeneous type
when equipped with the usual isotropic, Euclidean balls and i Lebesgue
measure. 0

EXAMPLE 9.8.3 Let Q C RY be a smoothly bounded domain and X its
boundary. Let the balls B(x,r) be the intersection of ordinary Euclidean
balls from space with X. Let du be (2N — 1)-dimensional Hausdorff measure
on X (see Subsection 9.9.3). Then X, so equipped, is a space of homogeneous
type. O

EXAMPLE 9.8.4 Let X be a compact Riemannian manifold. Let B(z, )
be the balls that come from the Riemannian metric. Let du be Hausdorff
measure on X. Let K be a compact subset of X. Then one may use the
exponential map to verify the axioms of a space of homogeneous type for

(X, ). See [COIW1] for the details. 0

Theorem 9.8.5 (Wiener’s Covering Lemma) Let (X, u) be a space of
homogeneous type. Let K be a compact subset of X. Let {Ba}aca be a col-
lection of balls, By = B(Zq,Ta) such that UpeaBo 2 K. Then 3B, ..., Ba,,,
pairwise disjoint, such that the Cy-fold dilation (note that B(xq, Caory) is the
Cy-fold dilation of B(xa,7a)) of the selected balls covers K.
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Proof: Since K is compact, we may as well suppose in advance that the
initial collection of balls is finite. Let B,, be the ball in this last collection of
greatest diameter. Let B,, be chosen from among the remaining balls to be
disjoint from B,, and have greatest diameter. Continue to choose B,, such
that By, N Bay, = 0, Bay, N Ba, = 0 and having greatest possible diameter
and so on. The process stops because the collection of balls is finite.

This subcollection B,,, B,,, - .., Ba,, is the one we seek. We will in fact
show that U;”ZICQB% contains K, where Cy B, is the Cy-fold dilation B,;.
We will do this by showing that U;”ZngBaj contains the original finite cover-
ing. Let B, be one of the balls in the finite covering. If B, is one of the B,,
then we’re done. If B, is not one of the B, then let B%‘o be the first of the
B,; that intersects B,. Since the radius of B, is greater than or equal to
the radius of By, we see that C2B,, 2 B, by (9.8.1.3). That completes the
argument. O

Exercise for the Reader [Besicovitch]: In RY, there is a universal con-
stant M = M (NN) that satisfies the following: Suppose that B = {By, ..., B}
is a collection of Euclidean balls in RY. Assume that no ball contains the
center of any other. Then we may write 8 = B, UB,U--- UB,,, where each
B, consists of pairwise disjoint balls. [Hint: Use the same proof strategy as
for the Wiener covering lemma. |

We can now define the Hardy-Littlewood maximal function on L' (X, 11).
If f € LY(X,u), then define

B 1
M) = sp s / @l

Proposition 9.8.6 M is weak type (1,1).

Proof: Let A > 0 and f € LY(X,u). Let Sy = {z : M f(xz) > A\}. Choose
a compact set K C Sy s.t. p(K) > 2u(S)). Now we estimate p(K). Since
each x € K satisfies M f(z) > A, for each x € K, Jr, s.t.

1

p(B(z,72))

Obviously {B(x, ;) }zex covers K. By Wiener’s covering lemma, there exist
B(x1,74,), B(x2,74,), ... ,B(Tm, T2, ) pairwise disjoint, whose Cs-fold dilation

/B ILGLZCESY
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cover K. We may find p € N s.t. 2°~1 < Oy < 2P, Then we have

/J“(K) S H <U B(l’j,og’f’m] ) Z l’],CQ’f’mj)) S Z/,L(B(xj’2p,rm]))

j=1 e 2-

< > Cu(Blaj, ;)
j=
» Cpllfllu
1 ; A B(mjﬂ"zj)
Therefore »
n(s) < 2u(r) < 2N

O

Since M is obviously strong type (0o, c0) and weak type (1,1), we may
apply the Marcinkiewicz interpolation theorem to see that M is strong type

(p,p), 1 <p < o0.

Remark: The Marcinkiewicz interpolation theorem works for sublinear op-
erators T' (i.e., T'(f+¢g) < T f+Tg), whereas the Riesz-Thorin interpolation
theorem works only for linear operators. See [STG1] for more on these mat-
ters. O

9.8.2 The Folland-Stein Theorem

Let (X, u) be a measure space and f : X — C a measurable function. We
say f is weak type r, 0 < r < oo if there exists some constant C' such that

pwlz o |f(x)] > A} < %, for any A > 0.

Remark: If f € L", then f is weak type r. But not vice versa. For suppose
that f € L"; then

C "d "dp >\ A
> [1r ME/{|f|>A}|f| w> N p{lf] > N}
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hence f is of weak type r. For the other assertion suppose that X = R™T.
Then f(z) = mll/r th_power integrable. O

Prelude: In the classical theory of fractional integration—due to Riesz and
others—the LP mapping properties of the fractional integral operators were
established using particular, Euclidean properties of the kernels |z|V*e. It
was a remarkable insight of Folland and Stein that all that mattered was
the distribution of values of the kernal. This fact is captured in the next
theorem.

Theorem 9.8.7 (Folland, Stein (CPAM, 1974)) Let (X, u), (Y,v) be mea-
surable spaces. Let

E:XxY —C
satisfy
C
wa k(e y)l > A} < 7, (for fixed y)
v{y @ |k(z,y)| > A} < %, (for fixed x)

where C' and C' are independent of y and x respectively and r > 1. Then
Fre | f@kGg)avty)

maps LP(X) to LY(X) where % s=pT L1, forl<p<-

1
p
Remark: Certainly you should compare and contrast this result with the
classical Riesz fractional integration result that we treated in Chapter 5. The
Folland-Stein result is a far reaching generalization which frees the result from
the structure of Euclidean space and shows quite plainly how the key idea is
measure-theoretic.

It is worth noting here that the norms of the operators must blow up
asp — 1l orp— r/(r—1). This is so because, if not, then one could use
the semi-continuity of the integral to derive boundedness at the endpoints. O

Prelude: Schur’s lemma is probably the most basic fact about integral ker-
nels. Many of the more sophisticated ideas—including the Folland/Stein
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theorem—are based on Schur. We include below the most fundamental for-
mulation of Schur.

A key tool in our proof of the Folland-Stein result is the following idea
of Isaiah Schur (which is in fact a rather basic version of the Folland-Stein
theorem):

Lemma 9.8.8 (Schur) Let 1 < r < oo. Let (X, pu),(Y,v be measurable
spaces and let k : X xY — C satisfy

([ meram)” < c
(/Wuadeww)% <

where C' and C" are independent of y and x respectively. Then

fhelﬁmwﬂw@

S =

maps LP(X) to LY(X), where % = % + % —1,for1<p< 1_1;'

Schur’s lemma is a standard result, with an easy proof, and the details
may be found in [FOL3] or in our Lemma A1.5.5.

In order to prove the Folland-Stein theorem, we shall use the idea of
distribution function that was introduced in Section 8.5.
Proof of Theorem 9.8.7: By the Marcinkiewicz Interpolation theorem,
it is enough to show that f —— T'f is weak type (p,q). Fix s > 0. Let k > 0
be a constant to be specified later. Let us define

| k(z,y) i |k(z,y)| >k
ki(z,y) = { 0 otherwise,

[ Kaw) i Kyl <
ko (x,y) = { 0 otherwise,

ie., k(z,y) = ki(x,y) + ko(x,y) and ko is bounded. Let

Ty f(x) = /%xawf@mww
Tof(x) = /%xawf@mww
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Then T'f =T f + 15 f. Therefore

ary(2s) = p{|T f(x)] > 2s}
= p{|T1f(z) + Tof (2)] > 2s}
< W{Tif(2)| + [T2f(2)] > 2s}
< {11 f] > st + | Taf] > s}
= ars(s) + any(s). (9.8.7.1)

Let f € LP(X) and assume || f||z» = 1. Choose p’ such that %+z% = 1. Then

Tof (x |—'/k:2:cy y)du(y ' (/|k:293y|pdz/ ) (/|f )|Pdu(y )

and from Section 8.5,

/ k(s )P d(y) = / P o (5)ds
0

=

K'/ / C K'/ / !
< / p'sP _17ds = Cp’/ P17 ds = C'RP T
0 S 0

The last equality holds since

p’—l—r:1 —1—T:L1—1—7’>—1.

1
P

Thus we get
’ 1 _r
| Tof ()] < (C'W)7 || fllw = C"6' 7

Let k = (DW) Then

1(1-5)

Bf@l <0 (5) " 7 =

Therefore we get ar,f(s) = 0. Hence, from (9.8.7.1), we get

arp(2s) < arf(s).
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Since |k (x,y)| > &, we have ay, (5,.)(5) = g, (z,y(k) if s < k. Thus

/ k() () = / ey ) (5)d
Y 0
:/ aklm_)(s)ds—l—/ akl(%_)(s)ds
0 K
Sé%akmno(%)+!/m g;ds

C c .,
< k— + K
K" 1—r

= Ok, (9.8.7.2)

Similarly, we get
/ k(s )lda(z) < CRA.
X

Recall that if m(x,y) is a kernel and
[ imizlduta) < ©
[ imizlavty) < ¢

then by Schwr’s lemma, f —— [ f(y)m(z,y)dy is bounded on LP(X), 1 <
p < 0o. Thus, T} is bounded on LP.

1Ty fll ey < Cr || fllpe = Cr' .

By Tchebycheft’s inequality,

o (o) >y < I
HAT VI
Therefore
- 1.(1-r)p
p 1-r\p S\ .
angte) < I8l < O _ &0 ompmincs o,
S S S
Therefore
111
OéTf(QS) S —.

s
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O

Now we have a rather universal fractional integral result at our disposal,
and it certainly applies to fractional integration on the Heisenberg group H".
For example, if

k(z) = |z, 2727 0< B <2n+2,
is a kernel and we wish to consider the operator
TP fs fxkg

on H", then the natural way to proceed now is to calculate the weak type
of kg. Then the Folland-Stein theorem will instantly tell us the mapping
properties of Zg. Now

1/[2n+2-7]
miz: |ks(z)] > A} = m{:z: 2] < G) }

1 [2n+2]/[2n+2—ﬁ]
< N
= (A)

(we use here the Heisenberg norm, which is defined below). We see immedi-
ately that ks is of weak type [2n + 2]/[2n + 2 — ]. Thus the hypotheses of
the Folland-Stein theorem are satisfied with r = [2n 4 2]/[2n + 2 — (]. We
conclude that Z° maps L” to L7 with

1 I} 2n + 2

1
—==-- , l<p<
qg p 2n+42 p 15}

We now wish to turn our attention to singular integral operators. One
of the key tools for the classical approach to this subject is the Whitney de-
composition of an open set. That is an important tool in geometric analysis
that first arose in the context of the Whitney extension theorem. We begin
with a review of that idea.

Prelude: Extending a smooth function from a smooth submanifold of RV
to all of RY is an intuitively obvious and appealing process. For the implicit
function theorem tells us that we may as well assume that the submanifold is
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a linear subspace, and then the extension process is just the trivial extension
in the orthogonal variables. Extending from a more arbitrary subset is a
very meaningful idea, but much more subtle. It was Hassler Whitney who
cracked the problem and wrote the fundamental papers ([WHI1], [WHI2]).

Theorem 9.8.9 (Whitney extension theorem) Suppose E C RY is any
closed set. Let f € C*(E).* Then f can be extended to a C* function on all
RN,

The idea of the proof is that one decomposes “E into carefully chosen
boxes, and then extends f to each box in the appropriate manner. We shall
not provide the details here, but see [FED]. As already noted, one of the
main tools in the proof of Whitney’s result is this decomposition theorem:

Prelude: The Whitney decomposition theorem arose originally as a funda-
mental tool in the proof of the Whitney extension theorem. They extension
of the function was achieved box-by-box. Today Whitney’s decomposition
is a basic tool in harmonic analysis, used to prove the Caldéron-Zygmund
theorem and other Martingale-type results.

Theorem 9.8.10 (Whitney Decomposition Theorem) Let FF C RY be
a closed set and Q = RN \ F. Then there exists a collection of closed cubes
F ={Q;}3, such that

1. U;Q; =Q
2. Q;’s have pairwise disjoint interiors

3. there exist constants Cy < Cy such that Cy - diam(Q);) < dist (Q;, F) <
Cy - diam(Q);).

4This idea requires some explanation. If E is a closed set without interior, or more
generally just any old set, then what does C*(E) mean? The answer is rather technical,
but quite natural in view of the theory of Taylor series. The tract [FED] contains all the
details.
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Figure 9.1: The Whitney decomposition.

Remark: It may be noted that, in one real dimension, things are deceptively
simple. For if F is a closed subset of R! then the complement is open and
may be written as the disjoint union of open intervals. Nothing like this is
true in several real variables. The Whitney decomposition is a substitute for
that simple and elegant decomposition. O

Proof: Examine Figure 9.1 as you read the proof. Consider the collection
of cubes Cy in RY with vertices having integer coordinates and side length 1.
Let C; be the set of cubes obtained by slicing the cubes in Cy in half in each
coordinate direction. Cs is gotten from C; by slicing in half in each coordinate
direction. Continue the process.

Also, we may get a collection of cubes C_; such that slicing the cubes in
C_1 in half in each direction produces Cy. We obtain C_5, C_3, and so on in
a similar fashion.

Ultimately, we have collections of cubes C;, j € Z, where the cubes in C;
have side length 277 and diameter v/ N277.

Define

QO =f{zeRY:C-27 < dist(z, F) < C- 2791},

where the constant C' will be specified later. Then obviously @ = U3, ;.
Now we select a cube in C; if if has nonempty intersection with €2;. Then the

collection of such cubes, say {Q,.}, covers Q:

Q CUpQq-
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If we let C' = 2v/N, then each selected cube Q is disjoint from F'. Suppose
that ) € C;. Then dz € Q N2;. By the definition of 2;, we get

2diam Q = 2V N2 < dist (z, F) < 2V N2+ = 4diam Q.  (9.8.10.1)
Therefore
dist (@, F') > dist (z, F') — diam Q) > 2diam ) — diam ) = diam @ > 0.

Hence, for each selected Q., Qo N F = () and thus U,Q, C €. Therefore we
have

Q=U,Q, .

The key fact about our cubes is that if two cubes have nontrivially intersect-
ing interiors then one is contained in the other. Thus we can find a disjoint
collection of cubes )/, such that Q = U,Q.,. 0

Prelude: This is the result, previously mentioned, that depends on the
Whitney decomposition. When the Caldéron-Zygmund decomposition was
first proved it was a revelation: a profound, geometric way to think about sin-
gular integrals. It continues today to be influential and significant. Certainly
it has affected the way that the subject has developed. The atomic theory,
pseudodifferential operators, the David-Journé theorem, and many other es-
sential parts of our subject have been shaped by the Caldéron-Zygmund
theorem.

Theorem 9.8.11 (Caldéron-Zygmund decomposition) Let f be a non-
negative, integrable function in RN . Then, for a > 0 fized, there is a decom-
position of RY such that

1. RN=FuUQ, FNQ =0, F is closed.
2. f(x) < a for almost every x € F.

3. Q = U;Q;, where QQ;’s are closed cubes with disjoint interiors and f

satisfies
1

m(QJ) Q;
(m(Q;) denotes the measure of the cube Q);.)

o <

f(z)dr < 2Na.
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Proof: Decompose R” into an equal mesh of diadic cubes with size chosen

so that .

for every cube () in the mesh. Since f is integrable, it is possible to choose
such cubes if we let m(Q) be large enough.

Bisect each cube @ a total of N times to create 2V congruent pieces with
side length half of the original cubes. Say that @’ is such a sub-cube. Then
we have 2 cases.

1 1
m(Q') Jor m(Q') Jor
If the first case holds, then we keep the cube. If it is the second case, then
we subdivide )" again. For each subdivided cubes we have 2 cases as above

and we repeat the same procedure.
Consider one of the selected cubes (). We have

1
a<—m(Q)/Qfdx

and if @ is the father cube® of ), we have

1 1
"2 b e

1 N
Q<W/Qf(a:)dz§2 a.

We let Q be the union of selected cubes and F' = RY \ Q.
If v € F, then z is contained in a decreasing sequence of cubes @,
Q1D Q2 D -, on which

fdr >a or fdr < a.

Hence

1
m(QJ) Q;

Therefore, by the Lebesgue differentiation theorem, f(z) < « for a.e. x € F.
O

f(z)dx < a.

5A cube @ is a “father cube” of @ if @ has twice the side length of @, @ comes from
the previous generation in our construction, and @ 2 Q.
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Theorem 9.8.12 (Lebesgue differentiation theorem) If f € L} (RY),
then

1
lim

50 Qp(x )/Q(;(m f@)dt = f(x), for a.e. w.

Here Qs(x) is a cube with side length &, sides parallel to the azes, and center
x.

Proof: Let Q = {¢,} be a sequence of positive real numbers that tends to
0. Suppose f € LY(RY). We let

1
1,10) = g /Q o

where @;(x) is a cube with side length ¢; and center z. Apply functional
analysis principle IT with dense set C,.(RY) C L*(RY). Then, for f € C.(RY),
we have T f(z) — f(x) for a.e. x. Also the maximal function of T} f

1
Qj(x )/Q](m fe)dt

coincides with the Hardy-Littlewood maximal operator (at least for nonneg-
ative f), which is weak type (1,1). Since the choice of Q was arbitrary, we
have pointwise convergence for a.e. x. O

T f(x) = sup|T; f(z)| = Sup
J

Next we present an alternative formulation of the Caldéron-Zygmund
decomposition:

Theorem 9.8.13 (Another useful decomposition) Suppose f is a non-
negative integrable function on RN and oo > 0 is a fived constant. Then there
exists a decomposition of R so that

1. RN = FUQ, where F is closed, FNQ =0 and there exists a constant
A such that

m(@) < 271l

2. Q= U;Q;, where Q;’s are closed cubes with disjoint interiors and there
exists a constant B such that

1
m(Q;) Q;
Also diam Q; ~ dist (Q;, F).

fdx < Ba for each j .
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Proof: Define F' = {M f(z) > a}, where M f(z) is the Hardy-Littlewood
maximal function:

1
Mfa:zsupif fy)|dy.
( ) r>0 m(B($>T)) B(m,r)| ( )|
Let Q = RN\ F = {Mf(x) > a}. Then, since f — M f is weak type (1,1),
we have
o

for some constant A.
Since 2 is open, we can use the Whitney decomposition so that 2 =
U,Q;, where the @;’s are closed cubes with disjoint interiors and from (9.8.10.1),

diam@); ~ dist (z, F'), Vz € Q.

Suppose @ is one of the cubes. Since F'is closed, there exists p € F' such that
dist (@, F') = dist (@, p). Then we have M f(p) < a. Let r = dist (p,Q) +
diam@. Then Q C B(p,r) and r ~ diam(. Therefore

1 1 N 1
o= MIw) = TrEn ) /B@,T) fde = B ) /Qf ) /Q faz.
O

Prelude: From Stein’s point of view, in his original book [STE1] on singu-
lar integrals, the Marcinkiewicz integral is the key to the L” boundedness of
the operators. Today there are many other approaches to singular integral
theory (which do not use Marcicinkiewicz’s idea), but the Marcinkiewicz in-
tegral remains an important tool.

Definition 9.8.14 (The Marcinkiewicz integral) Fiz a closed set F' C
RY and let §(x) = dist (x, F'). We define the Marcinkiewicz integral as fol-

lows 5zt y)
rTy

L(x :/ Nz +y) g,

() RN |?/|NJrl Y

Remark: We consider only the case when z € F. Because if x € “F, then
d(x) > 0. Hence the integral is singular at 0. O
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Proposition 9.8.15 We have

/ L.(z)dr < Cm(°F).

Proof: Now
:l? + y
o [
/ RN |y|]\”rl
= /F/RN Wdydx
d(y)
= /F/F Wdydx
1
- /F (/p Wda’) 0(y)dy - (9.8.15.1)

For y € °F, we have |y — x| > 0(y), Vo € F. Therefore,

1 S| 1 1
7dx§// TN_ldrda:// —drdo = C——.
/F|@/—ZE|NJrl s Jog TN s Jowy) T o(y)

(9.8.15.2)

Hence, from (9.8.15.1) and (9.8.15.2), we have

/FI*(x)de/FCmé( Ydy = Cm(°F).

Definition 9.8.16 (Caldéron-Zygmund kernel) A Caldéron-Zygmund ker-
nel K(x) in RY is one having the form

_ MUz
||

where
1. Q(x) is homogeneous of degree 0
2. Q(z) € CHRYN \ {0})
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8. [ =0, (¥ is the unit sphere in RY.)
EXAMPLE 9.8.17 The Riesz kernels
X1 N
|| N [N

are certainly examples of Caldéron-Zygmund kernels. For we may write

zy i/l
|V ||V

and notice that the numerator is homogeneous of degree zero and (by parity)
has the mean-value-zero property. O

Integration against K a Caldéron-Zygmund kernel induces a distribution
in a natural way. Let ¢ € C>°(RY). Then we recall that

lim M (z)dx = lim/ &fv)[ﬁb(i)—cb( 0)]dz = lim Q( )

€0 Jiz|>e ||V 0 Jiz>e |7 =0 J1z/>e |93|N

O(|z])dx

and for 0 < €1 < €5 << 1, we have

) [ 0, o).,
/M RO /| RO /|| S O(jalde

Therefore
Q(z)

X
|| D) 6 oyda| < / 1y / /
e1<|z|<e2 |$| 61<|m|<62 | €1

If we let K(z) = ?(ﬁv, then, for a > 0,

= —iawt S2(1) L UE) 1 izt S2()
K — rax-t dt -t [ dt -t dt )
(@)= [ e = [ et = [, G = R

Therefore, IA((:E) is homogeneous of degree 0. Hence ||IA((:E) oo < sUP = |IA((:E)| <
0.

=N ldrdo = C'(e2—€1) — 0.

Remark: It requires a small additional argument to see that K is not simply
a distribution that is homogeneous of degree 0 but is in fact a function that
is homogeneous of degree 0. One sees that by writing K itself as a limit of L*
functions. Each of those L! functions has Fourier transform that is bounded,
and K is the limit of those bounded functions in a suitable topology. O
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Lemma 9.8.18
T:fr—Kxf

is bounded on L?(RY).
Proof: For ¢ € C2(RY), consider
T:¢+— K x¢.
Then (@) = K/*\gb = IA( 5 Therefore, by Plancherel’s theorem,

1T @l = [Toll2 = | K]z < Clldll2 = C|l]l2-

Since C°(RY) c L?*(RY) is a dense subset then, by Functional Analysis
Principle I, T' is bounded on L?(RY). O

The next result is the key to our study of singular integral kernels and
operators. At first, for technical convenience, we do not formulate the theo-
rem in the classical language of Caldéron and Zygmund (that is to say, there
is no mention of “homogeneity of degree zero” nor of “mean value zero”).
That will come later.

Prelude: The Caldéron-Zygmund theorem is one of the seminal results of
twentieth century mathematics. It was profound because it produced the
right generalization of the Hilbert transform to higher dimensions, and it
was important because of the new proof techniques that it introduced. It is
safe to say that it shaped an entire subject for many years.

Theorem 9.8.19 (Caldéron-Zygmund) Let K € L?(RY). Assume that
1. |K|<B
2. K € CH{RN\ {0}) and [VK(z)| < C|z|~N-L.

For1 <p<oo, and f € L* N LP(RY), set

Tf(z)=Kx f(r) = o K(z —y)f(y)dy.

Then there ezists a constant A, such that

1T fllp < Apll Fllp-
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Proof: We know that 7' is bounded on L?. So if we could prove that T
is weak type (1,1) then, by the Marcinkiewicz interpolation theorem, 7" is
bounded on LP, for 1 < p < 2. Then, by duality, T is bounded on L?, for
p> 1.

Now we prove that T is weak type (1,1).

Let f € L*(RY) and fix o > 0. Apply Theorem ?? to |f| and . Then
we get RN = FUQ, FNQ =1, F closed. We have M f(z) < a on F. Thus
f(z) <aae zeF. We write Q = U,Q;, where ();’s are closed cubes with

pairwise disjoint interiors and with diameter comparable to the distance from
F. By Theorem ?? we have

m(gj) o |fldx < Cor. (9.8.19.1)
and
m(Q) < C’”j;”l . (9.8.19.2)
Let
| f(=) if xeF
g(z) = { ey Jo, F(OdE if -z € Q3

b(z) — 0 if reF
(5’3)—{ F(@) = s fp (Ot i w e Q5.

Then we have

m{|Tf| > o}

m{|Tg+ Tb| > a}
< m{|Tg|+|Tb| > a}

a a
m{|Tg| > 3} + m{|7t| > &)

IN
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and, from (9.8.19.1) and (9.8.19.2),

ol = [ lo(o)P da
~ [ @l + [ lga)Paa
§/Fa|g(:£)|dx—|—/902a2da:

< allflli + C*a*m(Q)
1
< ollfll + 2?11,
< C'al|f]li < o (9.8.19.3)

Thus g € L*(RY) and, by Lemma 9.8.18, T'g € L*(R"). Hence, by Cheby-
shev’s inequality and (9.8.19.3), we get

I7gl13 <Cllgllz < clflls _ Sl

(a/2)? o? a
From the above calculations, we need only show that

||f||1

(%
m{|Tgl > 5} <

m{|Tb| > } <C
Furthermore,

mueRN4ﬂ¢>%}g muepzwm>%}+mm)

= m@EF:WM>g}Hmh
2 o
Therefore, it is enough to consider m{zr € F': |Tb| > §}.
Let bj(z) = b(x)xq,(x). Then
oy b(x) if z € Q;
bilz) = { 0 otherwise
and b(z) = >, bj(x). Thus Tb(z) = > Tb;(x). We have
Thj(z) = | K(z—ybily)dy = | K(z—y)b;(y)dy

RN Q;
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Since
1

| s = [ 50~ [ [ so]as=o

J

we can rewrite the preceding expression as

Th,(x) = /Q (K(x — ) — K(x — 1)) b (y)dy,

i
where y; is the center of ;. By the mean value theorem and the hypothesis
of the theorem, we get

diam@);
K@ —y) = Ko=) < VK@ =)l ly — )| < O
where y lies on the segment connecting y; and y. Hence we have

diam@);

(@) < C [ eln (o) dy

Qj

We also have
bi)ldy < [ |fldy+ [ Cady < Cam(@;)+Cam(@) < Cam(Qy)
Q; Qj Qj
Since diam@); ~ dist (Q;, F') < d(y), we get

J,

Therefore we find that

diam@;|b;(y)|dy < C(diam@;)a - m(Q;) < Ca / 5(y)dy.

o(y)

Tbi(x)| < — 2y,
| bJ(CE)| O‘/Qj |z — y| N+ Y
Hence

Th)| < VI fa ) [
a/ W)
oz —y[N*!
o(y

a 7)
/RN |z — y|N+H!

= L(z),

IN
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where [, (z) is the Marcinkiewicz integral that satisfies

/Fl*(x)dx S m(Q) R m

«

Hence we get

/ Th(z)| dz = |1 f]].
F

Therefore
(% (% <
Em{a? € F:|Th(x)| > 5} < / |T0(x)| dz ~ || f]|1-
F
Hence,
a, < [l
F|\T —}~ .
mize F:|Toa)] > 5} < 1
The theorem is proved. O

Theorem 9.8.20 Let K(x) be a Caldéron-Zygmund kernel. Then f +——
K x f is bounded on LP, 1 < p < 0.

Proof: Let ¢, > e > --- — 0 and Kj(x) = K(x)X{jt|>¢;). Define T;f =
f* K;. Then K; satisfies the hypotheses of Theorem 9.8.19 which we proved
above. Thus T} is bounded on L? for 1 < p < co. If we let ||Tj|| = A, then
Aprv]%aspﬁﬁ and A, ~ p as p — 0.

Applying Functional Analysis Principle I with a dense subset C2° C LP,
we get K * f = limj_ T f is bounded on LP, for 1 < p < oc. O

9.9 Analysis on H"

Capsule: Here we continue the mission of the last section. Norms,
integration, Hausdorff measure, and other basic tools are exam-
ined and developed in our new context.
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When we were thinking of the Heisenberg group as the boundary of a
domain in C", then the appropriate Heisenberg group to consider was H" 1,
as that Lie group has dimension 2n — 1. Now we are about to study the
Heisenberg intrinsically, in its own right, so it is appropriate (and it simplifies
the notation a bit) to focus our attention on H".

In H” = C™ x R, the group operation is defined as

(z,t)- ()= (z4+ 2t +t +2Ilmz-7), =z, e€C" tteR.
The dilation 6(z,t) = (§z,%t) is a group isomorphism. For z € H", if we let
dV (z) = dVol(z) = dx dy, - - - dx,dy,dt

then
dV (0z) = d(6x1)d(5yy) - - - d(0x,)d(dy,)d6*t = §*"F2dV (x)

We call 2n + 2 the homogeneous dimension of H". (note that the topological
dimension of H" is 2n + 1.) The critical index N for a singular integral is
such that

Ld\/ol(:v) =

B [T|*

00 if a> N
<oo if O0<a<N.

and the critical index coincides with the homogeneous dimension. Thus the
critical index for a singular integral in H" is 2n + 2, which is different from
the topological dimension.

Note by contrast that the critical index for a singular integral in C" xR =
R2F1 equipped with usual Euclidean structure, is 2n + 1; this is the same
as the topological dimension.

9.9.1 The Norm on H"

In earlier parts of the book we have alluded to the Heisenberg group norm.
Now we define it carefully.
We define the norm | - |, on H" to be

2l = (J21" + £%)3
Then | - | satisfies the following

1. |z|p > 0 and |z|, = 0 if and only if z = 0;
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2. x +— |z|, is a continuous function from H" to R and is C*° on H"\{0};
3. 10(x)|n = 0|x|n.

Note that dx denotes the dilation (in the Heisenberg structure) of x by a pos-
itive factor of 9. The preceding three properties do not uniquely determine
the norm. If ¢ is positive, smooth away from 0 and homogeneous of degree 0
in the Heisenberg group dilation structure, then ¢(x)|z|, is another norm.

The Heisenberg group H” = C™ x R is also equipped with the Euclidean
norm in R?*"*1. Let us denote the Euclidean norm as | - |.:

1
jzle = (|7 + [t])=.
Lemma 9.9.1 For |z|? < 3, we have
1
|zle < fafn < [z/2.

Proof: We see that

jz]e = (|22 +12)7 < (|z[* + %) = |2|s

reduces to
(J2]* + %) < [2]* + £
or
2827 + ¢ < #?
or
222 +t2 < 1.
Since we assumed that |z|? = |2]> +¢* < 1, we have 2|z|> +#* < 1.
Furthermore
2l = (Il + )3
< (2Pt
1
= |zl

That completes the proof. O
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9.9.2 Polar coordinates

Let x € H", z # 0 and r = |z|,. Then we may write z = r- &, where § = |mi

Prelude: Of course the idea of polar coordinates is very basic and efé—
mentary. But this simple calculation shows us already that analysis on the
Heisenberg group will be different from analysis on ordinary Euclidean space.
In particular, the Heisenberg group polar coordinates begin to point to the
idea of homogeneous dimension.

Lemma 9.9.2 We have
dV (z) = dzidy, - - - dzpdy,dt = r*"drdo(€),

where do is a smooth, positive measure on the Heisenberg unit sphere {§ €
H" : €] = 1}

Proof: Let z = (x1,...,x9,41) € H". If we let r = |z|;, then
= (21, o) =760 ) = (P61, rEanm),  [Eh =1
Since [£|, = 1, we have
G =1 (& + - +8&,)"
Therefore we may consider the coordinate transform
(1, Xons1) — (1, &1, .o Eon).

Calculating the Jacobian matrix, we get

&1 T 0
d d 9
B o o B & 0
Jac = : : = :
Orant1  O%ont1 .. OZopta 52 0
or 96, 9ean, " P P
2réoni1 12 %gfl r? %g;l
Therefore
a62n—|—1 a62n—|—1 a62n—|—1
det Jac | = r*"*! (252 1—& — & .
[det Jac| " o6, o6, " O

r

r

2082n141
aan



288 CHAPTER 9. INTRODUCTION TO THE HEISENBERG GROUP

Hence
dV(z) = dxy ... dwomyy = r*"drdo,
where
a€2n—|—1 a€2n—|—1 a€2n—|—1 )
do = | 269,.1 — _ R dey -+ - déy,, .
7 (52 T S o e
O

9.9.3 Some Remarks about Hausdorff Measure

The work [FED] is a good reference for this material.
Let S C RY be a set. Then for § > 0, A > 0, we define

H3(S) = inf [diam(B;)]*,

SCUBj “
J

where B;’s are Euclidean balls of radius less than §. Note that if 0 < §; < 0,
then

M3, (S) = H;, ().

Therefore

HA(S) = lim 13

exists and we call this limit the A-dimensional Hausdorff measure of S.

Definition 9.9.3 (Hausdorff dimension) For any set S, 3\ > 0 such
that
0 if A> X

HA(S):{OO if A<

We call \g the Hausdorff dimension of S.

In fact the Hausdorff dimension of a given set S can be defined to be
the infimum of all A such that H*(S) = 0. Or it can be defined to be the
supremum of all A such that H*(S) = +o0. It is a theorem that these two
numbers are equal (see [FED]).
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EXAMPLE 9.9.4 Let [ =[0,1] C R. If I C UB; and the B,’s are balls of
radius less than ¢ > 0, then Hj() > 1 and Hj(I) < 55 - (20) = 1. Therefore
HY(I)=1. But, for A\ =1+¢, € >0, we get

(20)'1 = (26) =0, asd — 0.

Also, if X < 1, then H*(I) = oo. O

9.9.4 Integration in H"

We have defined polar coordinates in H". Now we can calculate the volume
of a ball in H"™ using polar coodinates.
Let C' be the surface area of a unit sphere in H":

= /|§ G

Then the volume of the unit ball in H" is

1
|B|:/ dV(l’):// r?"drde = ¢ .
|z|<1 2 Jo 2n +2

Hence the volume of a ball of radius p will be

1B(0,p)| = /| V)= /| V) = | v =g,

|z|<1

(10.8.11.1)
Now the integration of characteristic functions of balls is well defined.
Since characteristic functions of arbitrary sets can be approximated by aggre-
gates of characteristic functions on balls and simple functions are just linear
combinations of characteristic functions, the integration of simple functions
is well defined. We define the integration of a function in L'(R?"™!) as the

limit of the integration of the simple functions that approximate it.

9.9.5 Distance in H"”

For xz,y € H", we define the distance d(zx,y) as follows:
d($>y) = |l’_1 ' y|h

Then d(z,y) satisfies the following properties:
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1. d(z,y) =0 <= z=uy;

2. d(z,y) = d(y,z);

3. Iy > 0 such that d(z,y) < yold(x,w) + d(w, y)].
Proof:

1. Obvious.

2. One may easily check that 27! = —x. Thus
d(z,y) = a7yl = |(=2) yln = |z (~y)|n = d(y, 2).
3. Let

sup  d(z,y) =
z]nlyln<1
inf dlz,w) +dw,y) = D.

2|5, Yl n,lw]p <1

Then C' > 1 and D > 0. Therefore we get
C .
d($>y) < C < B(d($>w) + d(w>y))> if |$|h> |y|h> |w|h <1

Now, for general z, y and w, let r = max{|z|s, |y|n, |w|n}. Then x = ra’,
y =ry and w = rw’, where |2y, |¢/|n, |@w'|n < 1. Then we have

d(x,y) =d(ra’,ry’) = rd(z',y")

and
d(z,w) + d(w,y) = r(dz' w') +dw',vy")).

Hence

Q

d($>y) < _(d($>w) + d(w>y)) for all T,y,w.

S
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9.9.6 H" is a Space of Homogeneous Type

Refer to Section 9.8.1. Define balls in H" by B(z,r) = {y € H" : d(z,y) <
r}. Then, equipped with the Lebesgue measure on R***! H" is a space of
homogeneous type. We need to check the following three conditions:

1. 0 <m(B(x,r)) < oo forall x € H" and >0 ;
2. 3Cy > 0 such that m(B(z,2r)) < Cym(B(x,r)) ;

3. 3dCy > 0 such that if B(xz,r)N B(y,s) # 0 and s > r, then B(y, Cys) 2
B(z,r)

Proof:

1. From (9.8.5.1), we know that m(B(x,r)) = 72| B|, where | B] is the
volume of the unit ball.

2. m(B(x,2r)) = 2*"*2m(B(z,r)). Therefore C; = 2*"+2,
3. This result follows because, equipped with the distance d, the Heisen-

berg group is a quasi-metric space. In detail, let z € B(x,7) N B(y, s).
Then d(z, z) < r and d(z,y) < s. If u € B(z,r), then we obtain

d(y,u) < 7ld(y, z) + d(z,u)]
< Yo[s +1d(z,x) + yod(x, u)]
< ols + 2vor7]
< (1 +2y)s.
Thus we may let Cy = g + 273. 0

For f € Ly (H"), define
M(z) !
X = SuUp ————
70 |B<a: N s

Wf(@) = swp o [ 1f0)ar

zeB

|F(2)] dt
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These two operators are closely related. In fact ]T/[/f <C-Mf. Ifzx e
B(x,r)N B(w, ), then B(w,r) C B(x,Cyr). Therefore

1 1
- fldt < ——— £(6)| dt
B, o ! B oy
an+2
_ K £(6)| dt
B, )| Jnenm
S 022n+2Mf

The reverse inequality is obvious.

Thus M, M are both bounded on L* and both of weak type (1,1) (just
because H" is a space of homogeneous type). Hence, by the Marcinkiewicz
interpolation theorem, both are strong type (p,p) for 1 < p < oc.

9.9.7 Homogeneous functions

We say that a function f : H" — C is homogeneous of degree m € R if and
only if f(dz) = 6™ f(x).
The Schwartz space S of H" is the Schwartz space of R*"+L:

z° (8%)6 f()

The norm || - ||a,5 is a semi-norm and S is a Frechet space. The dual space
of § is the space of Schwartz distributions. For ¢ € § and ¢ > 0, set

S(H") = {6 : [|¢[la,s = sup

zeH"

< o0}

¢s(x) = o(ox)
o) = 5 (5)

Note the homogeneous dimension playing a role in the definition of ¢°.

A Schwartz distribution 7 is said to be homogeneous of degree m pro-
vided® that

7(¢°) = 8" 7(¢).

6 A moment’s thought reveals that the motivation for this definition is change of vari-
ables in the integral—see below.




9.9. ANALYSIS ON HY 293

If it happens that the distribution 7 is given by integration against a func-
tion K which is homogeneous of degree m, then the resulting distribution is
homogeneous of degree m:

(#) = / K (2)¢'(x) du
_ / K (62)(z) dx

= /5mK(:E)¢(:E) dx
= 0"7(¢9).

Proposition 9.9.5 Let f be a homogeneous function of degree A € R. As-
sume that f is C' away from 0. Then 3C > 0 such that

_ 1
[f(@) = f)| < Cle—yln-|2[z™", whenever 2=yl < 5zl

_ 1
|f(x-y)— f(z)| < C’|y|h|at|2 ' whenever lyln < %mh

Remark: If f is homogeneous of degree A, then Df (any first derivative of
f with respect to X or Yj) is homogeneous of degree A — 1. We leave the
proof as an easy exercise. What does this say about the homogeneity of 7 f7
O

Remark: In H", the Dirac-6 mass is homogeneous of degree —2n — 2. O

Proof of Proposition 9.8.5: Let us look at the first inequality. If we dilate
x,y by a > 0, then

LHS = |f(az)— flay)| = f(z) — f(y)]

RHS = Claz —ay|plaz|y™ = Callz — ylu|z)) ™

Thus the inequality is invariant under dilation. So it is enough to prove the

inequality when |z|, =1 and |z —y|, < ﬁ. Then (assuming as we may that
7 > 1) y is bounded from 0:

1 1 1 3
d(y,0) > ——d(z,y)>——--—=-">0.
(,0) = - —dlzy) = — ==
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Apply the classical Euclidean mean value theorem” to f(x):

|f(z) = f(y)] < sup |V fllz —yle

Note that the supremum is taken on the segment connecting x and y. Since
|z|p, = 1 and y is bounded from 0, we have

|f(z) = f(y)| < Clr —yle < Clz — y|n.

The last inequality is by Lemma 9.9.1.
We use the same argument to prove the second inequality. O

9.10 The Caldéron-Zygmund Integral on H"
is Bounded on L’

Capsule: This section is the payoff for our hard work. We
can now define Caldéron-Zygmund operators on the Heisenberg
group. We can identify particular examples of such operators.
And we can prove that they are bounded on LP, 1 < p < oo.
Some parts of the proof of this key result will be familiar. Other
parts (such as the boundedness on L?, which formerly depended
critically on the Fourier transform) will require new techniques.
The entire section is a tour de force of our new ideas and tech-
niques.

In RY, for a Caldéron-Zygmund kernel K (), we know that f +—— fx K
is bounded on L?. We proved it using Plancherel’s theorem. Since K is

homogeneous of degree —N, we know K is homogeneous of degree —N —
(—=N) = 0. Thus

If % Klls = [1£* Kll2 = [ FK 12 < ClIfll2 = CIf 2.

But we cannot use the same technique in H" since we do not have the Fourier
transform in H" as a useful analytic tool. Instead we use the so-called Cotlar-
Knapp-Stein lemma.

"The fact is that there is no mean value theorem in higher dimensions. If f is a
continuously differentiable function on RY then we apply the “mean value theorem” at
points P and @ in its domain by considering the one variable function [0,1] > ¢t +—
f((1 —¢)P +tQ) and invoking the calculus mean value theorem.
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9.10.1 Cotlar-Knapp-Stein lemma

Question. Let H be a Hilbert space. Suppose we have operators T : H —
H that have uniformly bounded norm, ||7}||o, = 1. Then what can we say

N
about || ijl Tillop?

EXAMPLE 9.10.1 Of course if all the operators are just the identity then
their sum has norm N. That is not a very interesting situation.

By contrast, let H = L*(T) and T} = f x %! for j € Z. Then ||Tj||o, = 1
and, by the Riesz-Fischer theorem, we get || > T}|| = 1. O

The last example is a special circumstance; the kernels operate on orthogonal
parts of the Hilbert space. It was Mischa Cotlar who first understood how
to conceptualize this idea.

Prelude: The Cotlar lemma, now (in a more elaborate form) known as the
Cotlar-Knapp-Stein lemma, has a long and colorful history. Certainly Misha
Cotlar [COT] deserves full credit for coming up with the idea of summing
operators that act on different parts of Hilbert space. Later on, Cotlar and
Knapp/Stein [KNS2] nearly simultaneously came up with the more flexible
version of Cotlar’s idea that we use today. It is a matter of considerable
interest to come up with a version of the Cotlar/Knapp/Stein theorem for
operators on LP spaces when p # 2. Some contributions in that direction
appear in [COP].

Lemma 9.10.2 (Cotlar) Let T; : H — H, j = 1,..., N, be self-adjoint
operators. Assume that

1Tl =1 vj;
2. TyTy =0, T:Ty =0, Vj # k.
Then || Z;VZI T;|| < C, where C is a universal constant.

The proof of the lemma is a very complicated combinatorial argument.
Cotlar and E. M. Stein independently found a much more flexible for-

mulation of the result which has proved to be quite useful in the practice of

harmonic analysis. We now formulate and prove a version of their theorem

(see [COT] and [KNS2]).
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Lemma 9.10.3 (Cotlar-Knapp-Stein) Let H be a Hilbert space and Tj :
H — H be bounded operators, 7 = 1,...,N. Suppose there exists a positive,
bi-infinite sequence {a;}32 of positive numbers such that A =3 " _a; <
0o. Also assume that

j=—00

||TjTI:||0p < a?—lm ||T;Tk||op < a?-’f' (91031)
Then
N
1> Tillop < A.
=1
Remark: Note that ||} = /|| T;T}|| < ao, for all j. 0

Proof: We will use the fact that ||TT*| = ||T*T| = ||T||* = ||T*||*>. Also,
since TT* is self-adjoint, we have [|(TT*)*|| = [|TT*|[*. Let T = Y} T
Then we get

T;ﬂ - Z 15, 15,1315, - - T, T3,

1<, <N

wrr = ()

N N
J=1 J=1

By (10.8.3.1), we get

||T.71T_]*2 .72m 1 jgm” < ||T.71sz||||T.73sz|| || .72m 1T;2m|| S a‘?l—jg e ,?mel_jZm‘
Also,
15,15, -+ T Ty | < N T T3 T ML T35 - - 1T, T [ T |

S Aa2 . ...a2

Jj2—J3 Jem—2—J2m—1

Therefore we may conclude that

1
||TJ1TJ*Q" Jam— 1Ty*2 || = ||TJ1TJ*Q" Jam—1 32 || ||TJ1T;2 ’ sz 1Ty*2 H2
S Aah—Jz Ajo—js * * * Ao —2—jom—1 Ljom—1—jam -
Hence
[TT7™ < Y AG g U oo 1 W1

1<jR <N, 1<k<2m
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First we sum over js,, and then js,,_o and so on. Then we get

|TT|™ < ZlgijN,k:Ls ..... 2m—1 A =
N +m — 1mA2™ .

Taking the m-th root, we get

1 1
N —1\m N\™
||TT*||3(L) (_) e
m 1

Letting m — oo, we get ||T'|| < A. O

9.10.2 The Folland-Stein Theorem

Prelude: This next is the fundamental “singular integrals” result on the
Heisenberg group. There are also theories of pseudodifferential operators on
the Heisenberg group (for which see, for example, [NAS]). There is still much
to be done to develop these ideas on general nilpotent Lie groups.

Theorem 9.10.4 (Folland, Stein. 1974) Let K be a function on H" that
1s smooth away from 0 and homogeneous of degree —2n — 2. Assume that

/ Kdo =0,
|z|n=1

where do is area measure on the unit sphere in the Heisenberg group. Define
Tf(x) =PV(K x f) = lim K@) f(t tz)dt

Then the limit exists pointwise and in norm and

ITfll2 < Cllfll2

Remark: In fact, T': LP — LP for 1 < p < co. We shall discuss the details
of this assertion a bit later. O
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Proof: We start with an auxiliary function ¢(z) = ¢o(|x|n), where ¢o €
Cs°(RL) and

1 if 0<t<1
¢°(t)_{ 0 if 2<t<oo

Let ' '

bi(x) = p(2772) — p(277 a).
We stress here that the dilations are taking place in the Heisenberg group
structure (the action of the Iwasawa subgroup A).

Note that . .
i 1 if x|, <2
3o =
¢(2 ZE) { 0 if |I|h > 9j+1
and Pl -
. 1 1 x|, <29~
_'7+1 — h = .
H(27 ) { 0 if |zl >
Therefore

Vj(x) = p(272) = p(277 ) = 0, if [xfp <277, or [l > 27,

le.,
supp ¢;(z) C {2771 < faf, < 2741, (9.10.4.1)

Thus, for arbitrary x, there exist at most two v;’s such that x € supp ¥;.
Observe that

S () (9.1)

— [6(2V2) — 62V 1) + [0(2V'2) — B2V )] 4+ + [p(2 V)
— 927V 2)] + [6(27V2) — 6(27VHa))

= -2V )+ o2 Va) =1 if 27N < |, < 2V (9.10.4.2)
Therefore -
We let

Kj(x) = ¢(z) K()
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and
Tif = f = K;.
Then
Tf=[f*PVEK =fx> K=Y T,f.
Claim.

|7;]] < C  (independent of j) (9.10.4.3)
Ty < Cc27b-! (9.10.4.4)
T T < C271 (9.10.4.5)

Suppose the claim is proved. If we let a; = V21l then the hypothesis of
Cotlar-Knapp-Stein is satisfied. We may conclude then that finite sums of
the 7; have norm that is bounded by C. An additional argument (using
Functional Analysis Principle I from Appendix 1) will be provided below to
show that the same estimate holds for infinite sums.

Fact. If Tg = g* M, then ||Tg||2 < ||M]|1]|g]|2 by the generalized Minkowski
inequality (see [STEZ2]).

Therefore, to prove (10.8.11.3), we need to show that || /| < C.
Since K is homogeneous of degree —2n — 2, we have
K@27z)= @279 2K(2) = 2D K (2).

Hence we get

K;(z) = () K (z) = 27 K (27 )b, (z) = 272 | (27 ) |:¢(2_jl’)—¢(2_j+11') |
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Thus
151 =/ K, (2)| da
Hn
= / 2_j(2"+2)|K(2_jx)| ‘¢(2‘jx) - ¢(2_j+1z)‘ dx
- / QIO 23| ¢ ()] | () — d(22)]| e
— / K (2)]|6(z) — 6(20)| da

= /n | Ko(z)| dz
_ (10.8.11.6)

Hence (10.8.11.3) is proved.
Before proving (10.8.11.4), let us note the following:

Remark: If S1g = g L; and S2g9 = g * Lo, then
51529 = S1(g* Lo) = (g% Lo) *x Ly = g % (La * Ly).

Also, if Tg = g % L, then
T"g=g*L",

where L*(z) = L(z~!)—here 7! is the inverse of z in H". We see this by
calculating

(T7g, f) = (9, Tf)
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Let us assume that j > [ and prove (9.10.4), i.e.,
1777 < c2

From the preceding remark, we know that 757} f = f* (K] * K;). Therefore,
by the generalized Minkowski inequality, it is enough to show that

|K; « Kyl < C24.

We can write K| * K as follows:

K;(y) K[ (y ' z)dy = HnKj(:vy‘l)Kf(y)(—l)Q"”dy=/ Kj(zy K[ (y)dy .

H» n
(9.10.4.7)

Claim:

K;(z)dx = K[ (x)dx=0. (9.10.4.8)
Hr Hr

To see this, we calculate that
/ K;(x)de — / K (@) [6(272) — 6@ a) ] do
= [ [ K69 - sz o
% Jo

= [ - a2t [ K@t
= 0.

As a result,

- K/ (x)dx = - Ki(z7)dr = /nKl(:E)(—l) e = /Kl(z)da: =0.

Thus, from (9.10.4.7) and (9.10.4.8), we can rewrite K; * K as follows:
Kok = [ Klay K@y = [ [Kotar™) - K] K @)
H» n

Claim
|Kj(xy™") — Kj(2)| de < C277 |y (9.10.4.9)

Hn
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To see this, recall that

and

Therefore
K;(27) = K(2) [gb(:v) — $(22)| = 22D R (2).

Hence we get

/ Ko(ey™) — Fo(o)| de

— /‘Kj(?(:v-y_l)) —Kj(2j$)‘ dx

IN

C|y|h

IN

C2—j(2n+2) |y|h

IN

— /2‘j<2"+2) ‘Kj(at- (27)7Y) — Kj(I)‘ dx C’Q‘j(2"+2)|y|h

IN

= /}Kj(:v-y_l)—Kj(:B)} dx C}%’h:CTﬂgAh.

Therefore, to prove (9.10.4.9), we only need to show that

[ 1Kata™) = Kolw) dz < Cluln
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First, suppose that |y|, > 1. Then

[ 1Koy~ Kot do < [ 1Koty e+ [ 1Ko(o)]ds
:2/|K0(:c)|d:r
=2 /2 /0 OO|K0(7’§)|7’2"+1 drdo ()
=2 [ [T KGO lon(r) = oufen)s™ drdoe)
=2 [ 1K1 [ 16ur) = entznlr 22 (e

<c 1K@ [ Trdote)
-0 2 (9.10.4.10)

Thus we have
/ Ko(ay™) — Ko(x)| dz < Clyl, i Jyla > 1.

Now suppose that |y|, < 1. We may consider Kj as a function on R*"*. We
use the notation Kj to denote such a function. Since y~!, the inverse y in
H", corresponds to —y in R?"*1 we get
|Ko(z -y~ ) — Ko(2)| = | Ko(z — y) — Ko(x)]. (9.10.4.11)
Thus, using the mean value theorem, we have
|Ko(z —y) — Ko(z)| < Clyle

Therefore, from Proposition 10.8.5, we have

| Ko(zy™") = Ko(z)| < Clyln.
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Hence

/ |K0(55?/_1) — Ko(z)|dz < C|y|h/H XSU_pp|KO(my*1)—KO(m)| dx

< Clyln (/ XsuppKO(myfl)dZE +/ XsuppKO(z)dil?) .
Hn Hn
(9.10.4.12)

We certainly have
1 1 1 1
supp Ko(2y ™) C {5 < oy~ [ <2} and supp Ko(z) C {7 < [a]n < 2}
Since |y|, < 1, if 2 € supp Ko(zy™!), we have

lzn < y(lzy i + lyln) < 3.

Therefore

supp Ko(zy ™) C {|z|n < 37}

Hence we can rewrite (9.10.4.12) as follows:

/ Ko(wy™) — Ko(@)|dz < Clyln(37)22 = Clyln

Thus our claim is proved.
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Now look at || K; * K7 |

1K il = [0 [ = K@) K )y da
J 11 [ |Kiay™) = Ks(w)] dady
[ 16w €271l dy
~ o2 / Ki(y™)] lyln dy
= o2 [ K@y~ dy
_ oy /2 /0 ooKl(rf)|r-r2"+1 drdo (€)
- o [ f |K<ri>||wl<rs>|r2"+2 drdo(¢)
cx? 1K@ [ 222 drdo(s)

2l+1

c27/ / dr
2l—1

< 9

IN

IN

IN

Therefore (9.10.4.4) is proved. The proof of (9.10.4.5) is similar.
Now we invoke the Cotlar-Knapp-Stein lemma and get

M
1Y Tl <C, VMEeN.
=1

We actually wish to consider

TN f = flay ™K (y)dy

e<ly|n <N

and let e = 0, N — oo.

Claim
ITY fll2 < C|I £l

305
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where C' is independent of € and N.
For the proof of the claim, let

KN (y) = K(y)xiem(yln) -
Then

TN f = . flay KN (y)dy.

Therefore, to prove the Claim, we will show that ||[KY|; < C, where C is
independent of € and N.
We may find j,1 € Z such that

W1 <e<2 and 28< N < 2!

and want to compare ngigl T; and TV.

So, we look at
<Z KZ-) — KV,

Jj<i<l
Note that
> Ki(w) = K(@)[95(2) + -+ vala)|
Jj<i<l
= K(2)[6(272) = 9(2774'2) + 9(277 ') — 6(2 V) £ - -
+o(2 ) — p(272x) + 9(27'x) — (27 )
— K(z) [¢(2—J’g;) - ¢(2‘j+1:£)} . (9.10.4.13)
Thus
supp Z K c {27t <ay) < 2”1} and
j<isl
Y Ki(x)=K(z), if 2 <|zf,<2"
Jj<i<l
Hence

supp <[ > Kl —K5V> c ({27 <Jalh < P} U{2 < ol < 2]

Jj<i<l
N
C {{% <lz|p < 26} U {E <lz|p < 2NH )
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Therefore
IS K-k & [ K@l [ K () da
j<i<l 5 <z n<2e Y <zl <2N
2e
= [ [ irGe oo
=)
2N
+ / / | K (r&)|r*" 1 drdo (&)
=)y
2¢
= [ [ ) dotdr
5 b))
2N
w [ e (K] do(eydn
¥ b
= C(log4 + log4)
- C.
Therefore

IEM L < (1Y Kl +11 Y Ki— KM <C.

j<i<l j<i<l

Hence, applying Functional Analysis Principle I, the theorem is proved. O
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Chapter 10

Analysis on the Heisenberg
Group

Prologue: And now we reach the pinnacle of our work. We
have spent quite a number of chapters laying the background
and motivation for what we are doing. The last chapter set the
stage for Heisenberg group analysis, and laid out the foundations
for the subject. Now we are going to dive in and prove a big

theorem.

Our goal in this chapter is to prove the LP boundedness of the
Szegb projection on the unit ball in C™ (we also make some re-
marks about the Poisson-Szeg¢ integral). It must be emphasized
here that this is a singular integral, but not in the traditional,
classical sense. The singularity is not isotropic, and the mapping
properties of the operator cannot simply be analyzed using tra-
ditional techniques. The anisotropic Heisenberg analysis that we

have developed here is what is needed.

So our program has two steps. The first is to consider the Szeg6
kernel on the ball in some detail. We must calculate it explicitly,
and render it in a form that is useful to us. In particular, we must

see that it is a convolution operator on the Heisenberg group.

Second, we must see that the Szego projection is in fact a
Heisenberg convolution operator. Indeed, we want to see that it
is a singular integral operator in the sense of this book. Then all
of our analysis will come to bear and we can derive a significant

309



310 CHAPTER 10. ANALYSIS ON THE HEISENBERG GROUP

theorem about mapping properties of the Szeg6 projection.

Along the way we shall also learn about the Poisson-Szegd
operator. It is an essential feature of the analysis of the Heisen-
berg group. We shall be able to say something about its mapping
properties as well.

To finish the book, we shall introduce the notion of finite
type. This is an essential idea arising from the theory of subel-
liptic estimates for the 0-Neumann operator. It is an important
geometric invariant, one that we can calculate. Properly viewed,
it is the right generalization of strong pseudoconvexity. We shall
lay out the differences between the two-variable theory and the
n-variable theory. And we shall put the idea of finite type into
the context of this book. That will be the pinnacle of our studies
and (we hope) an entree into further investigations for you.

We begin this chapter by reviewing a few of the key ideas about the
Szegd and Poisson-Szegd kernels.

10.1 The Szego Kernel on the Heisenberg Group

Capsule: We have met the Szegé kernel in earlier parts of this
book (see Section 7.2). It is the canonical reproducing kernel
for H? of any bounded domain. It fits the paradigm of Hilbert
space with reproducing kernel (see [ARO]). And it is an important
operator for complex function theory. But it does not have the
invariance properties of the Bergman kernel. It is not quite as
useful in geometric contexts. Nonetheless the Szegd kernel is
an important artifact of complex function theory and certainly
worthy of our studies.

Let B be a unit ball in C". Consider the Hardy space H*(B):

1

H2(B) = { holomorphic on B sup [ | [7(€)Pdo(©)]” = I/l < oo}

0<r<1

Note that H*(B) is a Hilbert space. The Szegd kernel is a canonical repro-
ducing kernel for H?. We have studied its properties earlier in the book—see
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Chapter 7. Now we turn to the particular properties of this kernel, and the
allied Poisson-Szego kernel, on the Siegel upper half space and the Heisenberg

group.

10.2 The Poisson-Szego kernel on the Heisen-
berg Group

Capsule: The Poisson-Szegd kernel, invented by Hua and Ko-
ranyi, is interesting because it is a positive kernel that reproduces
H?. Tt is quite useful in function-theoretic contexts. But it is not
nearly so well known as perhaps it should be. Like the Bergman
and Szeg6 kernels, it is quite difficult in practice to compute.
But various asymptotic expansions make it accessible in many
contexts.

Let 2 € C" be a bounded domain. We’d like to construct a positive
reproducing kernel. Let S(z, () be the Szego kernel on ).

Definition 10.2.1 We define the Poisson-Szeqo kernel as follows:

prey = S0

Prelude: The Poisson-Szegd kernel is a fairly modern idea that grew per-
haps out of representation-theoretic considerations. It arises in a variety of
context but is particularly useful in the harmonic analysis of several complex
variables. Its chief virtue is that it is a positive kernel that reproduces H?,
and that has a “structure” (i.e., the shape of its singularity) that is closely
tied to the complex structure of the domain in question. It happens that
the Poisson-Szegd kernel also solves the Dirichlet problem for the invariant
Laplacian on the ball in C”, but that seems to be a special effect true only
for that domain and a very few other special domains. This circle of ideas
has been explored in [GRA1], [GRA2]. See also [KRA3].

Lemma 10.2.2 The Poisson-Szeqo kernel is well-defined and nonnegative.
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Proof: Note that

S(z,2) = Z%’(z)%(z) - Z i (2)]* > 0.

Suppose that there exists a 2y € Q such that S(zo, z0) = 0. Then ¢;(zy) =0,
for all 7 > 1. Thus

f(Z(]) = Z OéjQSj(Z(]) = 0, \V/f - Hz(Q)

But f =1 € H?*(). Contradiction. O

10.3 Various Kernels on the Siegel Upper Half
Space U

Capsule: Now it is time to focus in on the Siegel halfspace and
the canonical kernels on that space. Both the Szegé and the
Poisson-Szeg6 kernels will play a prominent role. Their mapping
properties are of particular interest.

The Siegel upper half space U is biholomorphically equivalent to the unit
ball via the generalized Cayley map. Thus &/ has a Bergman and a Szego
kernel.

10.3.1 Sets of Determinacy

A set S C U C C"is called a set of determinacy if any holomorphic function
on U that vanishes on S must be identically zero on U.

EXAMPLE 10.3.1 The set S = {(s+it,0) : s,t € R} C C? is not a set of
determinacy on C2. Because f(z1,22) = 25 is holomorphic and vanishes on
S. O

EXAMPLE 10.3.2 The set S = {(s +10,t +i0) : s,t € R} C C? is a set
of determinacy. This assertion follows from elementary one-variable power
series considerations. O
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Remark: If S C C" is a totally real,! n-dimensional manifold, then S is a
set of determinacy. See [WEL]. O

Prelude: There is an important idea lurking in the background in the next
lemma. Let S be a 2-dimensional linear subspace of C?. Let f be a holomor-
phic function. If f‘ ¢ =0, does it follow that f =07 The answer depends on
how S is positioned in space; put in other words, it depends on the complex
structure of S.

Lemma 10.3.3 Let Q2 C C" be a domain and let f(z,w) be defined on 2 x Q.
Assume that f is holomorphic in z and conjugate holomorphic in w. If
f(z,2) =0 for all z, then f(z,w) =0 on Q x Q. (i.e., the diagonal is a set
of determinacy).

Proof: Consider the mapping

i zu) =

Z+w z—w
2 2 ) ‘
Then
¢~ (. f) = (a+iB,a—1iB).
Let f: foo t(a, ). We can easily check that it is holomorphic in o and
G-
of _ oo ofom
oa 0zo0a OJwda
of Of 0z  Of ow
——=+t7===0
op 0z9pB 0w op
Since f(z,z) =0 and
¢:(2,2) = (Rez,Imz),

we know that

f(Rez,Imz) = fop '(Rez,Imz) = f(z,2) = 0.

But {(Rez,Imz)} C C* is a totally real 2n-dimensional manifold, thus a
set of determinacy. Therefore, f o ¢~ = 0. Hence f = 0. O

LA manifold M C C" is said to be totally real if whenever « lies in the tangent space
to M then ia does not lie in the tangent space.
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10.3.2 The Szego Kernel on the Siegel Upper Halfs-
pace U

Recall the height function p in U:
p(w) = Imw; — |w'*,

where w' = (wy, ..., w,). We look at the almost analytic extension of p:

Note that p is holomorphic in z and conjugate holomorphic in w and p(w, w) =
p(w).

Prelude: The next theorem is key to the principal result of this chapter.
The Szeg6 kernel is a Heisenberg singular integral, hence can be analyzed
using the machinery that we have developed. Of course analogous results are
true in one dimension as well.

Theorem 10.3.4 On the Siegel upper half space U, the Szegd kernel S(z, ()

18:
n! 1

For F € H*(U), we let

Fo(¢,t) = F((¢ t+i(|¢)*+ p)).

Lurking in the background here is the map ¥ (originally defined in Section
11.4) that takes elements of OU to elements of the Heisenberg group. In the
current discussion we will find it convenient not to mention W explicitly. The
role of ¥ will be understood from context.

We know that, for z € U,

F(z)= /au Fo(w)S(z,w)do(w).

This is just the standard reproducing property of the Szegd kernel acting on
H? of the Siegel upper half space.
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Corollary 10.3.5
FP(C? t) = FO * KP(C> t)>

where Fy € L?(OU) is the L? boundary limit of F' and

n!
- 47Tn+1

Ky (¢, ) =2"TCu(ICP + it +p) ", Cp =

Proof of Theorem 10.3.4: Let z = (¢t +i(|¢]* + p(2)),¢) and p = p(z).
Then
F(z)=F,(¢,t) = /n S(z,w)Fy(w)do(w) = / Cn-WFO(w)da(w).

n

Therefore, we need only show that

plew) = 2K, (GO - (), u = Rewy,
Now
plzw) = L1 —2) —

%[ul —ilw|® =t —i(|¢)> + p)] = ReC - w —im( - w’
%[W + JJw']? - 2Re§-U+p} - %[ul —t—21m¢-ﬂ

- %[ — CH WP pti(—t o+ un o+ 2Im (~C )|

_ %Kp((—C !, —t +uy + 2 (—C - W)))
%Kp((( 67 (ug,w')) (10.3.5.1)

O

Let us begin with the classical upper half-plane in C', U = {z+iy: y >
0}, and its associated Hardy space

H?*(U) ={f: f is holomorphic on ]R+,sup/|f(a:—|—z'y)|2dz < 00}
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This function space is a Hilbert space with norm given by

2

Iy =sup ([ 116+ i) )
y>0 R1
The classical structure theorem for this Hardy space is

Prelude: The Paley-Wiener theorem is one of the big ideas of modern har-
monic analysis. It dates back to the important book [PAW]. Today Paley-
Wiener theory shows itself in signal processing, in wavelet theory, in partial
differential equations, and many other parts of mathematics.

Theorem 10.3.6 (Paley-Wiener Theorem) The equation

f—F(2)= /000 eZm=A F(\)dA

yields an isomorphism between L£%(0,00) and H?*(U).

This theorem is of particular value because the elements of £2(0, co) are
easy to understand, whereas the elements of H?(R? ) are less so—one cannot
construct H? functions at will. Observe that one direction of the proof of
this theorem is easy: given a function f € £2%(0,00), the integral above
converges (absolutely) as soon as Im z > 0. Furthermore, for any y > 0, we
set Fyy(z) = F(x + iy) and see that

0o 2

IE 2@y = e 2N L 2T F(\YAN|  da

S / / 27rzm)\ d)\|2 dl’
R

= [If @)z

= /122000 -

It is also clear that

1F || g2rz) = sup [Fylle2rr) = ([ f1l22(0,00)-
y>0
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The more difficult direction is the assertion that the map f(\) — F(z) is
actually onto H?. We shall not treat it in detail (although our proof below
specializes down to the halfplane in C), but refer the reader instead to [KAT].

We would like to develop an analogue for the Paley-Wiener theorem on
the Siegel upper half space U. First we must discuss integration on H". Recall
that a measure d\ on a topological group is the Haar measure (unique up to
multiplication by a constant) if it is a Borel measure that is invariant under
left translation. Our measure d(dt (ordinary Lebesgue measure) turns out
to be both left and right invariant, i.e., it is unimodular. The proof is simply
a matter of carrying out the integration:

[ rtesctaca = [ [+ erssome-Qaca
= //f(c+§,t+s+21mg-2)dtdg

= [ [ s+ ena
— [ [ sctyinac.

Observe now that the map [(,t] — [—(, —t] preserves the measure but also
sends an element of H" onto its inverse. Thus it sends left translation into
right translation, and so the left invariance of the measure implies its right
invariance.

With that preliminary step out of the way, we can make the following

Definition 10.3.7 Define

2
nmmzm(//waawwmwwwmg.
p>0
Then we set

H*(U) = {f: f is holomorphic on U, ||f||> < oo}.

Here p is the height function that we have introduced for . Just as in the
case of U C C', where we integrated over parallels to R! = 9R2, so here we
integrate over parallels to H" = oU.
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We will now see that H?(U) is a Hilbert space, and we will develop a
Fourier analysis for it. The substitute for L?*(0,00) in the present context

will be H2 which consists of all functions f=f( ) with 2/ € C", A € Rt
such that

(1) 7 is jointly measurable in 2’ and \;
(2) For almost every A, 2’ — j?(z’, A) is entire on C";

(3) 112, = Jou Jyw 1F(2/. NP Fdz'd) < 0o}
We have the following basic structure theorem:

Theorem 10.3.8 Consider the equation
NAZF%J%j/eWMﬂ%MM. (10.3.8.1)
0

1. Given an f € f/ﬁ, the integral in (10.3.8.1) converges absolutely for
z € U and uniformly for = € K CC U. Thus we can interchange the
order of differentiation and integration, and we see that the function F
given by the integral is holomorphic.

2. The function F defined in part (10 3.8.1) from an f € JiE Is an element

of H?, and the resulting map f — F' is an isometry of I? onto H?;
i.e., it is an isomorphism of Hilbert spaces.

3. Let i = (0,0,...,0,7) € C"* and let f € H?. Set f. = f(z + &i)
ou
Then f. is a function on H", f. — fo in £*>(H") as e — 0, and

[ foll 2y = f 2 = [ f]] -

The idea of the proof is to freeze 2z’ and look at the Paley-Wiener repre-
sentation of the half-space Im z; > |2/|?. There are several nontrivial technical
problems with tE\is program, so we shall have to develop the proof in stages.
First, we want H? to be complete so that it is a Hilbert space.
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Lemma 10.3.9 H? is a Hilbert space.

Proof: Since H2 is defined as L2(C"1 x RT, du) for a certain measure ,
its inner product is already determined. The troublesome part of the lemma
is the completeness.

Since we are dealing with analytic functions, the £2 convergence will lead
to a very strong (i.e., uniformly on compact subsets) type of convergence  on
the interior of C" x R!. Now suppose we are given a Cauchy sequence in H 2;
we must show that some subsequence converges to an element of H2. Since H?>
is an £? space, some subsequence converges in £? (£? being complete), and
we can extract from that a subsequence converging both in £? and pointwise
almost everywhere. Next take a compact set K CC C™ which is the closure
of an open set and L CC R", and a subsequence { f;} such that

, 1
[ [ 1= senPizan < o
LJK 2
Thus

; Ife — ferlir = ;/L/K 1fo(2' A) = four (2, N)Pd2/dN < oc.

If we set
Ae() = / (2, 0) = o (2 V)22,
K

then we have
/ZAg()\)dA < 0.
Ly

Thus », A¢(A) < oo for almost every A € L. Passing to a set K’ CC K we
find a number r > 0 such that B(2/,r) CC K for all 2/ € K’. Since, for a
fixed A, the functions f, are holomorphic on K, they obey the mean value
property. Therefore

|f£(2/, A) — f£+1(2’/, N < '/B( » |f£(wl> A) — f£+1(wla >\)|dwl

P (/ |f€(wl> )‘) - f@—l—l(wla >\)|2dw')
CnT B(z',r)

IN

VAN
Q
>
S
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for all 2/ € K’ and A fixed. Therefore the sequence {fy(-, \)} converges uni-
formly on compact subsets of C" for almost every \. Since, for almost every
A the functions f; are holomorphic, the limit is then holomorphic. Since the
functions f, already converge in £*(C"~! x R*,du) and pointwise almost

everywhere, our limit is in H?. O

Next we prove

Lemma 10.3.10 If f € }/ﬁ, then, for (7', z,) € K CC U, we have that

/ 627ri>\21f(2/, )\)d)\
0

converges absolutely. Its absolute value is < Ck || f|| -

Proof: For z = (7', 2;) € K CC U there is an € > 0 such that Im z; — |2/[|*> >
e > 0. Also observe that, for almost every A (since f(z’, ) is entire in 2’), we
have by the mean value property that

|f(2, M) |f(w', \)|duw. (10.3.10.1)

e
e
= VoI[B(2,0)]  Jers)

The number § > 0 will be selected later.
Since Im z; < —e — |2/|?, we calculate that

/ 627ri>\21f(2,’/, )\)d)\‘

0
< / 6—27re)\ . 6—27r)\|z’|2 . |f(Z/, )\)|d)\
0

1

< (/ 6—27re)\d)\) . (/ 6—27re)\ . 6_47r>\|2/|2|f(2/, )\)|2d)\)
0 0

by Schwarz’s inequality. Now set

1

Co = ( / e—mdA)
0
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and apply (10.3.10.1) to obtain

Co /OO —2meX | ,—4mA|2'|? (/ ! /)2 :
I<—. e TN e AR fw', N)|dw" ) d\ | .
wwwm]<o At

But an application of Schwarz’s inequality to the w' integration yields
72 < Cg / 6—27re)\ . 6—47r)\|z’|2/ |f(w’, )\)|2dw’d)\
0 B(2,9)

Now we would like to replace the expression e—4mAZ | by e~ 4™ \w'I* and then
apply condition (3) of the definition of H2. Since w' € B(2/,6), we see that

—Am |’ |2 —4m\|Z |2 —47m\d
>e . .

€ €

We choose 0 < § < % It follows that

_ _ 112 _ _ _ 712 _ 72
e 2meX | e AmAl|? e 2meX | 647r5)\ e 4mé | e A2 | <e 4\ |w’|

and we find that
rr<cy- / / (', N)[2e™ ™ qu d ),
0 JB(2,5)

Hence we have
I <Co-|lfll -

This completes the proof of the lemma. O

Now that we have the absolute convergence of our integral (and uniform
convergence for z € K CC U), we are allowed to differentiate under the
integral sign and it is clear that the F' which is created from f € H? is
holomorphic.

Before continuing with the proof of Theorem 10.3.8 we make two obser-
vations:

(i) There would appear to be an ambiguity in the definition

ﬂ%M:/‘ﬁwmmW%a+%Mmmmw>VV

e}
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After all, the right-hand side explicitly depends on ¥, and yet the left-
hand side is independent of y;. The fact is that the right-hand side is also
independent of y;. After all, f is holomorphic in the variable x; + iy, as
it ranges over the half-plane y; > |2/|>. Then our claim is simply that the
integral of f over a line parallel to the z-axis is independent of the particular
line we choose (as long as y; > |2/|?). This statement is a consequence
of Cauchy’s integral theorem: the difference of the integral of f over two
parallel horizontal lines is the limit of the integral of f over long horizontal
rectangles—from —N to N say. Now the integral of f over a rectangle is
zero, and we will see that f has sufficiently rapid decrease at oo so that the
integrals over the ends of the rectangle tend to 0 as N — 4o00. Thus

/ 6_27r,\(m1+iy1)f(z’, z1 + 1y1)dx

e}

- / e 2@ £ (2! 4 igy )doy for 0 < y1 < Go.

e e}

(ii) Fix a point (21, 2’) € U. Consider the functional which sends f € 2
to F'(2/, z1), where F' is the function created by the Fourier integral of f. Then

this functional is continuous on H2. However the integral of f (which yields
F) is taken over a 1-dimensional set, so how can the result be well-defined
pointwise as a function?

The answer is that for almost every A we are careful to pick an almost
everywhere equivalent of f(z’, A) which is entire in 2/, so that the resulting
F' is holomorphic. Thus the precise definition of our linear functional is
“evaluation at the point (z1,2’) of the holomorphic function which is an
almost everywhere equivalent of the function F' arising from f.”

We next prove

Lemma 10.3.11 Let F € H*(U). Then, for a fixed 2/, F.(2',-) € H*({y1 >
|2’|?}) (as a function of one complex variable) where
F.(2, 21 +1y1) = f(2/, 21 + iy1 +ig), for € > 0.

Proof: We may assume 2z’ = 0. Apply the mean value theorem to F'(0,z; +
iy1 +ie) on D(0,0") x B(0,9), where D is a disc in the plane and B C C".
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We see that
|F(x1 4 iyy + i, 0)?

< 05,5/'/ / |F (21 + iy1 + w + ig, 2)|*d2 dw .
D(z1+iy;1 +ie,6’) JB(0,6)

Hence
/ |F (21 + iy + i€, 0)*day
S 0575/ . / / / |F|2d2’/d’LUdZL'1 .
—o0 J D(x1+iy; +ie,0") JB(0,0)
But
/ / F(z+w)|dwdx < / / F(z +iv)|dvdx
D(w,d")

for any F. Now choose ¢’ = £ and set ¢’ = 2—35, to obtain

5 25/

fe(x +iv)dv = / fe(x 4+ v)dv

—5 0

Thus

/ |F5(l’1—|—’éy1,0)|2dl’1

< C-/ / / |F (21 + iy + iv +ie’, 2/)[2d2 dvda .
—o00 J0 B(0,9)
Now |z/| < §; we choose ¢ = \/g so that |2/|?> < &. Therefore

(PRI

<o [ Lol

Next set o = v + 5 — [2/|* and observe that

25" o 25’+%’
/ |F(v+ 5 2|2, 0)|dv < / |F(0,0)|do.
0 0

/ / 2

F(oy +i(|2'* + 1,2 )+z’(v+%+%—|z’|2) dvdz'dzx; .
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But we know that 26’ + % = ¢ so we have

IE.0,)%: < C / / /
0 J—oo0 JB(0,)

< o/ VP[220 v
0
= Cse - | FllE2w

< 0o0.

2
6./
Flzi+i(|ZP+y+v+ 5 2| dZ'dzy dv

This completes the proof. O

Notice that this lemma is not necessarily true for the boundary limit
function F'(xy + i|2’|?, 2'). For the constant Cs ~ 6™, hence the right-hand
side blows up as € — 0.

We are finally in a position to bring our calculations tgg;ether and to
prove Theorem 10.3.8. We have seen that from a given f € H? we obtain a
function F(z1,2’), holomorphic in . We now show that it is in H? and in
fact that its H* norm equals || f|| 7.

Now
/ / |F (21 +ip+ il 22, ) Pdandz’ = / / |F (2, \)Pe M =P gz
P 0

and the integral on the right increases to [, [;~ |F(2, \)[2e= NP g\d2 as
p — 0. Hence

T —— / / Foy +112/ + ip, o)) s d2’

p>0

= / / |F(2, \)2e™ ™ ard2!
_ 2
= |Ifl%-

Furthermore, this equality of norms implies that our map from H? to H? is
injective. All that remains is to show that an arbitrary F' € H? has such a
representation.

Given F' = F(z1,2') € H*(U), Lemma 10.3.11 tells us that for any fixed
e > 0and 2/ € C", the function F.(2', z1) = F(z1+1i¢, 2’) has a Paley-Wiener
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representation. We leave it as an exercise to check that the resulting function
F.()\, 2') is holomorphic in z’. Since we have the relation

Fe(z',zl):/ Fo(2, N)e*™ 4\
0

and since the functions { F.} are uniformly bounded in H?ase — 0, it follows
that the functions {F.} are uniformly bounded in H2. We can therefore
extract a subsequence F., such that F., — fo weakly as j — oo. Observe

that since fj € H? we can recover from it Fy € H? U).
Lemma 10.3.10 tells us that for (zq,2) € K CC U, the (continuous)

linear functional on H? given by Fourier inversion and then evaluation at the
point (21, ') is uniformly bounded:

|F(21,2)| < Cx - |IF || -
Thus F. (21, 2") — Fy(21, 2') uniformly on compact subsets of /. However,
F.(21,2') = F(z1 +igj, 7)) — F(21, 7))

pointwise, so we know that fo = F. Thus F' has a representation in terms of
a function in H? because fy does.

Finally we must show that, if F. is defined as above, then F. converges
to a function f in £2(0U). But we see that

F.(2) = F(z1 +ig,2') = /000 2™ 2B (S ) dA
so that
/ |F (21 +ig, 2') |2 dZ'dxy = //6_4”5’\@(2", A)[2e= 4P g2 )
and
/ |2y (2)— Fuy(2) Pd2 oy = / / |em2mAe—em2mAe 2 | (2, \) e Pz,

Thus the dominated convergence theorem tells us that {F.} is a Cauchy se-
quence in £2(H"). Therefore f has boundary values in £2(H"). O

As a direct consequence of Lemma 10.3.10, we have the following corol-
lary:



326 CHAPTER 10. ANALYSIS ON THE HEISENBERG GROUP
Corollary 10.3.12 H?(U) is a Hilbert space with reproducing kernel.

The reproducing kernel for H? is the Cauchy-Szegd kernel; we shall see,
by symmetry considerations, that it is uniquely determined up to a constant.
Define S(z,w) to be the reproducing kernel for H?(U).

Prelude: Although it may not be immediately apparent from the statement
of the theorem, it will turn out that the Szeg6 kernel is a singular integral
kernel on the Heisenberg group. This will be important for our applications.

Theorem 10.3.13 We have that

S(z,w) = ealp(z,w)] ",

where .
plzw) = 5@ — 21) = Y 4w
k=1
and
n!
" g

Observe that p is a polarization of our “height function” p(z) = Im 21 — |2|?,
for p(z,w) is holomorphic in z, antiholomorphic in w, and p(z, z) = p(2). It is
common to refer to the new function p as an “almost analytic continuation”
of the old function p.

Before we prove the theorem we will formulate an important corollary.
Since all our constructs are canonical, the Cauchy-Szego representation ought
to be modeled on a simple convolution operator on the Heisenberg group. Let
us determine how to write the reproducing formula as a convolution.

A function F' defined on U induces, for each value of the “height” p, a
function on the Heisenberg group:

Fy(¢,t)=F (¢t +i([C] +p) -

Since S(z,w) is the reproducing kernel, we know that

P = [ Fw)S(u)ds(w (¥
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where df(w) = dw’du, is the Haar measure on H" with w written as w =
(u1+1v1,w’). Recall that part (3) of Theorem 10.3.8 guarantees the existence
of £? boundary values for F, and the boundary of ¢/ is H". Thus the integral
(%) is well-defined.

Observe that since the Heisenberg group is not commutative, we must be
careful when discussing convolutions. We will deal with right convolutions,
namely an integral of right translates of the given function F"

(F+ K)(x) = / Fla-y ™)K (y)dy = / Fl)K(y™ - o)dy.

n n

The result we seek is

Corollary 10.3.14 We have that
FP(C? t) = FO * KP(C) t)>
where Fy is the £? boundary limit of F, and

K, (¢, t) = 2" e ([C)? — it 4+ p)

Proof of the Corollary: We write

FAGH) = [ 8 (¢4 ip il 0. (an + i, w) Flan + il w')dB(w).

Therefore

FP(C7t)
), n —n—1
) 4 . . B o /

' k=2
F(uy +i|w']?, w')
= 2n+1 n ) d
/” “CEF WE = ReC- @ +p— it — e+ 2m ¢ @) )

— /Hn Fo(ur, w)K, ((¢, 1) (ug,w")) dB(w).

That completes the proof. O
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Proof of Theorem 10.3.5: First we need the following elementary unique-
ness result from complex analysis:

We know that if p(z,w) is holomorphic in z and antiholomorphic in w
then it is uniquely determined by p(z, z) = p(z). Next we demonstrate

Claim (i) If g is an element of H" then S(gz, gw) = S(z,w).

After all, if FF € H*(U) then the map F +— F, (where Fy(z) = F(g2)) is a
unitary map of H?(U) to itself. Now

F(92) = [ Slz.w)F(gu)ds(w)

We make the change of variables w’ = gw; since df is Haar measure, it
follows that df(w') = dfB(w). Thus

F(99) = [ S(eg™u)Plw!)dbw)

SO

F(2) = [ S s g ) Fw)ds()

We conclude that S(z,w) and S(gz,gw) are both reproducing kernels for
H?(U) hence they are equal. 0

Claim (ii) If ¢ is the natural dilation of U by (21, 2") = (6221, 02’) then
S(6z,0w) = 62728 (z, w).
The proof is just as above:
F(oz) = / S(z,w)F(dw)df(w)
= / S(z, 6w ) F(w') - 52" 2dB(w)
so that

F(z) =062 / S(07 2, 6 \w) F(w)dB(w).

n
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Then the uniqueness of the reproducing kernel yields
S(z,w) =6~ . 567 2, 6 tw) for § > 0.

Now the uniqueness result following Theorem 10.3.6 shows that S(z, w)
will be completely determined if we can prove that

S(z,2) = ca- [p(=)] "

However, p(z) is invariant under translation of & by elements of the Heisen-
berg group (i.e., p(gz) = p(z), for all g € H") and

p(62) = Im (8%2)) — 82|2|* = 6%p(2).

Therefore the function
S(z,2) - [p(2)]"*

has homogeneity zero and is invariant under the action of the Heisenberg
group. Since the Heisenberg group acts simply transitively on “parallels” to
OU, and since dilations enables us to move from any one parallel to another,
any function with these two invariance properties must be constant. Hence
we have

S(z,2) = cap(z)] "
It follows that
—n—1

S(z,w) = ealp(z, w)]

At long last we have proved 10.3.13. We have not taken the trouble
to calculate the exact value of the constant in front of the canonical kernel.
That value has no practical significance for us here. O

The completes our presentation of the main results of this section.

Remark We mention an alternative elegant method for demonstrating the
reproducing property of the kernel e=™" ¥ For ease of calculation, let us
assume that\ = i. Thus we wish to show that

F(2) :/ eV E(w)e ™ P quw’ | for F e H,.
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First, the equality is true for 2’ = 0: F'is entire, so

1
F(0) = ﬁ/ F(w')do(w'), for all r > 0.
Wp—1T OB(0,r)
Also observe that
1 /OO —mr2 n—1
= e " dr.
Wp—1 0
Thus
> —7r? n—1 1 / /
F(0) = / e - -wn_l-ﬁ-/ F(w')do(w")dr
0 Wn—1T oB(0,r)

= /F(w')e‘“'w/|2dw'.

We would like to translate this result to arbitrary z’. The naive transla-
tion T¢ : f(2') — f(2' + &) is not adequate for our purposes, in part because
it is not unitary. The unitarized translation operator

l¢|?
2

Ue : f(2') 1 e ™5 (2 4¢)

is better suited to the job (observe that U : H1 — ﬁ]i preserves norms).
After changing variables, we find that

F(6) = e”g(Ugf)(O)
o [ e
_ o / oW D) £ 4 )

= /e‘”'w/|26_w'§f(w’)dw’. BoxOpTwo

Exercise for the Reader: If S(z,() is the Cauchy-Szeg6 kernel for a do-
main then its Poisson-Szegd kernel is defined to be P(z, () = |S(z,()?|/S(z, z).
Show that, if €2 is a bounded domain, then the Poisson-Szeg6 kernel repro-
duces functions that are holomorphic on €2 and continuous on the closure.
In case U is the Siegel upper half space (which is equivalent to the ball, a
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bounded domain), show that the Poisson-Szeg6 integral is given by a convolu-
tion on the Heisenberg group. Give an explicit formula for the Poisson-Szeg6
kernel on /. What sort of integral is this? Is it a singular integral? A frac-
tional integral? Or some other sort? O

10.4 Remarks on H!' and BMO

Capsule: As indicated in previous sections, Hg, and BMO are
critical spaces for the harmonic analysis of any particular con-
text. These ideas were originally discovered on classical Euclidean
space. But today they are studies on arbitrary manifolds and
fairly arbitrary Lie groups and other contexts. Fach function
space has considerable intrinsic interest, but it is their interaction
that is of greatest interest. The pre-dual of Hp, is also known;
it is the space VMO of functions of vanishing mean oscillation
(see [SAR]). There is a great lore of Hardy spaces and functions
of bounded mean oscillation. We only scratch the surface here.

Refer to the discussion of atomic Hardy spaces in Section 8.10. That
definition transfers grosso modo to the Heisenberg group. Once one has balls
and a measure—with certain elementary compatibility conditions—then one
can define the atomic Hardy space H! for instance. In fact all one needs
is the structure of a space of homogeneous type, and the Heisenberg group
certainly possesses that feature.?

And it turns out that one can prove that a singular integral—such as we
have defined in Theorem 9.10.4—is bounded on H! and bounded on BMO.
The proofs of these statements are straightforward, and are just as in the
Euclidean case. We shall not provide the details. The book [STEZ2] is a good
reference for the chapter and verse of these ideas.

If we push further and examine Hp (H") for p < 1 but near to 1 (so that
the moment condition on an atom is still [, a(x)dxz = 0) then one can show

21t is a bit trickier to define H? for p small on a space of homogeneous type. For the
classical atomic definition entails higher order vanishing moment conditions, hence begs
questions of (i) smoothness of functions and (ii) the definition of polynomials. Neither
of these ideas is a priori clear on a general space of homogeneous type. These delicate
questions are explored in the book [KRA10]. We cannot treat the details here.
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that the dual of H? is a certain nonisotropic Lipschitz space (see [FOST2]
for a careful consideration of this point). This result was anticipated in
the important paper [DRS]. Nonisotropic Lipschitz spaces on nilpotent Lie
groups are developed, for example, in [KRA11].

In sum, virtually all the machinery developed in this book may be
brought to bear on the Heisenberg group. As a result, the Heisenberg group
has developed into a powerful tool of modern harmonic analysis. Because the
Heisenberg group is naturally identified with the boundary of the unit ball
in C", it fits very naturally into complex function theory and explorations of
the Cauchy-Riemann equations. There still remain many important avenues
to explore in this important new byway of our field.

10.5 A Coda on Domains of Finite Type

Capsule: The idea of finite type was first developed by J. J.
Kohn in the study of subelliptic estimates for the 0-Neumann
problem (see [KOH]). It has grown and evolved into a fundamen-
tal idea in geometric function theory. The book [DANS5| gives a
comprehensive survey of the theory. The idea of finite type is
fundamental both to the partial differential equations of several
complex variables and also to a variety of mapping problems. It
is considerably more complex in the n-variable setting than in the
2-variable setting. We give an indication of both aspects in our
exposition here.

10.5.1 Prefatory Remarks

We close our studies in this text by considering a broad context into which to
place the analysis of strongly pseudoconvex domains (such as the ball B and
the Siegel upper halfspace ¢). This is the realm of domains of finite type.
An idea first developed by J. J. Kohn to study estimates for the O-Neumann
problem, this idea has become pervasive in much of the modern function
theory of several complex variables. The present section may be considered
to be a brief and self-contained introduction to these modern ideas.

Let us begin with the simplest domain in C"—the ball. Let P € 0B.
It is elementary to see that no complex line (equivalently no affine analytic
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disc) can have geometric order of contact with OB at P exceeding 2. That
is, a complex line may pass through P and also be tangent to OB at P, but
it can do no better. The boundary of the ball has positive curvature and
a complex line is flat. The differential geometric structures disagree at the
level of second derivatives. Another way to say this is that if ¢ is a complex
line tangent to B at P then, for z € /,

dist (2,0B) = O(|z — P|?) (10.5.1)

and the exponent 2 cannot be improved. The number 2 is called the “order
of contact” of the complex line with 0B.

The notion of strongly pseudoconvex point can be viewed as the cor-
rect biholomorphically invariant version of the phenomenon described in the
second paragraph: no analytic disc can osculate to better than first order
tangency to a strongly pseudoconvex boundary point. In fact the positive
definiteness of the Levi form provides the obstruction that makes this state-
ment true. Let us sketch a proof:

Suppose that P € 02 is a point of strong pseudoconvexity and that we
have fixed a defining function p whose complex Hessian is positive definite
near 02. We may further suppose, by the proof of Narasimhan’s lemma
(Section 6.4), that the only second order terms in the Taylor expansion of p
about P are the mixed terms occuring in the complex Hessian.

Let ¢ : D — C" be an analytic disc that is tangent to 02 at P and such
that ¢(0) = P, ¢’(0) # 0. The tangency means that

Re <Zl g—;(P)aS;(O)) = 0.

It follows that if we expand p o ¢({) in a Taylor expansion about ¢ = 0 then
the zero and first order terms vanish. As a result, for { small,

= 9 LT
po () = [ 595 (P00 I+ (P
But this last is
>C- ¢

for ¢ small. This gives an explicit lower bound, in terms of the eigenvalues
of the Levi form, for the order of contact of the image of ¢ with 0.
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10.5.2 The Role of the 0 Problem

Recall that we introduced the Cauchy-Riemann operator d and the inhomo-
geneous Cauchy-Riemann equations in Section 6.1. One of the most impor-
tant things that we do in complex function theory is to construct holomorphic
functions with specified properties. In one complex variable, there are many
fundamental tools for achieving this goal: Blaschke products, Weierstrass
products, integral formulas, series, canonical factorizations, function alge-
bra techniques, and many more. Several complex variables does not have
a number of these techniques—at least not in well-developed form. The
most powerful known method today for constructing holomorphic functions
in dimensions two and higher is the method of the inhomogeneous Cauchy-
Riemann equations.

It is an important and profound fact that, on a pseudoconvex domain,
any equation of the form du = f will always have a solution provided only
that f satisfy the basic compatibilty condition 0 f = 0. Furthermore, if f has
smooth coefficients (measured in a variety of different topologies) then u will

have correspondingly smooth coefficients. In particular, if f € C°°(2), then
we may find a u that is in C*°(£2). We cannot provide the details here, but
see [KRA4, Ch. 4]. We now provide a simple but rather profound example

of how the O-technique works.

EXAMPLE 10.5.1 Let Q C C" be pseudoconvex. Let w = QN{(zy,...,2,) :
zn, = 0}. Let f:w — C satisfy the property that the map

(21, oy 2n_1) — f(z1,- .+, 20-1,0)

is holomorphic on @ = {(z1,...,2,-1) € C" ! : (21,...,2,-1,0) € w}. Then
there is a holomorphic F' : Q@ — C such that F| = f. Indeed there is a linear
operator

Eu.0 : {holomorphic functions on w} — {holomorphic functions on Q}

such that (&, f)|, = f. The operator is continuous in the topology of normal
convergence.

We shall now prove this assertion, assuming the 0 solvability property
that we enunciated a moment ago.

Let w : C* — C™ be the Euclidean projection (z1, ..., 2,) — (21,.. ., 2n-1,0).

Let B={z€ Q:7mz ¢ w}. Then B and w are relatively closed disjoint sub-
sets of €. Hence there is a function ¥ : Q — [0,1], ¥ € C*(Q), such that



10.5. A CODA ON DOMAINS OF FINITE TYPE 335

U = 1 on a relative neighborhood of w and ¥ = 0 on B. [This last assertion is
intuitively non-obvious. It is a version of the C'*° Urysohn lemma, for which

see M. Hirsch [1]. It is also a good Exercise for the Reader: to construct ¥
by hand.] Set

F(z) =W(z) - f(m(2)) + 20 - v(2),

where v is an unknown function to be determined.

Notice that f(m(2)) is well-defined on supp ¥. We wish to select v €
C*(9) so that OF = 0. Then the function F' defined by the displayed equa-
tion will be the function that we seek.

Thus we require that

Ov(z) = : . (10.5.1.1)

Now the right side of this equation is C™ since OV = 0 on a neighborhood
of w. Also, by inspection, the right side is annihilated by the 0 operator
(remember that 7 = 0). There exists a v € C*°(Q2) that satisfies (10.5.1.1).
Therefore the extension F' exists and is holomorphic.

It is known that the solution operator for the @ problem is linear; hence
it follows that F' depends linearly on f. O

Now let us return to our discussion of contact geometry and relate them
to ideas coming from the 0 equation. It turns out that the number 2, which
we saw in discussions of order of contact in the last subsection, arises rather
naturally from geometric considerations of a strongly pseudoconvex point;
it has important analytic consequences. For instance, it is known [KRA12]
that the optimal A, regularity

wllan) < Ol fllLeo)

for solutions to the d equation du = f, f a bounded, d-closed (0,1) form,
occurs when o = 1/2. No such inequality holds for o > 1/2. We say that
the O problem exhibits “a gain of 1/2”—see [KRA13] for the details. Thus
the best index is the reciprocal of the integer describing the optimal order of
contact of varieties with the boundary of the domain in question.

It was J. J. Kohn [KOH] who first appreciated the logical foundations
of this geometric analysis. In [KOH], Kohn studied the regularity of the 9
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equation in a neighborhood of a point at which the maximal order of contact
(to be defined precisely below) of one dimensional complex curves is at most
m (this work is in dimension 2 only). He proved (in the Sobolev topology
rather than the Lipschitz topology) that the 0 problem near such a point
exhibits a gain of (1/m) — €, any € > 0. He conjectured that the correct gain
is 1/m. P. Greiner [GRE] gave examples which showed that Kohn’s conjecture
was sharp (see also [KRA12] for a different approach and examples in other
topologies). Folland and Stein [FOST1] showed that the statement is correct
without the e.

David Catlin ([CAT1]-[CAT3]) has shown that the 9-Neumann problem
on a pseudoconvex domain in C" exhibits a “gain” in regularity if and only
if the boundary admits only finite order of contact of (possibly singular) va-
rieties. This result was made possible by the work of D’Angelo, who laid the
algebro-geometric foundations for the theory of order of contact of complex
varieties with the boundary of a domain (see [DAN1]-[DANS5]).

Special to the theory of the @ problem is the so-called 9-Neumann prob-
lem. This has to do with the canonical solution of Ou = f. Let us say a few
words about this matter. First notice that the equation du = f never has a
unique solution. For if u is a solution to this equation on the domain €2 and
if h is any holomorphic function on €2 then u + h is a also a solution. Thus
the solution space of our partial differential equation is in fact a coset of the
space of holomorphic functions on €.

It is desirable to have an explicit and canonical method for selecting
a unique solution to du = f. One method is take any solution w and to
consider the auxiliary solution v = u — u, where u is the projection of u into
the space of holomorphic functions. No matter what solution (in a suitable
Hilbert space) we use to begin, the resulting solution v will be the unique
solution to Ou = f that is orthogonal to holomorphic functions. It is called
the canonical solution to the 0 problem.

Another approach to these matters is by way of the Hodge theory of 0.
One considers the operator 0 = 89 + 0 0. A special right inverse to O ,
called N, is constructed. It is called the 0-Neumann operator. Then the
canonical solution is given by v = d N f.

All these ideas are tied together in a nice way by an important formula
of J. J. Kohn:

P=1—-9NJ.

Here P is the Bergman projection. Thus we can relate the Bergman kernel
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and projection to the central and important -Neumann operator.

A big idea in this subject is Condition R, which was first developed by
S. R. Bell (|BEL]). We say that a domain  satisfies Condition R if the
Bergman projection P satisfies

P Co(@) — C(Q).

Bell has shown that if two pseudoconvex domains €2y, {25 satisfies Condition
R then any biholomorphic mapping ® : {2; — 2 will extend to be a diffeo-
morphism of the closures. Thus we see that the -Neumann problem and the
Bergman projection are intimately bound up with fundamental questions of
biholomorphic mappings.

The purpose of the present section is to acquaint the reader with the
circle of geometric ideas that was described in the preceding paragraphs and
to indicate the applications of these ideas to the theory of holomorphic map-

pings.

10.5.3 Return to Finite Type
EXAMPLE 10.5.2 Let m be a positive integer and define

Q= Qm = {(2’1,2’2) c C2 . p(Zl,Zg) =—-1+4+ |Zl|2 + |22|2m < 0}

Consider the boundary point P = (1,0). Let ¢ : D — C? be an analytic disc
that is tangent to 02 at P and such that ¢(0) = P, ¢'(0) # 0. We may in
fact assume, after a reparametrization, that ¢’(0) = (0, 1). Then

H(C) = (L +0¢ +0O(C?), ¢+ O(¢?)). (10.5.2.1)

What is the greatest order of contact (measured in the sense of equation
(10.5.2.1), with the exponent 2 replaced by some m) that such a disc ¢ can
have with 027

Obviously the disc ¢(¢) = (1, () has order of contact 2m at P = (1,0),
for

pod(¢) =I¢I"" = O(I(1.0) = (1,0)[").

The question is whether we can improve upon this estimate with a different
curve ¢. Since all curves ¢ under consideration must have the form (10.5.2.1),
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we calculate that

pod(C)=—-1+|1+ (9((’2)‘2 + ¢+ (9(02‘2’”
— 14 [ 0] + i+ o]

The second expression in [ | is essentiall |[¢|*™ so if we wish to improve on
the order of contact then the first term in [ ] must cancel it. But then the
first term would have to be |1+ ¢(™+ - - - |*™. The resulting term of order 2m
would be positive and in fact would not cancel the second. We conclude that
2m is the optimal order of contact for complex curves with 0Q2 at P. Let us
say that P is of “geometric type 2m.”

Now we examine the domain €2, from the analytic viewpoint. Consider
the vector fields

L_ %0 90
N 82’1 82’2 82’2 82’1
T )
= Z 97 mzyZy o

and

L. %0 90
0707, 0707
_ .9 o mim 9
= 2 7% mzy' 2y PEN

One can see from their very definition, or can compute directly, that both
these vector fields are tangent to 9€2. That is to say, Lp = 0 and Lp = 0. It
is elementary to verify that the commutator of two tangential vector fields
must still be tangential in the sense of real geometry. That is, [L, L] must
lie in the three dimensional real tangent space to Jf) at each point of 9.
However there is no a priori guarantee that this commutator must lie in the
complex tangent space. And in general it will not. Take for example the case
m = 1, when our domain is the ball. A calculation reveals that, at the point
P =(1,0),

L L= LI — LL = —i-0

oy

This vector is indeed tangent to the boundary of the ball at P (it annihilates
the defining function), but it is equal to the negative of the complex structure
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tensor J applied to the Euclidean normal 0/0xq; therefore it is what we call
complex normal. [There is an excellent opportunity here for confusion. It
is common in the literature to say that “the direction 9/Jy; is i times the
direction 0z1” when what is meant is that when the complex structure tensor
J is applied to 0/0x; then one obtains d/dy;. One must distinguish between
the linear operator J and the tensoring of space with C that enables one to
multiply by the scalar i. These matters are laid out in detail in [WEL].]

The reason that it takes only a commutator of order one to escape the
complex tangent and have a component in the complex normal direction is
that the ball is strongly pseudoconvex. One may see this using the invariant
definition of the Levi form and Cartan’s formula—see [KRA4, Ch. 5]. Calcu-
late for yourself that, on our domain €2,,, at the point P = (1,0), it requires
a commutator

L,[L,...[L,]...]]

of length 2m — 1 (that is, a total of 2m L’s and L’s) to have a component

in the complex normal direction. We say that P is of “analytic type 2m.”
Thus, in this simple example, a point of geometric type 2m is of analytic

type 2m. O

Prelude: Finite type is one of the big ideas of the modern theory of several
complex variables. Originally formulated as a means of determining whether
the 0 Neumman problem satisfies subelliptic estimates on a domain, the
finite type condition now plays a prominent role in mapping theory and
the boundary behavior of holomorphic functions. D’Angelo’s book [DANS5]
is a fine introduction to the idea. D’Angelo has also written a number of
important papers in the subject; some of these are listed in our Bibliography.

It is noteworthy that the philosophy of finite type makes sense in the
context of conver sets in RY. To our knowledge, this circle of ideas has never
been developed.

Next we shall develop in full generality both the geometric and the an-
alytic notions of “type” for domains in complex dimension 2. In this low
dimensional context, the whole idea of type is rather clean and simple (mis-
leadingly so). In retrospect we shall see that the reason for this is that the
varieties of maximal dimension that can be tangent to the boundary (that is,
one dimensional complex analytic varieties) have no interesting subvarieties
(the subvarieties are all zero dimensional). Put another way, any irreducible
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one-dimensional complex analytic variety V' has a holomorphic parametriza-
tion ¢ : D — V. Nothing of the kind is true for higher dimensional varieties.

10.5.4 Finite Type in Dimension Two

We begin with the formal definitions of geometric type and of analytic type
for a point in the boundary of a smoothly bounded domain Q C C2. The
main result of this subsection will be that the two notions are equivalent.
We will then describe, but not prove, some sharp regularity results for the
0 problem on a finite type domain. Good references for this material are
[KOH], [BLG], and [KRA12].

Definition 10.5.3 A first order commutator of vector fields is an expression
of the form
[L,M]=LM — ML.

Here the right hand side is understood according to its action on C'*° func-
tions:

[L, M](¢) = (LM — ML)(¢) = L(M(¢)) — M(L(¢)).

Inductively, an m™ order commutator is the commutator of an (m — 1)
order commutator and a vector field N. The commutator of two vector fields
is again a vector field.

Definition 10.5.4 A holomorphic vector field is any linear combination of
the expressions

0 0
0z 0z
with coefficients in the ring of C'"* functions.
A conjugate holomorphic vector field is any linear combination of the
expressions

0 0
0z 7 0%
with coefficients in the ring of C'"* functions.

Definition 10.5.5 Let M be a vector field defined on the boundary of €2 =
{z € C%: p(z) < 0}. We say that M is tangential if Mp = 0 at each point of
0.
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Now we define a gradation of vector fields which will be the basis for our
definition of analytic type. Throughout this section Q = {z € C?: p(z) < 0}
and p is C*. If P € 0N then we may make a change of coordinates so that
0p/0z3(P) # 0. Define the holomorphic vector field

dp 0 dp 0

L0 0
02107 02707
Both L and L are tangent to the boundary because Lp = 0 and Lp = 0.
They are both non-vanishing near P by our normalization of coordinates.
The real and imaginary parts of L (equivalently of L) generate (over the
ground field R) the complex tangent space to 0S) at all points near P. The
vector field L alone generates the space of all holomorphic tangent vector

fields and L alone generates the space of all conjugate holomorphic vector
fields.

Definition 10.5.6 Let £; denote the module, over the ring of C* functions,
generated by L and L. Inductively, £, denotes the module generated by £,
and all commutators of the form [F, G] where F' € Ly and G € L,,_4.

Clearly £; € £, C --- . Each £, is closed under conjugation. It is not
generally the case that U, L, is the entire three dimensional tangent space at
each point of the boundary. A counterexample is provided by

Q=1{z€C*: |+ 2e~ /Il < 1}

and the point P = (1,0). We invite the reader to supply details of this
assertion.

Definition 10.5.7 Let Q@ = {p < 0} be a smoothly bounded domain in
C? and let P € 09. We say that 0 is of finite analytic type m at P if
(0p(P),F(P)) = 0 for all FF € L,,—1 while (0p(P),G(P)) # 0 for some
G € L,,. In this circumstance we call P a point of type m.
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Remark: A point is of finite analytic type m if it requires the commu-
tation of m complex tangential vector fields to obtain a component in the
complex normal direction. Such a commutator lies in £,,. This notation is
different from that in our source [BLG], but is necessary for consistency with
D’Angelo’s ideas which will be presented below.

There is an important epistemological observation that needs to be made
at this time. Complex tangential vector fields do not, after being commuted
with each other finitely many times, suddenly “pop out” into the complex
normal direction. What is really being discussed in this definition is an order
of vanishing of coefficients.

For instance suppose that, at the point P, the complex normal direction
is the 29 direction. A vector field

0 0
F(2) = ()5 -+ b() 5,
such that b vanishes to some finite positive order at P and a(P) # 0 will
be tangential at P. But when we commute vector fields we differentiate their
coefficients. Thus if F' is commuted with the appropriate vector fields finitely
many times then b will be differentiated (lowering the order of vanishing by
one each time) until the coefficient of J/0z, vanishes to order 0. This means
that, after finitely many commutations, the coefficient of 0/0zs does not
vanish at P. In other words, after finitely many commutations, the resulting
vector field has a component in the normal direction at P. O

Notice that the condition (Jp(P), F(P)) # 0 is just an elegant way of
saying that the vector G(P) has non-zero component in the complex normal
direction. As we explained earlier, any point of the boundary of the unit ball
is of finite analytic type 2. Any point of the form (e, 0) in the boundary of
{(21,22) 1 |21|* + |22)*™ < 1} is of finite analytic type 2m. Any point of the
form (¢?,0) in the boundary of Q = {z € C2 : |z |2 4+ 2¢~V/1=2" < 1} is not of
finite analytic type. We say that such a point is of infinite analytic type.

Now we turn to a precise definition of finite geometric type. If P is
a point in the boundary of a smoothly bounded domain then we say that
an analytic disc ¢ : D — C? is a non-singular disc tangent to 0 at P if

¢(0) = P,¢/(0) # 0, and (p 0 ¢)'(0) = 0.

Definition 10.5.8 Let 2 = {p < 0} be a smoothly bounded domain and
P € 09. Let m be a non-negative integer. We say that 0f) is of finite
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geometric type m at P if the following condition holds: there is a non-singular
disc ¢ tangent to J€) at P such that, for small (,

[poe(Q)] < Cl¢|™

BUT there is no non-singular disc ¢ tangent to 92 at P such that, for small
¢,

lpod(C)] < C|¢|tm+D,

In this circumstance we call P a point of finite geometric type m.

We invite the reader to reformulate the definition of geometric finite type
in terms of the order of vanishing of p restricted to the image of ¢.
The principal result of this section is the following theorem:

Prelude: The next result was implicit in the important paper [KOH]. But
it was made explicit in [BLG]. The correspondence between the analytic and
geometric theories of finite type is less well developed in higher dimensions.

Theorem 10.5.9 Let Q = {p < 0} C C? be smoothly bounded and P € Of.
The point P is of finite geometric type m > 2 if and only if it is of finite
analytic type m.

Proof: We may assume that P = 0. Write p in the form
p(z) = 2Re 2o + f(z1) + O(|z122| + |22*).

We do this of course by examining the Taylor expansion of p and using the
theorem of E. Borel to manufacture f from the terms that depend on z; only.

Notice that of o 5
L = —— — — + (error terms).
82’1 82’2 82’1 ( )
Here the error terms arise from differentiating O(|2z122| + |22/%). Now it is a
simple matter to notice that the best order of contact of a one dimensional
non-singular complex variety with 9€) at 0 equals the order of contact of the
variety ¢ — (¢, 0) with 9 at 0 which is just the order of vanishing of f at 0.
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On the other hand,

_ 2f 0 2f 0
[L’ L] N |i_ 821821 8—2’2:| B |i_ 821821 8—2’2:|
+(error terms)
. o%f 0
L |i82’182’1 82’2:|

+(error terms).

Inductively, one sees that a commutator of m vector fields chosen from L, L
will consist of (real or imaginary parts of) m*® order of derivatives of f times
0/0zs plus the usual error terms. And the pairing of such a commutator with
Jdp at 0 is just the pairing of that commutator with dzo; in other words it
is just the coefficient of 0/0z5. We see that this number is non-vanishing as
soon as the corresponding derivative of f is non-vanishing. Thus the analytic
type of 0 is just the order of vanishing of f at 0.

Since both notions of type correspond to the order of vanishing of f, we
are done. O

From now on, when we say “finite type” (in dimension two), we can
mean either the geometric or the analytic definition.

We say that a domain Q C C? is of finite type if there is a number M
such that every boundary point is of finite type not exceeding M. In fact the
semi-continuity of type (see 10.5.9) implies this statement immediately.

Analysis on finite type domains in C? has recently become a matter
of great interest. It has been proved, in the works [CNS], [FEK1]-[FEK2],
[CHR1]-[CHR3], that the J- Neumann problem on a domain Q C C2 of fi-
nite type M exhibits a gain of order 1/M in the Lipschitz space topology.
In [KRA12] it was proved that this last result was sharp. Finally, the paper
[KRA12] also provided a way to prove the non-existence of certain biholo-
morphic equivalences by using sharp estimates for the d- problem.

10.5.5 Finite Type in Higher Dimensions

The most obvious generalization of the notion of geometric finite type from
dimension two to dimensions three and higher is to consider orders of contact
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of (n — 1) dimensional complex manifolds with the boundary of a domain
) at a point P. The definition of analytic finite type generalizes to higher
dimensions almost directly (one deals with tangent vector fields Ly, ..., L,_1
and Ly, ..., L, instead of just L and L). It is a theorem of [BLG] that,
with these definitions, geometric finite type and analytic finite type are the
same in all dimensions.

This is an elegant result, and is entirely suited to questions of extension of
CR functions and reflections of holomorphic mappings. However, it is not the
correct indicator of when the 0- Neumann problem exhibits a gain. In the late
1970’s and early 1980’s, John D’Angelo realized that a correct understanding
of finite type in all dimensions requires sophisticated ideas from algebraic
geometry—particularly the intersection theory of analytic varieties. And he
saw that non-singular varieties cannot tell the whole story. An important
sequence of papers, beginning with [DAN1], laid down the theory of domains
of finite type in all dimensions. The complete story of this work, together with
its broader mathematical context, appears in [DAN5]. David Catlin [CAT1]-
[CAT3] validated the significance of D’Angelo’s work by proving that the -
Neumann problem has a gain in the Sobolev topology near a point P € 0f2
if and only if the point P is of finite type in the sense of D’Angelo. [It is
interesting to note that there are partial differential operators that exhibit a
gain in the Sobolev topology but not in the Lipschitz topology—see [GUA].]

The point is that analytic structure in the boundary of a domain is an
obstruction to regularity for the @ problem. It is known (see [KRA4, Ch.
4]) that if the boundary contains an analytic disc then it is possible for the
equation Ju = f to have data f that is C* but no smooth solution u. What
we now learn is that the order of contact of analytic varieties stratifies this
insight into degrees, so that one may make precise statements about the
“gain” of the O problem in terms of the order of contact of varieties at the
boundary.

In higher dimensions, matters become technical rather quickly. There-
fore we shall content ourselves with a primarily descriptive treatment of this
material. One missing piece of the picture is the following: As of this writing,
there is no “analytic” description of finite type using commutators of vector
fields (but see recent progress by Lee and Fornzess [LEF]). We know that the
notion of finite type that we are about to describe is the right one for the
study of the 0- Neumann problem because (i) it enjoys certain important
semi-continuity properties (to be discussed below) that other notions of fi-
nite type do not, and (ii) Catlin’s theorem shows that the definition meshes
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perfectly with fundamental ideas like the - Neumann problem.

Let us begin by introducing some notation. Let U C C™ be an open
set. A subset V C U is called a variety if there are holomorphic functions
fi,..., fron Usuch that V ={z € U : fi(2) = --- = fr(z) = 0}. A variety
is called irreducible if it cannot be written as the union of proper non-trivial
subvarieties. One dimensional varieties are particularly easy to work with
because they can be parametrized:

Proposition 10.5.10 Let V' C C" be an irreducible one dimensional com-
plex analytic variety. Let P € V. There is a neighborhood W of P and a
holomorphic mapping ¢ : D — C" such that ¢(0) = P and the image of ¢ is
W NV. When this parametrization is in place then we refer to the variety as
a holomorphic curve.

In general, we cannot hope that the parametrization ¢ will satisfy (nor
can it be arranged that) ¢’(0) # 0. As a simple example, consider the variety

V={2eC?: 27—z =0}.

Then the most natural parametrization for V' is ¢(¢) = (¢3,(?). Notice that
¢'(0) = 0 and there is no way to reparametrize the curve to make the deriva-
tive non-vanishing. This is because the variety has a singularity—a cusp—at
the point P = 0.

Definition 10.5.11 Let f be a scalar-valued holomorphic function of a com-
plex variable and P a point of its domain. The multiplicity of f at P is defined
to be the least positive integer k such that the k" derivative of f does not
vanish at P. If m is that multiplicity then we write vp(f) = v(f) = m.

If ¢ is instead a vector-valued holomorphic function of a complex variable
then its multiplicity at P is defined to be the minimum of the multiplicities
of its entries. If that minimum is m then we write vp(¢) = v(¢) = m.

In this subsection we will exclusively calculate the multiplicities of holo-
morphic curves ¢(¢) at ¢ = 0.

For example, the function ¢ — ¢? has multiplicity 2 at 0; the function
¢ — (3 has multiplicity 3 at 0. Therefore the curve ¢ — ((?,¢?) has multi-
plicity 2 at 0.

If p is the defining function for a domain €2 then of course the boundary
of 2 is given by the equation p = 0. D’Angelo’s idea is to consider the pullback
of the function p under a curve ¢ :
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Definition 10.5.12 Let ¢ : D — C" be a holomorphic curve and p the defin-
ing function for a hypersurface M (usually, but not necessarily the boundary
of a domain). Then the pullback of p under ¢ is the function ¢*p(¢) = pod(().

Definition 10.5.13 Let M be a real hypersurface and P € M. Let p be a
defining function for M in a neighborhoof of P. We say that P is a point of
finite type (or finite 1-type) if there is a constant C' > 0 such that

v(¢*p)
v ()

whenever ¢ is a non-constant one-dimensional holomorphic curve through P
such that ¢(0) = P.

The infimum of all such constants C' is called the type (or 1-type) of P.
It is denoted by A(M, P) = A{(M, P).

<C

This definition is algebro-geometric in nature. We now offer a more
geometric condition that is equivalent to it.

Proposition 10.5.14 Let P be a point of the hypersurface M. Let Ep be
the collection of one-dimensional complex varieties passing through P. Then
we have

dist(z, M
A(M, P) = sup sup {a €RT: lim w exists} .
VeEp a>0 V3z—P |Z — P|a

Notice that the statement is attractive in that it gives a characterization of
finite type that makes no reference to a defining function. The proposition,
together with the material in the first part of this section, motivates the
following definition:

Definition 10.5.15 Let P be a point of the hypersurface M. Let Rp be the
collection of non-singular one-dimensional complex varieties passing through
P (that is, we consider curves ¢ : D — C", ¢(0) = P, ¢/(0) # 0). Then we
define

A™E(M, P) = AT5(M, P)

dist(z, M )
= sup sup {a ER": lim dist(z, M) ex1sts} .
VERp a>0 V32—P |z — P|*
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The number AJ*®(M, P) measures order of contact of non-singular com-
plex curves (i.e. one dimensional complex analytic manifolds) with M at P.
By contrast, A;(M, P) looks at all curves, both singular and non-singular.
Obviously A*®(M,P) < Ai(M,P). The following example of D’Angelo
shows that the two concepts are truly different:

EXAMPLE 10.5.16 Consider the hypersurface in C* with defining func-
tion given by
p(z) = 2Re z3 + |21 — 25|

Let the point P be the origin. Then we have

e We may calculate that A7*(M, P) = 6. We determine this by noticing
that the z3 direction is the normal direction to M at P hence any
tangent curve must have the form

¢ = (a(€), b(¢), O(¢)).

Since we are calculating the “regular type,” one of the quantities a’(0), &'(0),
must be non-zero. We see that if we let a(¢) = ( + ... then the ex-
pression |z} — 23| in the definition of p provides the obstruction to the
order of contact: the curve cannot have order of contact better than

4. Similar considerations show that if b(() = ¢ + ... then the order

of contact cannot be better than 6. Putting these ideas together, we
see that a regular curve that exhibits maximum order of contact at

P =0is ¢(¢) = (0,¢,0). Its order of contact with M at P is 6. Thus
A®(M, P) = 6.

e We may see that A;(M, P) = oo by considering the (singular) curve
#(¢) = (¢3,¢2,0). This curve actually lies in M. O

To repeat: An appealing feature of the notion of analytic finite type that
we learned about above is that it is upper semi-continous: if, at a point P,
the expression (0p, F') is non-vanishing for some F' € L,,, then it will cer-
tainly be non-vanishing at nearby points. Therefore if P is a point of type
m it follows that sufficiently nearby points will be of type at most m. It
is considered reasonable that a viable notion of finite type should be upper
semi-continuous. Unfortunately, this is not the case as the following example
of D’Angelo shows:
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EXAMPLE 10.5.17 Consider the hypersurface in C? defined by the func-
tion
p(z1, 22, 23) = Re (23) + |27 — z023]" + [ 20]".

Take P = 0. Then we may argue as in the last example to see that A, (M, P) =
A®(M, P) = 4. The curve ¢ — (¢, (,0) gives best possible order of contact.
But for a point of the form P = (0,0,ia), a a positive real number,
let a be a square root of ia. Then the curve ¢ — (a(,(?, ia) shows that
A (M, P) = AT™®(M, P) is at least 8 (in fact it equals 8—Exercise).
Thus we see that the number Ap is not an upper semi-continuous func-
tion of the point P. O

[DAN1] proves that the invariant A; can be compared with another
invariant that comes from intersection-theoretic considerations; that is, he
compares A; with the dimension of the quotient of the ring O of germs of
holomorphic functions by an ideal generated by the components of a special
decomposition of the defining function. This latter is semi-continuous. The
result gives essentially sharp bounds on how A; can change as the point P
varies within M.

We give now a brief description of the algebraic invariant that is used in
[DAN1]. Take P € M to be the origin. Let p be a defining function for M
near 0. The first step is to prove that one can write the defining function in

the form
p(z) = 2Reh(z) + > _[f;(2)* =D _lgl.
J J

where h, f;, g; are holomorphic functions. In case p is a polynomial then each
sum can be taken to be finite—say 7 = 1,...k. Let us restrict attention to
that case. [See [DAN5] for a thorough treatment of this decomposition and
[KRAS] for auxiliary discussion.] Write f = (f1,..., fx) and g = (g1, ..., gk)-
Let U be a unitary matrix of dimension k. Define Z(U, P) to be the ideal
generated by h and f — Ug. We set D(Z(U, P)) equal to the dimension of
O/I(U, P). Finally declare By(M, P) = 2sup D(Z(U, P)), where the supre-
mum is taken over all possible unitary matrices of order k. Then we have

Prelude: The next two results are central to D’ Angelo’s theory of points of
finite type. It is critical that we know that if P € 02 is of finite type then
nearby boundary points are also of finite type. And we should be able to at
least estimate their type. One upshot of these considerations is that if every
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boundary point of €2 is finite type then there is a global upper bound on the
type.

Theorem 10.5.18 With M, p, P as usual we have
Ai(M, P) < Bi(M, P) < 2(Ay(M, P))" .

Theorem 10.5.19 The quantity By(M, P) is upper semi-continuous as a
function of P.

We learn from the two theorems that A; is locally finite in the sense
that if it is finite at P then it is finite at nearby points. We also learn by
how much it can change. Namely, for points () near P we have

AV(M, Q) < 2(A (M, PY)™,

In case the hypersurface M is pseudoconvex near P then the estimate can be
sharpened. Assume that the Levi form is positive semi-definite near P and
has rank ¢ at P. Then we have

(A(M, Pt

2n—2—q

Al(M>Q) <

We conclude this section with an informal statement of the theorem of
[CAT3]:

Theorem 10.5.20 Let Q C C" be a bounded pseudoconvexr domain with
smooth boundary. Let P € 0S). Then the problem Ou = f, with f a O- closed
(0,1) form, enjoys a gain in regularity in the Sobolev topology if and only if
P is a point of finite type in the sense that A(M, P) is finite.

It is not known how to determine the sharp “gain” in regularity of the
0- Neumann problem at a point of finite type in dimensions n > 3. There is
considerable evidence (see [DAN5]) that our traditional notion of “gain” as
described here will have to be refined in order to formulate a result.

It turns out that to study finite type, and concomitantly gains in Sobolev
regularity for the problem Ou = f when f is a 0- closed (0, q) form, requires
the study of order of contact of g- dimensional varieties with the boundary of
the domain. One develops an invariant A, (M, P). The details of this theory
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have the same flavor as what has been presented here, but are considerably
more complicated.

The next result summarizes many of the key ideas about finite type that
have been developed in the past thirty years. Catlin, D’Angelo, and Kohn
have been key players in this development.

Theorem 10.5.21 Let 21,8 be domains of finite type in C*. If ® : Q) —
Q0 is a biholomorphic mapping then @ extends to a C* diffeomorphism of
Oy onto .

Heartening progress has been made in studying the singularities and
mapping properties of the Bergman and Szegd kernels on domains of finite
type in both dimension 2 and in higher dimensions. We mention particularly
INRSW], [CHR1]-[CHR3], and [MCN1]-[MCNZ2].

There is still a great deal of work to be done before we have reached a
good working understanding of points of finite type.
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APPENDIX 1: Rudiments of Fourier Series

This Appendix provides basic background in the concepts of Fourier
series. Some readers will be familiar with these ideas, and they can easily
skip this material (or refer to it as needed). For ease of reading, proofs are
placed at the end of the Appendix.

This exposition follows familiar lines, and the reader may find similar
expositions in [ZYG], [KRA5], [KAT].

A1.1. Fourier Series: Fundamental Ideas

In the present chapter we study the circle group, which is formally defined as
T = R/2xZ. When we think of a function f on T, we transfer it naturally to
a function on [0, 27). Then it is also useful to identify it with its 27-periodic
extension to the real line. Then, when we integrate f, we are free to integrate
it from any real number b to b + 27; the value will be independent of the
choice of b.

It is also sometimes useful to identify elements of the circle group with
the unit circle S in the complex plane. We do so with the mapping

[0,27) > 2 — € € S. (A1.1.1)

The circle group acts on itself naturally as a group. That is to say, if g is a
fixed element of the circle group then it induces the map

T,:10,27) 3 x — x4+ g € [0, 27),

where again we are performing addition modulo 27. We concentrate on
consider functions which transform naturally under this group action.

Of course if we were to require that a function f on the circle group
literally commute with translation, then f would be constant. It turns out
to be more natural to require that there exist a function ¢, with |¢(z)| =1
for all x, such that

fly+x)=o(x)- fy). (A1.1.2)

Thus the size of f is preserved under the group action. Taking y = 0 in
(A1.1.2) yields



Al.1. FUNDAMENTAL IDEAS 353

so we see right away that f is completely determined by its value at 0 and
by the factor function ¢. In addition, we compute that

Pz +y)- f(0) = flz+y)=o(x) f(0+y)=o(x)- o(y)- f(0).

Thus, as long as f is not the identically zero function, we see that

o(x +y) = () - d(y). (A1.1.3)

Our conclusion is this: any function ¢ which satisfies the transformation
law (A1.1.2) for some function f must have property (A1.1.3). If, in addition,
|¢| = 1, then (A1.1.3) says that ¢ must be a group homomorphism from the
circle group into the unit circle S in the complex plane. [The calculations
that we have just performed are taken from [FOL4].]

When studying the Fourier analysis of a locally compact abelian group
G, one begins by classifying all the continuous homomorphisms ¢ : G — C*,
where C* is the group C \ {0} under multiplication. These mappings are
called the group characters; the characters themselves form a group, and
they are the building blocks of commutative Fourier analysis. The functions
¢ that we discovered in line (A1.1.3) are the characters of T.

If our group G is compact, then it is easy to see that any character
¢ must have image lying in the unit circle. For the image of ¢ must be
compact. If A = ¢(g) is in the image of ¢ and has modulus greater than
1, then \* = ¢(g*) will tend to co as N > k — +4oo. That contradicts
the compactness of the image. A similar contradiction results if |A| < 1. It
follows that the image of ¢ must lie in the unit circle.

It is a sophisticated exercise (see [KRADB]) to show that the characters of
the circle group are the functions

or(r) =e

for k € Z. All of Fourier analysis (on the circle group) is premised on the
study of these special functions. They span L? in a natural sense, and serve
as a Hilbert space basis. [Note that these statements are a special case of
the Peter-Weyl theorem, for which see [FOL4] or [BAC].]

Now suppose that f is a function of the form

N ..
f(t) = Z a;jet.
j=—N
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We call such a function a trigonometric polynomial. Trigonometric polyno-
mials are dense in LP(T), 1 < p < oo (think about the Stone-Weierstrass
theorem—see [RUD1]). In that sense they are “typical” functions. Notice
that, if =N < k < N then

1 [ N AR
— ft)e ™ dt = a»—/ e dt = ay,.
2%/0 j:Z_N Tom Jo

This calculation shows that we may recover the k" Fourier coefficient of f
by integrating f against the conjugate of the corresponding character. Note
further that, if |k| > N, then the preceding integral is equal to 0. These
consideration leads us to the following definition:

Definition A1.1.4 Let f be an integrable function on T. For 5 € Z, we
define

~

27
f()=a; = %/0 f(t)e "t dt . (A1.1.4.1)

We call f(j) = a; the j™ Fourier coefficient of f.

In the subject of Fourier series, it is convenient to build a factor of 1/2x
into our integrals. We have just seen this feature in the definition of the
Fourier coefficients. But we will also let

1

27 1/p
||f||Lp(T) = {%/ |f(e”)|p dt] , 1<p<o. (A1.1.4.2)
0

The custom of building the factor of 2r or 1/(27) into various expressions
simplifies certain key formulas. It is a welcome convenience, though not one
that is universally exploited.

The fundamental issue of Fourier analysis is this: For a given function
f, we introduce the formal expression

Sf~ 3 Fli)e. (A1.1.5)

j=—o00

Does this series converge to f? In what sense? Is the convergence pointwise,
in the L? topology, or in some other sense? Is it appropriate to use some
summation method to recover f from this series?
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We call the expression (A1.1.5) formal, because we do not know whether
the series converges; if it does converge, we do not know whether it converges
to the function f.3

It will turn out that Fourier series are much more cooperative, and yield
many more convergence results, than Taylor series and other types of series
in analysis. For very broad classes of functions, the Fourier series is at least
summable (a concept to be defined later) to f.

A1.2. Basics

The subject of basic Fourier analysis is so well-trodden that we are loth to
simply reproduce what has been covered in detail elsewhere (see, for instance,
[ZYG], [KAT], [KRA5]). Thus we will adopt the following expeditious for-
mat. In each section we shall state results from Fourier analysis; we shall
sometimes also provide brief discussion. The proofs will be put at the end of
the Appendix. Some readers may find it an instructive challenge to endeavor
to produce their own proofs.

We begin this section with three basic results about the size of Fourier
coefficients.

Proposition A1.2.1 Let f an integrable function on T. Then, for each
integer 7j,

) < 57 [ 1)

In other words,

~

G < Nl

Proposition A1.2.2 (Riemann-Lebesgue) Let f be an integrable func-
tion on T. Then

~

lim |f(j)] = 0.

j—Eoo

3Recall here the theory of Taylor series from calculus: the Taylor series for a typical
C° function g generally does not converge, and when it does converge it does not typically
converge to the function g.
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Proposition A1.2.3 Let f be a k-times continuously differentiable 27-
periodic function. Then the Fourier coefficients of f satisfy

7)) < Cr- (L+ 137

This last result has a sort of converse: if the Fourier coefficients of a
function decay rapidly, then the function is smooth. Indeed, the more rapid
the decay of the Fourier coefficients, the smoother the function. This circle
of ideas continues to be an active area of research, and currently is being
studied in the context of wavelet theory.

We next define the notion of a partial sum.

Definition A1.2.4 Let f be an integrable function on T and let the formal
Fourier series of f be as in (A1.1.5). We define the N partial sum of f to

be the expression
N

Snfla)= 3 Flie

—N

We say that the Fourier series converges to f at the point x if
Snf(x) — f(x) as N — oo

in the sense of convergence of ordinary sequences of complex numbers.

We mention now—just for cultural purposes, that the theory of Fourier
series would work just as well if we were to define

Ny
Svfle) =Y [fi)e”

J=—¢(N)

for functions ¢(N), ¥ (N) that tend strictly monotonically to +oco. This
assertion follows from the theory of the Hilbert transform, and its connection
to summability of Fourier series, to be explicated below. We leave the details
as an open-ended Exercise for the Reader:.
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It is most expedient to begin our study of summation of Fourier series
by finding an integral formula for Sy f. Thus we write

Sfle) = e

1 2 N B
= o [Z e”@—t)] f(t)dt. (A1.2.5)
0 )

We need to calculate the sum in brackets; for that will be a universal object
associated to the summation process Sy, and unrelated to the particular
function f that we are considering.

Now

N 2N
Z oIS — 6—iNs Zeijs
j=—N =0
2N )
= eV e (A1.2.6)
7=0

The sum on the right is a geometric sum, and we may instantly write a
formula for it (as long as s # 0 mod 27):
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Substituting this expression into (A1.2.6) yields

N i(2N+1)s
2 : piis  —  o—iNs & —1
ot ets — 1
j=—
oi(N+1)s _ ,—iNs
B ets — 1
6i(N—l—l)s — e iNs 6—is/2
- cis _ 1 " o—is/2

Gi(N+1/2)s _ o—i(N+1/2)s
eis/2 _ e—is/2
sin(N + 3)s

|
Sin 28

We see that we have derived a closed formula (no summation signs) for
the relevant sum. In other words, using (A1.2.5), we now know that

S f(x) = 1 /WSiH[N—I-g} (z—1t)

. T
Sin 3

The expression
sin [N + %] s

Du(s) = sin £
2

is called the Dirichlet kernel. It is the fundamental object in any study of
the summation of Fourier series. In summary, our formula is

SNf / DNZL’—t ()dt

or (after a change of variable—where we exploit the fact that our functions
are periodic to retain the same limits of integration)

SNf 27‘(‘/ DN l’—t) dt.
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For now, we notice that

1 27 1 or N
— Dy(t)dt = — Gt dt
2%/0 n(?) 2%/0 j:Z_Ne

N 2
1 .
= E o / et dt
j=n T Jo

1 2m )
= — e dt
2 Jo

=1. (A1.2.7)

We begin our treatment of summation of Fourier series with Dirichlet’s
theorem (1828):

Theorem A1.2.8 Let f be an integrable function on T and suppose that f
is differentiable at x. Then Sy f(z) — f(x).

This result, even though not as well known as it should be, is founda-
tional. It tells us that most reasonable functions—certainly all “calculus-
style” functions—have convergent Fourier series. That is certainly useful
information.

A1.3. Summability Methods

For many practical applications, the result presented in Theorem A1.2.8 is
sufficient. Many “calculus-style” functions that we encounter in practice are
differentiable except at perhaps finitely many points (we call these piecewise
differentiable functions). The theorem guarantees that the Fourier series of
such a function will converge back to the original function except perhaps at
those finitely many singular points. A standard—and very useful—theorem
of Fejér provides the further information that, if f is continuous except at
finitely many jump discontinuities, then the Fourier series of f is “summable”
to 3[f(z+) + f(z—)] at every point z. Thus, in particular, Fefér summation
works at point of non-differentiability of a continuous function, and also at
discontinuities of the first kind (see [RUD1] for this terminology). Another
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refinement is this: the conclusion of Theorem A1.2.5 holds if only the function
f satisfies a suitable Lipschitz condition at the point x.

However, for other purposes, one wishes to treat an entire Banach space
of functions—for instance L? or LP. Pointwise convergence for the Fourier se-
ries of a function in one of these spaces is the famous Carleson-Hunt theorem
[CAR], [HUN], one of the deepest results in all of modern analysis. We cer-
tainly cannot treat it here. Recent advances [LAT] provide more accessible
treatments of these ideas.

“Summability”—the idea of averaging the partial sums in a plausible
manner—is much easier, and in practice is just as useful. Zygmund himself—
the great avatar of twentieth century Fourier analysis—said in the introduc-
tion to the new edition of his definitive monograph [ZYG]| that we had ill-
spent our time worrying about convergence of Fourier series. Summability
was clearly the way to go. We can indeed explain the basic ideas of summa-
bility in this brief treatment.

In order to obtain a unified approach to various summability methods, we
shall introduce some ancillary machinery. This will involve some calculation,
and some functional analysis. Our approach is inspired by [KAT]. We begin
with two concrete examples of summability methods, and explain what they
are.

As we noted previously, one establishes ordinary convergence of a Fourier
series by examining the sequence of partial-summation operators {Sy}. Fig-
ure Al.1 exhibits the “profile” of the operator Sy. In technical language,
this figure exhibits the Fourier multiplier associated to the operator Sy.
More generally, let f be an integrable function and >.>  f(j)e”* its (for-
mal) Fourier series. If A = {\;}22_ is a sequence of complex numbers, then
A acts as a Fourier multiplier according to the rule

Ma: fr— > N f(G)e .
J

In this language, the multiplier

yood Lt 7] < N;
TTY0 i [j] >N

corresponds to the partial-summation operator Sy. The picture of the mul-
tiplier, shown in Figure A1.1, enables us to see that the multiplier exhibits a
precipitous “drop” at £/N: the multiplier has a sudden change of value from
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Figure 1: “Profile” of the N*® partial summation multiplier.

1 to 0. According to the philosophy of the Marcinkiewicz multiplier theorem
(see [STEL]), this causes difficulties for summability of Fourier series.

The spirit of summability methods, as we now understand them, is to
average the partial-summation operators in such a way as to mollify the sharp
drop of the multiplier corresponding to the operators Sy. Fejér’s method for
achieving this effect—mnow known as a special case of the Cesaro summation
method—is as follows. For f an integrable function, we define

onf(@ N+1ZSf

Notice that we are simply averaging the first N + 1 partial-summation op-
erators for f. Just as we calculated a closed formula for Sy f, let us now
calculate a closed formula for oy f.
If we let K denote the kernel of oy, then we find that
T
K = — D.
7=0
_ 1 ism[ﬁ%h
N +414 sin £
j=0 2

1 i cosjx —cos(j + 1)z

2
N—l—ljz0 2s1n§
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Figure 2: “Profile” of the N*® Fejér multiplier.

(since sinasinb = $[cos(a — b) — cos(a + b)]). Of course the sum collapses
and we find that

1 1—cos(N+1)x

N+1 2sin2§

11— [cos?(PFNT) — gin?((VEL2))

N+1 2sin?
1 2 sinz(—(N;’l)m)

N+1 2sin2§

2
1 sin(AE0T)
- N+1 sin £ ’

2

KN(I’) =

Notice that the Fourier multiplier associated to Fejér’s summation method

is

Aj:{ S i i <N

0 if |j] > N.
We can see that this multiplier effects the transition from 1 to 0 gradually,
over the range |j| < N. Contrast this with the multiplier associated to
ordinary partial summation—again view Figure Al.1 and also Figure A1.2.
On the surface, it may not be apparent why Ky is a more useful and
accessible kernel than Dy, but we shall attend to those details shortly. Before
we do so, let us look at another summability method for Fourier series. This
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method is due to Poisson, and is now understood to be a special instance of
the summability method of Abel.
For f an integrable function and 0 < r < 1 we set

e e}

Pof(x) = > rilf(j)ere.

j=—00

Notice now that the Fourier multiplier is A = {rll}. Again the Fourier
multiplier exhibits a smooth transition from 1 to 0—but now over the entire
range of positive (or negative) integers—in contrast with the multiplier for
the partial-summation operator Sy.

Let us calculate the kernel associated to the Poisson summation method.
It will be given by

P.(t) = Z rlileist
j=—00
= [re)? + Z[Te_it]j -1
=0 =0

1, )
 1—ret 1 —reit

2 —2rcost
11— reit]2
2

1—r
1—2rcost +r2

We see that we have re-discovered the familiar Poisson kernel of complex
function theory and harmonic analysis. Observe that, for fixed r (or, more
generally, for 7 in a compact subinterval of [0, 1)), the series converges uni-
formly to the Poisson kernel.

Now let us summarize what we have learned, or are about to learn. Let
f be an integrable function on the group T.

A1l. Ordinary partial summation of the Fourier series for f, which
is the operation

N
Snf(x) =Y F@)e,
j=—N
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is given by the integral formulas

Sw f(z /f \Du(z — ) dt 1/ o — )Dy(t) dt.

2

where
sin [N+ 1]¢
Dy (t) — [—12}
sin 5t
B. Fejér summation of the Fourier series for f, a special case of
Cesaro summation, is given by

1

onf(x) = N+l

-

Sif ().

Jj=0

It is also given by the integral formulas

o flz 27T/ FOKn(z —1) t:%/ff(:c—t)KN(t)dt

(N1 2
Kn(t) = 1 sin —' 2t t ‘
N+1 sin ¢

C. Poisson summation of the Fourier series for f, a special case
of Abel summation, is given by

1 ™

where

where

1—12
P (t) = , 0<r<l.
1 —2rcost +r?

Figures A1.2, A1.3, and A1.4 shows the graphs of The Dirichlet, Fejer,
and Poisson kernels.

In the next section we shall isolate properties of the summability kernels
P, and Ky that make their study direct and efficient.
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Figure 3: Graph of the Dirichlet kernel for N = 10.
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Figure 4: Graph of the Fejer kernel for N = 10.
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3 2 1 2 3
Figure 5: Graph of the Poisson kernel for r = 1/2.

A1l.4. Ideas from Elementary Functional Anal-
ysis

In this section we formulate and prove two principles of functional analysis
that will serve us well in the sequel—particularly in our studies of summa-

bility of Fourier series. In fact they will come up repeatedly throughout the
book, in many different contexts.

Theorem A1l.4.1 (Functional Analysis Principle I (FAPI)) Let X be
a Banach space and S a dense subset. Let T; : X — X be linear operators.
Suppose that

(A1.4.1.1) For each s € S, lim;_., T}s exists in the Banach space norm;
(A1.4.1.2) There is a finite constant C' > 0, independent of x, such that

[Tyl x < C - ]

for all x € X and all indices j.
Then lim;_, Tjx exists for every x € X.

For the second Functional Analysis Principle, we need a new notion. If
T; : LP — LP are linear operators on L? (of some Euclidean space RY), then
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we let
T*f(z) = sup |Tjf(z)| for any z € RY.
J

We call T the mazimal function associated to the T}.

Theorem A1.4.2 (Functional Analysis Principle II  (FAPII)) Let
1 < p < oo and suppose that T; : LP — LP are linear operators (these could
be L? on the circle, or the line, or R, or some other Euclidean setting). Let
S C L? be a dense subset. Assume that

(A1.4.1.1) For each s € S, limj_., T;s(z) exists in C for almost every x;

(A1.4.1.2) There is a universal constant 0 < C' < oo such that, for each
a >0,

C
miz : T"f(z) > a} < I fllz.

[Here m denotes Lebesgue measure.|

Then, for each f € LP,

j—o0

exists for almost every x.

The inequality hypothesized in Condition (A1.4.1.2) is called a weak-
type (p,p) inequality for the maximal operator 7. Weak-type inequalities
have been fundamental tools in harmonic analysis ever since M. Riesz’s proof
of the boundedness of the Hilbert transform (see Section 2.1 and the treat-
ment of singular integrals in Chapter 3). A classical L? estimate of the form

ITfllee < C- || flze

is sometimes called a strong-type estimate.

We shall use FAPI (Functional Analysis Principle I) primarily as a tool to
prove norm convergence of Fourier series and other Fourier-analytic entities.
We shall use FAPII (Functional Analysis Principle II) primarily as a tool to
prove pointwise convergence of Fourier series and other Fourier entities.
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A1.5. Summability Kernels

It is an interesting diversion to calculate

1 ™
— Dy(t)|dt = ||D .
5= | IPv®ldt = Dyl

As an exercise, endeavor to do so by either (i) using Mathematica or Maple

or (ii) breaking up the interval [0, 7] into subintervals on which sin[N + $]¢

is essentially constant. By either method, you will see that the value of the

integral is approximately equal to the partial sum for the harmonic series.
You will find in particular that

|Dn||z =~ ¢-log N

(here the notation ‘~’ means “is of the size”). This non-uniform integrability
of the Dirichlet kernel is, for the moment, a roadblock to our understanding
of the partial-summation process. The theory of singular integral operators
will give us a method for handling integral kernels like Dy. We shall say
more about these in Chapter 5.

Meanwhile, let us isolate the properties of summability kernels that dis-
tinguish them from Dy and make them most useful. Give the kernels the
generic name {ky}nez+. We will consider asymptotic properties of these
kernels as N — +o0o. [Note that, in most of the examples we shall present,
the indexing space for the summability kernels will be Z*, the non-negative
integers—just as we have stated. But in some examples, such as the Pois-
son kernel, it will be more convenient to let the parameter be r € [0,1).
In this last case we shall consider asymptotic properties of the kernels as
r — 17. We urge the reader to be flexible about this notation.] There are
three properties that are desirable for a family of summability kernels:

(A1.5.1) 5= [" ky(z)de =1  VN;
(A1.5.2) 5= [T |kn(z)]de <C VN, some finite C' > 0;
(A1.5.3) If 6 > 0, then limy_.o kn(x) = 0, uniformly for 7 > |z| > 0.

Let us call any family of summability kernels standard if it possesses these
three properties. [See [KAT] for the genesis of some of these ideas.|

It is worth noting that condition (A1.5.1) plus positivity of the kernel
automatically give condition (A1.5.2). Positive kernels will prove to be
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“friendly” in other respects as well. Both the Fejér and the Poisson kernels
are positive.

Now we will check that the family of Fejér kernels and the family of
Poisson kernels both possess these three properties.

A1.5.1. The Fejér kernels

Notice that, since Ky > 0,

1 s
%/ Kx()|dt = — [ Ky(t)dt

This takes care of (A1.5.1) and (A1.5.2). For (A1.5.3), notice that
|sin(¢/2)| > |sin(6/2)| > 0 when 7 > |t| > 6 > 0. Thus, for such ¢,

1 1
N+1 |sin(6/2)]

[Kn(t)] <

— 0,

uniformly in ¢ as N — oco. Thus the Fejér kernels form a standard family of
summability kernels.
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A1.5.2. The Poisson kernels

First we observe that, since P, > 0,

I I
— [ |P@)dt = — | P)dt
= [ el = o [ e
1 [
- > %/_Wmemdt
j=—00
1 ™

= — [ P%ar=1.
o _Wre

This takes care of (A1.5.1) and (A1.5.2). For (A1.5.3), notice that

|1 — 2rcost + r?| (r —cost)® + (1 — cos®t)

> 1—cos’t
= sin®t
()
> —t
T
4 o
> ;5

if 7/2 > |t| > 0 > 0. [The estimate for 7 > |t| > 7/2 is even easier.| Thus,
for such t,

as r — 17. Thus the Poisson kernels form a standard family of summability
kernels.

Now let us enunciate a rather general theorem about convergence-inducing
properties of families of summability kernels:

Theorem A1.5.4 Suppose that {ky} is a standard family of summability
kernels. If f is any continuous function on T, then

lim 5 [ o~ Ohw(t)dt = f(o),

N—oo 27

with the limit existing uniformly for x € T.



Al.5. SUMMABILITY KERNELS 371

We see that, if we use a summability method such as Cesaro’s or Abel’s
to assimilate the Fourier data of a function f, then we may recover any con-
tinuous function f as the uniform limit of the trigonometric “sums” coming
from the Fourier coefficients of f. Contrast this last theorem—especially its
proof—with the situation for the ordinary partial sums of the Fourier series.
Note that it is Property (A1.5.2) that fails for the kernels Dy—see the
beginning of this section—and, in fact, makes the theorem false for partial
summation. [Property (A1.5.3) fails as well, but it is (A1.5.2) that will be
the focus of our attention.]

For each N, let ¢n(t) be the function that equals +1 when Dy (t) > 0
and equals —1 when Dy(t) < 0. Of course ¢y is discontinuous. But now let
¥y (t) be a continuous function, bounded in absolute value by 1, which agrees
with ¢ except in a very small interval about each point where ¢ changes
sign. Integrate Dy against ¢¥y. The calculation alluded to at the start of
the section then shows that the value of the integral is about ¢ - log IV, even
though ¥y has supremum norm 1. The uniform boundedness principle now
tells us that convergence for partial summation in norm fails dramatically
for continuous functions on the circle group.

The next lemma, due to I. Schur, is key to a number of our elementary
norm convergence results:

Lemma A1.5.5 (Schur’s Lemma) Let X and Y be measure spaces equipped
with the measures p and v, respectively. Let K(x,y) be a measurable kernel
on X xY . Assume that there is a finite constant M > 0 such that, for almost
every x,

/ K@) drly) < M

and, for almost every vy,
| Kl duta) <
zeX
Then the operator
T:f+— / K(z,y)f(y)dv(y)
yey

is bounded from LP to I?, 1 < p < oo. Moreover the operator norm does
not exceed M.
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Lemma A1.5.5 gives us a straightforward device for applying Functional
Analysis Principle I (FAPI). If our operators are given by integration against
kernels—T f(x) = [ k;(z,y)f(y) dy—then, in order to confirm property (A1.4.2),
it suffices for us to check that [ ¢ |k;(z,y)|dz < C and [ p|k;(z,y)|dy <
C.

Now we turn to the topic of “norm convergence” of the summability
methods. The question is this: Let {ky} be a family of kernels. Fix 1 < p <
oo. Is it true that, for all f € LP, we have

=07
Lp

Jim 'H% [ s - dt] )

N—oo

This is a question about recovering f “in the mean”, rather than pointwise,
from the Fourier data. In fact we have the following theorem.

Theorem A1.5.6 Let 1 < p < oo. Let {ky} be a standard family of
summability kernels. If f € LP, then
= 0.

lim
N—oo

o | B¢ —0de— 5

T J %

Lr

Remark: We shall present two proofs of this fundamental result. The first
is traditional, and relies on basic techniques from real analysis. The second
is more modern, and uses FAPI. We record first a couple of preliminary facts
that are pervasive in this subject. O

Lemma A1.5.7 Let f € LP(RY), 1 < p < co. Then

lim || f(- =) = f(-)l[r = 0.

s—0

It is easy to see that the lemma fails for L*°—simply let f be the character-
istic function of the unit ball.
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Lemma A1.5.8 (Generalized Minkowski’s inequality) Let f(x,y) be
a measurable function on the product measure space (X,u) x (Y,v). Let
1 <p < oo. Then

A

Remark: It is informative to think of Minkowski’s inequality as saying that
“the norm of the sum is less than or equal to the sum of the norms.” For,
with the norm being the LP norm, the lefthand side is the norm of an inte-
gral; the righthand side is the integral of the norm—we think of the integral
as a generalized sum. We shall not prove Minkowski’s inequality, but refer
the reader to [STG1] or [SAD] or leave the matter as an exercise. 0

dyu(x) " < /X / ()P dv(y) P du(z)

/Y f(z,y) dv(y)

Theorem A1.5.6 tells us in particular that the Fejér means of an LP
function f, 1 < p < oo, converge in norm back to f. It also tells us that the
Poisson means converge to f for the same range of p. Finally, Theorem A1.5.4
says that both the Fejér and the Poisson means of a continuous function ¢
converge uniformly to g.

A1.6. Pointwise Convergence

Pointwise convergence for ordinary summation of Fourier series is a very
difficult and technical subject. We cannot treat it here. Pointwise conver-
gence for the standard summability methods is by no means trivial, but
it is certainly something that we can discuss here. We do so by way of the
Hardy-Littlewood maximal function, an important tool in classical analysis.

Definition A1.6.1 For f an integrable function on T, x € T, we set
1 z+R
M f(z) = sup o= £ (t)] dt.
r>0 2R J,_p

The operator M is called the Hardy-Littlewood mazimal operator.

One can see that M f is measurable by using the following reasoning. The
definition of M f does not change if supg. is replaced by Supp-g g rationar-
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But each average is measurable, and the supremum of countably many mea-
surable functions is measurable. [In fact one can reason a bit differently as
follows: Each average is continuous, and the supremum of continuous func-
tions is lower semicontinuous—see [RUD2] or [KRA4] ]

A priori, it is not even clear that M f will be finite almost everywhere.
We will show that in fact it is, and furthermore obtain an estimate of its
relative size.

Lemma A1.6.2 Let K be a compact set in T. Let {U,}aca be a covering of
K by open intervals. Then there is a finite subcollection {U,; }}L, with the
properties:

(A1.6.2.1) The intervals U,, are pairwise disjoint.

(A1.6.2.2) If we take 3U, to be the interval with the same center as U, but
with three times the length, then U;3U,, 2 K.

Now we may present our boundedness statement for the Hardy-Littlewood
maximal function:

Proposition A1.6.3 If f is an integrable function on T then, for any A > 0,

m{:EE']T:Mf(a:)>)\}§%.

(A1.6.3.1)
Here m stands for the Lebesgue measure of the indicated set. [The displayed
estimate is called a weak-type (1,1) bound for the operator M.]

Of course the maximal operator is trivially bounded on L*°. It then
follows from the Marcinkiewicz interpolation theorem (see [STG1]) that M
is bounded on LP for 1 < p < oo.

The maximal operator is certainly unbounded on L'. To see this, calcu-
late the maximal function of

NERNE
fN(f”)—{o i o] >

Each of the functions fy has L! norm 1, but their associated maximal func-
tions have L' norms that blow up. [Remember that we are working on the

[N} DN
2
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circle group T; the argument is even easier on the real line, for M f; is already
not integrable at infinity.]

And now the key fact is that, in an appropriate sense, each of our families
of standard summability kernels is majorized by the Hardy-Littlewood max-
imal function. This assertion must be checked in detail, and by a separate
argument, for each particular family of summability kernels. To illustrate
the ideas, we will treat the Poisson family at this time.

Proposition A1.6.4 There is a constant finite C' > 0 such that if f € L'(T),
then
P f(e”) = sup [P f(e”)] < OMf(e”)

0<r<1

for all 6 € [0, 2m).
Corollary A1.6.5 The operator P*f = supy.,.1 P, f is weak-type (1,1).

Now we will invoke our Second Functional Analysis Principle to derive
a pointwise convergence result.
Theorem A1.6.6 Let f be an integrable function on T. Then, for almost
every x € T, we have that

Of course it must be noted that LP(T) C LYT) for 1 < p < oo. So
Theorem A1.6.6 applies a fortiori to these LP spaces.

The reader should take special note that this last theorem, whose proof
appears to be a rather abstract manipulation of operators, says that a fairly
“arbitrary” function f may be recovered, pointwise almost everywhere, by
the Poisson summation method from the Fourier data of f.

A similar theorem holds for the Fejér summation method. We invite the
interested reader to show that the maximal Fejér means of an L! function are
bounded above (pointwise) by a multiple of the Hardy-Littlewood maximal
function. The rest is then automatic from the machinery that we have set

up.
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A1.7. Square Integrals

We begin with the theory of L? convergence. This is an exercise in “soft”
analysis,? for it consists of interpreting some elementary Hilbert space ideas
for the particular Hilbert space L*(T). As usual, we define

1

2 o it |2 i
L*(T) = {f measurable on T : || f||.2 = {%/0 |f(e™)] dt} < oo} :

Recall that L? is equipped with the inner product

Zt zt
1.9 ~on / FePgle
and the induced metric

d(f.g9) = IIf—9gllz= = \/ /lf (eit) — g(eit)|2 dt

(under which L? is complete).

Observe that the sequence of functions F = {eijt}‘;‘;_oo is a complete or-
thonormal basis for L2. [It will sometimes be useful to write e;(¢) = €“*.] The
orthonormality is obvious, and the completeness can be seen by noting that
the algebra generated by the exponential functions satisfies the hypotheses
of the Stone-Weierstrass theorem (see [RUDI1]) on the circle group T. Thus
the trigonometric polynomials® are uniformly dense in C(T), the continuous
functions on T. If f is an L? function that is orthogonal to every %%, then
it is orthogonal to all trigonometric polynomials and hence to all continuous
functions on T. But the continuous functions are dense in L?. So it must be
that f = 0 and the family F is complete. This fact, that the group charac-
ters for the circle group T also form a complete orthonormal system for the
Hilbert space L*(T) (which is a special case of the Peter-Weyl theorem—see
[FOL4]), willplay a crucial role in what follows.

In fact we shall treat the quadratic theory of Fourier integrals in con-
siderable detail in Chapter 3—specifically Section 3.4. We shall take this

4Analysts call an argument “soft” if it does not use estimates, particularly if it does
not use €’s and 4’s.

SRecall that a trigonometric polynomial is simply a finite linear combination of expo-
nential functions.
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opportunity to summarize some of the key facts about Fourier series of L?
functions. Their proofs are transcriptions either of general facts about Hilbert
space or of particular arguments presented in Chapter 3 for the Fourier in-
tegral.

Proposition A1.8.1 (Bessel’s Inequality) Let f € L*(T). Let N be a
positive integer and let a; = f(j), each j. Then

N
> lagl? < II£117a-
j=—N

Theorem A1.7.2 (Riesz-Fischer) Let {a;}% be a square-summable

j=—00
sequence (1.e., y . la;j|? is finite). Then the series

e}
RN
E a;e
j=—00

converges in the L? topology (i.e., the sequence of partial sums converges in
L?). It defines a function f € L*(T). Moreover, for each n,

f(n) = a,.

Theorem A1.7.3 (Parseval’s Formula) Let f € L*(T). Then the se-

~

quence {f(7)} is square-summable and

1 T 2 . - N2
| i@k = 3 1fo)r

j=—o0

Exercise for the Reader: Apply Parseval’s formula to the function f(z) =
x on the interval [0, 27]. Actually calculate the integral on the left, and write
out the terms of the series on the right. Conclude that

N |
g=2j—2- -
j=1
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The next result is the key to our treatment of the L? theory of norm
convergence. It is also a paradigm for the more elaborate L” theory that we
treat afterward.

Proposition A1.7.4 Let A = {\;} be a sequence of complex numbers. Then
the multiplier operator M is bounded on L?* if and only if A is a bounded
sequence. Moreover, the supremum norm of the sequence is equal to the
operator norm of the multiplier operator.

Of course the multiplier corresponding to the partial-summation opera-
tor Sy is just the sequence AN = {\;} given by

Lot s
1 0 if |j] > N

[In what follows, we will often denote this particular multiplier by X[, n].
It should be clearly understood that the domain of x|_x ] is the set of in-
tegers Z.] This sequence is bounded by 1, so the proposition tells us that
Sy is bounded in norm on L?—with operator norm 1. But in fact more
is true. We know that [|Syl|lop = 1 for every N. So the operators Sy are
uniformly bounded in norm. In addition, the trigonometric polynomials are
dense in L?, and if p is such a polynomial then, when N exceeds the degree
of p, Sn(p) = p; therefore norm convergence obtains for p. By Functional
Analysis Principle I, we conclude that norm convergence is valid in L?. More
precisely:

Theorem A1.7.5 Let f € L*(T). Then ||Sxf — fllzz — 0 as N — oo.
Explicitly,

1/2
lim { |Snf(x) — f(z)]*dz =0.
N T

Proofs of the Results in Appendix 1

Proof of Proposition A1.2.1: We observe that

- 1 [ g 1 [7
Fl =g [ reral < o [l
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as was to be proved. O

Proof of Proposition A1.2.2: First consider the case when f is a trigono-
metric polynomial. Say that

M ..
f(t) = Z a;jet.
j=—M

~

Then f(j) = 0 as soon as |j| > M. That proves the result for trigonometric
polynomials.

Now let f be any integrable function. Let ¢ > 0. Choose a trigono-
metric polynomial p such that ||f — p||z1 < €. Let N be the degree of the
trigonometric polynomial p and let |j| > N. Then

~

£ (7)]

IN

'[f —pmj)' £ 150)]
1 =l +0

ANVAN

that proves the result. O

Sketch of Proof of Proposition A1.2.3: We know that, for j # 0,

~ 1 [* i
L
T Jo
arts) 1 1 (%7 .
(p:t ) — / f/(t)e—mt dt
2wy Jo
T 2
(parts) 11 / F) (t)e " dt.
2m (i) Jo

Notice that the boundary terms vanish by the periodicity of f. Thus

= FOG) ¢ 2
PO C 0 < GF < T e

where

, 1
c—c. %/|f<k><x>|da: = C .
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This is the desired result. O

Proof of Theorem A1.2.8: We examine the expression Sy f(z) — f(x):

1 27
| PV = s

% /0% D (t)f(x — ) dt — % /_1 D (t)f(2) dt' -

Notice that something very important has transpired in the last step: we
used the fact that o- [* Dy (¢)dt =1 to rewrite the simple expression f(z)
(which is constant with respect to the variable t) in an interesting fashion;
this step will allow us to combine the two expressions inside the absolute
value signs.

Thus we have

[Snfx) = flx)] =

|Sn f(x) '—/ Dy (t x—t)—f(a:)]dt'.

We may translate f so that x = 0, and (by periodicity) we may perform
the integration from —m to 7 (instead of from 0 to 27). Thus our integral is

po=| [ ovioise - oyl

Note that another change of variable has allowed us to replace —t by t. Now
fix € > 0 and write

PNS{

1 —€

Da(®)If(t) — £(0) dt'

'— [ ovtotso - sonar}

+ 5= [ pvioise - o)
= [+11.

We may note that

sin(IV + 1/2)t = sin Nt cost/2 4 cos Ntsint/2
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and thus rewrite [ as

% /_E sin Nt {cos %t . w} dt

sin 5
—/ cos Nt {smlt f(t) - f(O)] dt‘
2 sin &
1 f@) — f(0)
+ %/ sin Nt {cos 2t v} dt
—/ cos Nt {sm —t- f(t) - {(0)] dt‘.
sin 5

These four expressions are all analyzed in the same way, so let us look at the
first of them. The expression
1 f(t) = f(0)
{cos it . ()715 X[—n,—q (1)

Sin 3

is an integrable function (because ¢ is bounded from zero on its support).
Call it g(t). Then our first integral may be written as

11
2m 21

11 [ .
—/ eMNg(t) dt —

2 2i

e Nt (t) dt‘ .

Each of these last two expressions is (1/2i times) the & N*® Fourier coefficient
of the integrable function g. The Riemann-Lebesgue lemma tells us that, as
N — 00, they tend to zero. That takes care of I.

The analysis of I is similar, but slightly more delicate. First observe
that

ft) = f(0) = O().
[Here O(t) is Landau’s notation for an expression that is not greater than

C - |t].] More precisely, the differentiability of f at 0 means that [f(t) —
£(0)]/t — £/(0), hence |f(t) — f(0)| < C - |t| for t small.

Thus
©sin [N+ 1|t
i/ M-O(t)dt.

II = —
2T sin 5

Regrouping terms, as we did in our estimate of I, we see that

i/ sin Nt cosE O(t) dt| + i/ cos Nt sinz-(?—(tt) dt| .
2 J_ 2 2 J_. 2 sins

™ Sin )

1] =

€
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The expressions in brackets are integrable functions (in the first instance,
because O(t) cancels the singularity that would be induced by sin[t/2]), and
(as before) integration against cos Nt or sin Nt amounts to calculating a
+ N Fourier coefficient. As N — oo, these tend to zero by the Riemann-
Lebesgue lemma.

To summarize, our expression Py tends to 0 as N — oco. that is what
we wished to prove. 0

Proof of Theorem A1.4.1: Let f € X and suppose that € > 0. There is
an element s € S such that || f — s|| < ¢/3(C' 4+ 1). Now select J > 0 so large
that if j,k > J then ||T}s — Tis|| < €/3. We calculate, for such j, k, that

IT5f =Tl < NT5f = Tsll + 1758 = Tes|| + [ Ths — T f|
€
IT5llopllf = sll + 5 + [ Tillopll.f — ]

IN

€
< Colf =sli+5+C-f =l
< fLEL €
3 3 3
= €.

This establishes the result. Note that the converse holds by the Uniform
Boundedness Principle. 0

Proof of Theorem A1.4.2: This proof parallels that of FAPI, but it is
more technical.

Let f € LP and suppose that o > 0 is given. Then there is an element
s € S such that || f — s||, < d. Let us assume for simplicity that f and the
T;f are real-valued (the complex-valued case then follows from linearity).
Fix € > 0 (independent of §). Then

m{z : ‘ligriingjf(a:) — lijrg(i)glijf(:E)‘ > €}
< e [lmswlTy( = )@ > /3)
+m{x ‘lim sup(7}s)(x) — lijfg(i)glf(TjS)(l’)‘ > €/3}

J—00

+m{x: ‘limsup[Tj(s - f)](a:)‘ > ¢/3}

J—00
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< mf s swp| (737 — )] ()| > /3)

+ 0
+mix: sngTj(s — Nl@)| > ¢/3}

=mi{z:T*(f — s)(z) > €/3}

+0
+{z:T"(s = f)(x) > €¢/3}
IIf = slizs IIf = slizs
<C- PEG +04C- [/3]
209
<€/—3.

Since this estimate holds no matter how small 9§, we conclude that

m{x : ‘hmsupT f(z )—lijrg(i)glijf(a:)‘ > e} =0.

J—00

This completes the proof of FAPII, for it shows that the desired limit exists
almost everywhere. O

Proof of Theorem A1.5.4: Let € > 0. Since f is a continuous function on
the compact set T, it is uniformly continuous. Let ¢ > 0. Choose 6 > 0 such
that if [t| < § then |f(z) — f(x —t)| < e for all x € T. Further, let M be the

maximum value of |f| on T.
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Using Property (A1.5.1) of a standard family, we write

/_ " flo - Oy (t) dt — f(2)

1
2

%/_:f(x—t)k:]v(t)dt—%/_:f(ib)kflv(t)dt}

= [ 15— 0 - 5@k dt\

or ),
1 s
< o [f(z —1t) — f(z)]|kn(t)| dt
T J_r
1 1
271 Jipp)<s) 27 Sy
= [+11.

We notice, by Property (A1.5.2) and the choice of 4, that

4 s
reg [ emanse (5 [Ciwia) <cc
27 J_s 27 J_,

That takes care of I.
For I we use Property (A1.5.3). If N is large enough, we see that

1
1< — oM - |Ky(t)|dt < 2M - €.
270 Jitept1>0)

In summary, if N is sufficiently large, then

3 [ oDkt fo)| < C 20

for all z € T. This is what we wished to prove. O

Proof of Lemma A1.5.5: For p = oo the result is immediate; we leave it
as an exercise (or the reader may derive it as a limiting case of p < oo, which
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we now treat). For p < oo, we use Holder’s inequality to estimate
Tr@) < [ K@)l w)ld)
- [ K@ P RGP

< ([ ity ) (/umy WP dvy >)1/p
< o ([ kGl P any >)

We use the last estimate to determine the size of ||T f||»:

sl < a0 ([ ] RGP i) ) ”
- (/er /meX K ()l du(z) [ F ()" dV(y)) "

< i ([P "

= M- |flL-

that completes the proof. O

Proof of Lemma A1.5.7: If ¢ € C.(RY) (the continuous functions with
compact support) then obviously

lim [|p(- =) = @(-)[[» = 0.

If now f € L” and € > 0, choose ¢ € C.(RY) so that ||f — ¢[| @y < €.
Choose § > 0 so that ||s|| < § implies ||o(- —s) — @(+)||zr < €. Then, for
such s,

1O =)= fClle < MF(- = 8) =0 =)l + llo(- —5) = o(-)l[re
() = fC e
< €+e+e=3e.

that gives the result. O
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First Proof of Theorem A1.5.6: Fix f € LP. Let ¢ > 0. Choose 6 > 0 so
small that if |s| < §, then || f(- —s) — f(+)||lz» < €. Then

H{%/_}NW- —t)dt] )

LP
1 T 7 P 1/p
_ {%/_W %/_Wk:]v(t)[f(x—t)dt—f(:c)} dat dx]
1 7r 1 7 P 1/p
< e [ (o [ ot —n- s ) al
(Minkowski) m ™ 1/p
R N P MR B (O RO
= o [ OIS = = Ol dt
1 1
B 2 It|<6 2 It|>6
= I+ 11.
Now
1
Igg |t|<5|k:N(t)|-edt§C-e.

For I1, we know that if N is sufficiently large, then |ky| is uniformly small
(less than €) on {t : |[t| > d}. Moreover, we have the easy estimate || f(- —
t) = fC e < 2/ f]lLr. Thus

Ug/ € 2| flluv dt.
[t|>6

This last does not exceed C” - e.
In summary, for all sufficiently large N,

that is what we wished to prove. O

1

3= | wor = 0d— 1)

<(C"-e.
2T ¢

Lp
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Second Proof of Theorem A1.5.6: We know from Theorem A1.5.4 that
the desired conclusion is true for continuous functions, and these are certainly
dense in LP. Secondly, we know from Schur’s lemma (Lemma A1.5.5) that
the operators

Ty :fr—knx*f

are bounded from LP to LP with norms bounded by a constant C', indepen-
dent of N (here we use property (A1.5.2) of a standard family of summabil-
ity kernels). Now FAPI tells us that the conclusion of the theorem follows. O

Proof of Lemma A1.6.2: Since K is compact, we may suppose at the
outset that the original open cover is finite. So let us call it {U,}/_,. Now
let Uy, be the open interval among these that has greatest length; if there
are several of these longest intervals, then choose one of them. Let U, be
the open interval, chosen from those remaining, that is disjoint from U,, and
has greatest length—again choose just one if there are several. Continue in
this fashion. The process must cease, since we began with only finitely many
intervals.

This subcollection does the job. The subcollection chosen is pairwise dis-
joint by design. To see that the threefold dilates cover K, it is enough to see
that the threefold dilates cover the original open cover {U;},_,. Now let U;
be some element of the original open cover. If it is in fact one of the selected
intervals, then of course it is covered. If it is not one of the selected intervals,
then let Uy, be the first in the list of selected intervals that intersects U; (by
the selection process, one such must exist). Then, by design, Uy, is at least
as long as U;. Thus, by the triangle inequality, the threefold dilate of U, will
certainly cover U;. That is what we wished to prove. O

Proof of Proposition A1.6.3: By the inner regularity of the measure, it
is enough to estimate m(K), where K is any compact subset of {z € T :
M f(x) > A}. Fix such a K, and let k € K. Then, by definition, there is an
open interval I centered at k such that

1

It is useful to rewrite this as

(i) <5 [ 1f0)dr
I,
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Now the intervals {Ij}rex certainly cover K. By the lemma, we may
extract a pairwise disjoint subcollection { I, M whose threefold dilates cover
K. Putting these ideas together, we see that

m(K) < m[U?)ij]

< 32 / t)| dt.

Note that the intervals over which we are integrating in the last sum on the
right are pairwise disjoint. So we may majorize the sum of these integrals by
(27 times) the L' norm of f. In other words,

3.9
m(K) < 22T

This is what we wished to prove. O

Proof of Proposition A1.6.4: The estimate for 0 < r < 1/2 is easy (do it
as an exercise—either using the maximum principle or by imitating the proof
that we now present). Thus we concentrate on 1/2 < r < 1. We estimate

P f(e)] - / zwf(e“"—% kY
rJie 2 J, 1 —2rcosy +r?
1 4 - 1—12
N i(0—¢) d
‘ _W fle )(1 —7)2 4 2r(1 — cosv)
[10g2(7r/(1 r) 9
1—r
< i(6-v)) :
< o / e
1 , 1-— 7’2
+— f 6Z(G_w) d%
2m |w|<1_r| ( )|(1 —r)?

where S; = {¢ : 27(1 —r) < || < 2771(1 — r)}. Now this last expression is
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(since 1 +71 < 2)

e}

1 1 / o
< =Y F(e7N) | dy
2m i 2 =) Jpieznia-n Je
1 / (0
—~ (7)) dy
s 1 — T |¢|<1—7"
64 o= . 1 .
< =N 2| — 0= g }
- 27 |i2 . 2J+1(1 — ’f’) /|¢|<2j+1(1—7") |f(6 )| ,l/)
27 1 / o
) - (e ¢>>|dw]
@ {2(1 —7) Jigl<i—r
64 = . 2 .
< — N 279Mf(e) + ZMf(e
< o ;0 fe) + =M f(e”)
128 ) 2 )
< ——Mf(e”) + =M f(”)
2 T
= C-Mf(e").
This is the desired estimate. O

Proof of Corollary A1.6.5: We know that P*f is majorized by a constant
times the Hardy-Littlewood maximal operator of f. Since (by (A1.6.3.1))
the latter is weak-type (1, 1), the result follows. O

Proof of Theorem A1.6.6: The remarkable thing to notice is that this
result now follows with virtually no additional work: First observe that the
continuous functions are dense in L'(T). Secondly, Theorem A1.5.4 tells us
that the desired conclusion holds for functions in this dense set. Finally,
Proposition A1.6.5 gives that P* is weak-type (1,1). Thus we may apply
FAPII and obtain the result. O

Proof of Proposition A1.7.4: This is a direct application of Parseval’s
formula A1.7.3. To wit, let f € L?(T) and let A be as in the statement of
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the proposition. Then

IMafldomy = > IMaf()P

j=—00

= > INFO)P
j=—00

< (supA,P) Z|f

j=—00

= (sup [N1) - If 22y
j

This shows that
[Mallop < sup [Aj] = [[{Aj e -
J

For the reverse inequality, fix an integer jo and let e; (z) = e”**. Then
lejollz2(r) = 1 and

[Maejollzmy = [ Xoe™ L2y = [Njol

showing that ||Myllop > |Aj, | for each jo. It results that || M |lop = [[{A; }]eee-
d



APPENDIX 2:
Pseudodifferential Operators

This appendix is material offered for cultural purposes. We have endeavored
to present fractional integrals and singular integrals as stepping-stones to a
comprehensive view of integral operators. What we were seeking in the first
half of the twentieth century was a calculus of integral operators that can be
used to construct parametrics for partial differential operators. Pseudodiffer-
ential operators are at least one answer to that quest. The brief introduction
provided in this chapter will give the reader a glimpse of the culmination of
this program.

Part of the interest of the present discussion is to acquaint the reader
with the idea of an “error term”, and of the estimates that enable one to
handle an error term. Certainly the Sobolev spaces, treated at the end of
Chapter 2, will be of great utility in this treatment.

A2.1 Introduction to Pseudodifferential Op-
erators

Consider the partial differential equation Au = f. We wish to study the
existence and regularity properties of solutions to this equation and equations
like it. It turns out that, in practice, existence follows with a little functional
analysis from a suitable a priori regularity estimate (to be defined below).
Therefore we shall concentrate for now on regularity.

The a priori regularity problem is as follows: If u € C®°(RY) and if

Au = f, (A2.1.1)

then how may we estimate u in terms of 7 In particular, how can we estimate

391
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smoothness of u in terms of smoothness of f?7 Taking the Fourier transform
of both sides of (A2.1.1) yields

~

(a0) =7

or

~

-2 lglfac) = f&).

Arguing formally, we may solve this equation for u :

N
u(§) = G (). (A2.1.2)

Suppose for specificity that we are working in R%. Then —1/|¢]? has an un-
pleasant singularity and we find that equation (A2.1.2) does not provide
useful information.

The problem of studying existence and regularity for linear partial dif-
ferential operators with constant coefficients was treated systematically in
the 1950’s by Ehrenpreiss and Malgrange, among others. The approach of
Ehrenpreiss was to write

U(a?) =c- /a(g)e—imf dé = C'/_ﬁ/\(f)e_mf de.

Using Cauchy theory, he was able to relate this last integral to

1 -~ . .
/ SleT ] € Hme T dg

for n > 0. In this way he avoided the singularity at £ = 0 of the right hand
side of (A2.1.2).

Malgrange’s method, by contrast, was to first study (A2.1.1) for those
f such that j? vanishes to some finite order at 0 and then to apply some
functional analysis.

It is a basic fact that, for the study of C'*™ regularity, the behavior of
the Fourier transform on the finite part of space is of no interest. That is
to say, the Paley-Wiener theorem (see [STG1] and our Section 10.3) tells us
that the (inverse) Fourier transform of a compactly supported function (or
distribution) is real analytic. Thus what is of greatest interest is the Fourier
transform of that part of the function that lies outside every compact set.
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Thus the philosophy of pseudodifferential operator theory is to replace
the Fourier multiplier 1/|£]* by the multiplier (1 — ¢(€))/|¢|?, where ¢ €
C>(R") is identically equal to 1 near the origin. Thus we define

(Py)(¢) = —%T;(QE(O

for any g € C2°. Equivalently,

Po= (-5 %00) .

Now we look at u — Pf, where f is the function on the right of (A2.1.1) and
u is the solution of that differential equation:

(u—Pf) = a-Pf

I 1—9¢(&) ~
= Tt e
9@ 7
G

Then u — Pf is a distribution whose Fourier transform has compact support;
that is, u— P f is C*°. This means that, for our purposes, u— P f is negligible:
the function lies in every regularity class. So studying the regularity of u is
equivalent to studying the regularity of Pf. This is precisely what we mean
when we say that P is a parametriz for the partial differential operator A.
And one of the main points is that P has symbol —(1 — ¢)/|¢|?, which is free
of singularities.

Now we consider a very natural and more general situation. Let L be a
partial differential operator with (smooth) variable coefficients:

L:;aa(z) (8%)&.

The classical approach to studying such operators was to reduce to the con-
stant coefficient case by “freezing coefficients”: Fix a point 7o € RY and

e L= Zaa xo( ) +Z o (%) = aa(0)) (%)a-
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For a reasonable class of operators (elliptic) the second term turns out to be
negligible because it has small coefficients. The principal term, the first, has
constant coefficients.

The idea of freezing the coefficients is closely related to the idea of passing
to the symbol of the operator L. We set

&) =3 aa(w)(~i€)

The motivation is that if ¢ € D = C2° and if L has constant coefficients then

Lo=c / e 0z, £) de.

However, even in the variable coefficient case, we might hope that a parametrix

for L is given by
1 ~N\WV
o—(mg?)

Assume for simplicity that ¢(z,&) vanishes only at £ = 0 (in fact this is
exactly what happens in the elliptic case). Let ® € C satisfy ®(§) = 1
when [£] < 1 and (&) =0 when [£] > 2. Set

1

We hope that m, acting as a Fourier multiplier by
T f— ((mi,9) - F.9) "

gives an approximate right inverse for L. More precisely, we hope that equa-
tions of the following form hold:

ToL = id+ (negligible error term)
LoT = id+ (negligible error term)

In the constant coefficient case, composition of operators corresponds to mul-
tiplication of symbols so that we would have

(wons) = w9+ (L) fio
= Q—MQ#@A
= 9+ -2
= 150 +E5©).
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Here, of course, I represents the identity operator. In the variable coefficient
case, we hope for an equation such as this but with a more elaborate error.
However, the main point is that we can say something about the mapping
properties of this more elaborate error term (it will typically be compact in
a suitable Sobolev topology), so that it can still be handled roughly as in the
constant coefficient case. This simple but subtle point is really at the heart
of the calculus of pseudodifferential operators.

Of course a big part of what we must do, if we are going to turn these gen-
eral remarks into a viable theory, is to decide what a “negligible error term”
is. How do we measure negligibility? What does the error term mean? How
do we handle it? It takes some significant ideas to address these questions
and to make everything fit together.

A calculus of pseudodifferential operators is a collection of integral oper-
ators which contains all elliptic partial differential operators and their para-
metrices and such that the collection is closed under composition and the
taking of adjoints and inverses (and the adjoints and inverses are quick-
ely and easily calculated). Once the calculus is in place then, when one is
given a partial or pseudodifferential operator, one can instantly write down a
parametrix and obtain estimates. Pioneers in the development of pseudodif-
ferential operators were Mikhlin ([MIK1], [MIK2]), and Caldéron/Zygmund
[CZ2]. Kohn/Nirenberg [KON] and Hérmander [HOR6] produced the first
workable, modern theories.

One of the classical approaches to developing a calculus of operators
finds it roots in the work of Hadamard [HAD] and Riesz [RIE| and
Caldéron/Zygmund [CZ1].

Here is a rather old attempt at a calculus of pseudodifferential operators:

Definition A2.1.3 A function p(z,£) is said to be a symbol of order m if p
is C*°, has compact support in the x variable, and is homogeneous of degree
m in & when £ is large. That is, we assume that there is an M > 0 such that
if |¢] > M and A > 1 then

p(x, AE) = X"p(x, £).

It is possible to show that symbols so defined, and the corresponding
operators

T,f = / Fl&)pla, )= de,
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form an algebra in a suitable sense. These may be used to study elliptic
operators effectively.

But the definition of symbol that we have just given is needlessly restric-
tive. For instance, the symbol of even a constant coefficient partial differential
operator is not generally homogeneous (because of lower-order terms) and we
would have to deal with only the top order terms. It was realized in the mid-
1960’s that homogeneity was superfluous to the intended applications. The
correct point of view is to control the decay of derivatives of the symbol at
infinity. In the next section we shall introduce the Kohn/Nirenberg approach
to pseudo-differential operators.

Remark A2.1.4 Itis worthwhile to make a few remarks about the Marcinkiewicz
multiplier theorem, for which see [STE1]. Modern work in many different
settings—ranging from partical differential equations to several complex vari-
ables to analysis on Lie groups—shows that this is just the right way to look
at things. We state here a commonly used consequence of the Marcinkiewicz
theorem. This is a strictly weaker result, but is quite useful in many contexts:

Theorem: Consider a function m on RY which is C* in the
complement of the origin with k£ > N/2. Assume that

aa
(55) e
for every multi-index a with || < k. Then the Fourier integral
operator

S O . |l’|_|a|

~

T fro [ m(€)f(€)e™* de

RN

is bounded on LP(RY), 1 < p < oo.

Note that the spirit of this result is that the Fourier multiplier m must
decay at oo at a certain rate. The sharper version of Marcinkiewicz’s theorem,
which is more technical, may be found in [STE1, p. 108]. In any event, this
circle of ideas is a motivation for the way that we end up defining the symbols
in our calculus of pseudodifferential operators. O



A2.2. A FORMAL TREATMENT 397

A2.2 A Formal Treatment of Pseudodifferen-
tial Operators

Now we give a careful treatment of an algebra of pseudodifferential operators.
We begin with the definition of the symbol classes.

Definition A2.2.1 (Kohn-Nirenberg [KON1]) Let m € R. We say that
a smooth function o(z,£) on RY x RN is a symbol of order m if there is
a compact set K C RY such that suppoc C K x RY and, for any pair of
multi-indices «, 3, there is a constant C, g such that

D2 Dlo(w,6)| < Cap(1+ €))7 (A2.2.1)

We write o € S™.

As a simple example, if ® € C®(R"Y), ® = 1 near the origin, define

oz, &) = @(z)(1— (&)L + €)™

Then o is a symbol of order m. We leave it as an Exercise for the Reader: to
verify condition (A2.2.1).°

For our purposes, namely the interior regularity of elliptic partial dif-
ferential operators, the Kohn-Nirenberg calculus will be sufficient. We shall
study this calculus in detail. However we should mention that there are sev-
eral more general calculi that have become important. Perhaps the most
commonly used calculus is the Hérmander calculus [HOR2]. Its symbols are
defined as follows:

Definition A2.2.2 Tet m € R and 0 < p,0 < 1. We say that a smooth
function o(x, &) lies in the symbol class 7% if

| D Dior(x,€)] < Capl1+ [g]) P10,

In a more abstract treatment, one thinks of the x-variable as living in space and the
& variable as living in the cotangent space. This is because the £ variable transforms like
a cotangent vector. This point of view is particularly useful in differential geometry. We
shall be able to forego such niceties.
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The Kohn-Nirenberg symbols are special cases of the Hormander symbols
with p = 1 and 0 = 0 and with the added convenience of restricting the x
support to be compact. Hormander’s calculus is important for existence
questions and for the study of the d-Neumann problem (treated briefly in
Section 10.5). In that context symbols of class S| /2,172 arise naturally.

Even more general classes of operators, which are spatially inhomoge-
nous and non-isotropic in the phase variable £ have been developed. Basic
references are [BEF2|, [BEA1], and [HOR5|. Pseudodifferential operators
with “rough symbols” have been studied by Meyer [MEY4] and others.

The significance of the index m in the notation S™ is that it tells us
how the corresponding pseudodifferential operator acts on certain function
spaces. A pseudodifferential operator of order m > 0 “differentiates” to order
m, while a pseudodifferential operator of order m < 0 “integrates” to order
—m. While one may formulate results for C* spaces, Lipschitz spaces, and
other classes of functions, we find it most convenient at first to work with
the Sobolev spaces. We have reviewed these spaces earlier in the text.

Theorem A2.2.3 Let p € S™ (the Kohn-Nirenberg class) and define the
associated pseudodifferential operator P = Op(p) =T, by

P(g) = / ()pla, )¢ d.

Then
P:H°— H™

continuously.

Remark A2.2.4 Notice that if m > 0 then we lose smoothness under P.
Likewise, if m < 0 then P is essentially a fractional integration operator
and we gain smoothness. We say that the pseudodifferential operator 7}, has
order m precisely when its symbol is of order m.

Observe also that, in the constant coefficient case (which is misleadingly
simple) we would have p(x, ) = p(§) and the proof of the theorem would be
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as follows:
2 o7 L 2 2
IPOIRW = [ |P@©] 1 gy ae
_ / PO + |2 de
< . / DO+ 6P de

= c|oll5-

O

Remark A2.2.5 In the case that P is a partial differential operator

9
P = ; aa(z)% )
it holds that the symbol is
o(P) =) aa()(~i€)".

O

Exercise for the Reader:

Calculate the symbol of the linear operator (on the real line R)

L

To prove the theorem in full generality is rather more difficult than the
case of the constant-coefficient partial differential operator. We shall break
the argument up into several lemmas.

Lemma A2.2.6 For any complex numbers a,b we have

1+ |al
1+ 0]

<1+a—bl.
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Proof: We have
1+ |a] <1+ |a—b|+ |0

<1+ |a— b+ [b] + [b] |a — b]
= (1+la—b[)(L+1b]). ()

Lemma A2.2.7 If p € S™ then, for any multi-index « and integer k > 0,
we have .
(1 +¢)

(L+ [nDk
Here F, denotes the Fourier transform in the x variable.

Fo (D29, ) ()] < Cra

Proof: If o is any multi-index and ~ is any multi-index such that |y| = k
then

|

Fo(Dip(. )| = |F (DD, €)) ()

< D¢ p(, €)1y < Cha - (L + €)™

As a result, since p is compactly supported in z,

(I + 1) | Fo (D2p(2,€)) | < (Con + Cra) - (L+ €)™

This is what we wished to prove. O

Lemma A2.2.8 We have that
(H*)" =H".
Proof: Observe that
H* = {g:5 € L3((1 + |¢[2)° de).

But then H® and H™° are clearly dual to each other by way of the pairing

(f.9) = / Fleyae) de. .
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The upshot of the last lemma is that, in order to estimate the H® norm
of a function (or Schwartz distribution) ¢, it is enough (by the Hahn-Banach
theorem) to prove an inequality of the form

o

Proof of Theorem A2.2.3: Fix ¢ € D. Let p € S™and let P = Op(p).
Then

< COll¢lla-

for every ¢ € D.

Po(z) = / i p(r, ©)D(E) de.
Define
5.0 €) = / ¢ Np(z, €) da.

This function is well defined since p is compactly supported in x. Then

Pot) = [ [ e )(6) dsere o

B / / plz, (€)™ O drde

_ / S, (0 — £,6)3(€) de.

We want to estimate ||P@||s—,. By the remarks following Lemma A2.2.8, it
is enough to show that, for ¢ € D,

'/Pgb x) dz

| Po(yp(e) de| = ' | Pocerite dg'

= }/( (& — nn)@(n)dn)@(ﬁ)dﬁ'
= [ [ Bue—nm+ b b

XB(E)(1 + €)™ () (1 + nl)* dndg,

Hs

< Cl¢l

|| gm-s.

We have
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Define

K(&n) = |Se(€ = nm)(1+ nl) (1 + €)™

We claim that
[iKemia<c

and

/IK(ﬁ,n)ldn <C

(these are the hypotheses of Schur’s lemma).
Assume the claim for the moment. Then

} [ Powitta) i

< / / K(&m)BE)(1+ €)™ *|am)|(1 + |n])* dnde

- (/ / Blem+ |s|2>m—3|@<5>|2dgdn) )
) (/ / Blemi+ |77|2)s|5(?7)|2d§d77) -

where we have used the obvious estimates (1+]¢])? ~ (1+[¢]?) and (1+|n|)? ~
(1 + |n]?). Now this last is

< ¢ ( [1@ra-+ gy ds) -
Y ( JEOE |n|2>8dn) -
— Ol - 6l

that is the desired estimate. It remains to prove the claim.
By Lemma A.2.2.7 we know that

86,9 < Cu1+ g™ - (L + 1K),
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But now, by Lemma A.2.2.6, we have

K€ = |Sa(€—nm)(L+ n) 71+ ¢
< C(L+ D)™+ I =)+ )~ (L4 )

L+ [\ —k
a(rog) i

< G+ €= @ +]E—n) ™

N

We may specify k as we please, so we choose it so large that m — s — k <
—N — 1. Then the claim is obvious and the theorem is proved. O

A2.3 The Calculus of Pseudodifferential Op-
erators

The three central facts about our pseudodifferential operators are these:
(1) Ifpe S™then T, : H® — H*™™ for any s € R.

(2) If p € S™ then (T},)* is “essentially” Tp. In particular, the symbol of
(T,)* lies in S™.

(3) If pe 8™ q € S", then T), o T}, is “essentially” T,,. In particular, the
symbol of T, o T;, lies in S™*™".

We have already proved (1); in this section we shall give precise formula-
tions to (2) and (3) and we shall prove them. Along the way, we shall give
a precise explanation of what we mean by “essentially”.

Remark: We begin by considering (2), and for motivation consider a simple
example. Let A = a(z)(0/0x;). Observe that the symbol of A is —a(x)i&;.
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Let us caleulate A% If ¢, ¢ € C then
(A%p, )2 = (@, A) e
~ [t a—W >) da
_ /a ()
- [ (-at5 - 5—3?1( )) ole) o) d
0 oa

A = —a(x )8—:1“_8—9:1@)

= Op (~ate)(-i6) - (o))
~ Opigata)) + (o))

Then

Thus we see in this example that the “principal part” of the adjoint operator
(that is, the term with the highest degree monomial in £ of the symbol of A*)
is i&1a(x), and this is just the conjugate of the symbol of A. In particular,
this lead term has order 1 as a pseudodifferential operator. The second term,
which we think of as an “error term”, is zero order—it is simply the operator
corresponding to multiplication by a function of z. O

In general it turns out that the symbol of A* for a general pseudodiffer-
ential operatorA is given by the asymptotic expansion

;Dg (%)amé. (A2.3.1)

Here D¢ = (10/0x)*. We shall learn more about asymptotic expansions later.
The basic idea of an asymptotic expansion is that, in a given application, the
asymptotic expansion may be written in more precise form as

Zpa( )Q—A)l s

la|<k
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One selects k so large that the sum contains all the key information and the
error term & is negligible.

If we apply this asymptotic expansion to the operator a(z)d/dx; that
was just considered, it yields that

da

o(A*) =i&a(x) — Fr

(),

which is just what we calculated by hand.
Now let us look at an example to motive how compositions of pseudod-
ifferential operators will behave. Let the dimension N be 1 and let

d d
I and B= b(z)%

Then o(A) = a(x)(—i§) and o(B) = b(x)(—i&). Moreover, if ¢ € D, then

(Ao B)(¢) = (a(x)%) (b(g;)j_i)

= <a(a:);i—i(if)% + a@ﬁ@)%) ¢.

A=a(r)

Thus we see that
db . N2
(Ao B) = a(z)——(x)(=i&) + alz)b(x)(—if)"
Notice that the principal part of the symbol of A o B is
a(x)b(z)(—i§)* = a(A) - o(B).

This term has order 2, as it should.
In general, the Kohn-Nirenberg formula says (in RY) that

o(AoB)=)_ ! (a%) (0(A)) - D2(o(B)). (A2.3.2)

ol
o
Recall that the commutator, or bracket, of two operators is

[A,B] = AB — BA.



406 APPENDIX 1

Here juxtaposition of operators denotes composition. A corollary of the
Kohn-Nirenberg formula is that

(0/9€)"0(A)D3o(B) — (0/9€)"a(B) Do (A)

€T

o([AB) =)

o
|a|>0

(notice here that the o = 0 term cancels out) so that o([A, B]) has order
strictly less than (order(A)+ order(B)). This phenomenon is illustrated con-
cretely in R! by the operators A = a(x)d/dx, B = b(x)d/dx. One calculates
that b J J

AB — BA = (a(z)%(z) - b(z)ﬁ(z)) gt
which has order one instead of two.

Our final key result in the development of pseudodifferential operators
is the asymptotic expansion for a symbol. We shall first have to digress a bit
on the subject of asymptotic expansions.

Let f be a C'*° function defined in a neighborhood of 0 in R. Then

o)~y i F 0y 4. (42.3.3)

We are certainly not asserting that the Taylor expansion of an arbitrary
C function converges back to the function, or even that it converges at all
(generically just the opposite is true).

This formal expression (A2.3.3) means instead the following: Given an
N > 0 there exists an M > 0 such that whenever m > M and x is small
then the partial sum S, of the series (A2.3.3) satisfies

}f(:v) — Sm} < Clz|".

Certainly the Taylor formula is historically one of the first examples of an
asymptotic expansion.

Now we present a notion of asymptotic expansion that is related to this
one, but is specially adapted to the theory of pseudodifferential operators:

Definition A2.3.3 Let {a;}32, be symbols in U,,S™. We say that another
symbol a satisfies
a ~ Z Q;
J
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if, for every L € R™, there is an M € Z" such that

M
a — Zaj S SL.
j=1

Definition A2.3.4 Let K CC R” be a fixed compact set. Let Wy be the
set of symbols with z- support in K. If p € Vg then we will think of the
corresponding pseudodifferential operator P = Op(p) as

P:C®(K) — C=(K).

[This makes sense because

Po(z) = / i, )D(E) de.

Now we have the tools assembled, and the motivation set in place, so
that we can formulate and prove our principal results. Our first main result
is

Theorem A2.3.5 Fix a compact set K and pick p € S" N VUg. Let P =
Op(p). Then P* has symbol in S™ N Vg given by

I (8€)a P8 5

EXAMPLE A2.3.6 It is worthwhile to look at an example. But a caveat
is in order. A general pseudodifferential operator is a rather abstract object.
It is given by a Fourier multiplier and corresponding Fourier integral. If we
want concrete, simple examples then we tend to look at differential operators.
When we are endeavoring to illustrate algebraic ideas about pseudodifferen-
tial operators, this results in no loss of generality.

So let
P= E ol )
“ &Ba

Here the sum is taken over multi-indices «. Observe that

= aa(@)(-
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We calculate P* by

(Plg) = <Z ((z)%) f(sc>,g—x>>

Il

=

v
*

From this we conclude that

Prg= (-1 fau(r)g(o)]

«

Comparison with the result of the theorem shows that this answer is consis-
tent with that more general result. O

We shall prove this theorem in stages. There is a technical difficulty that
arises almost immediately: Recall that if an operator 7" is given by integration
against a kernel K (z,y) then the roles of x and y are essentially symmetric.
If we attempt to calculate the adjoint of T by formal reasoning, there is no
difficulty in seeing that 7™ is given by integration against the kernel K (y, x).
However at the symbol level matters are different. Namely, in our symbols
p(z,€), the role of x and ¢ is not symmetric. In an abstract setting, = lives
in space and & lives in the cotangent space. They transform differently. If we
attempt to calculate the symbol of Op(p) by a formal calculation then this
lack of symmetry serves as an obstruction.

It was Hormander who determined a device for dealing with the problem
just described. We shall now indicate his method. We introduce a new class
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of symbols 7(x, £, y). Such a smooth function on RY x RY x R¥ is said to be
in the symbol class T™ if there is a compact set K such that

supp 7(x,§,y) C K

and

supp 7(x,§,y) C K
Yy

and, for any multi-indices o, 3,y there is a constant C, g~ such that

(Ge) () () e

The corresponding operator R is defined by

< Cogo g1,

r) = / / ¢ (2, €, y)ply) dyde (42.3.7)

for ¢ a testing (that is, a C° = D) function. Notice that the integral is
not absolutely convergent and must therefore be interpreted as an iterated
integral.

Proposition A2.3.8 Let r € T™ have x- and y- supports contained in a
compact set K. Then the operator R defined as in (A2.3.7) defines a pseu-
dodifferential operator of Kohn-Nirenberg type with symbol p € Uy having
an asymptotic expansion

y=z

1
6) ~ Z aangr(a?,g,y)

Proof: Let ¢ be a testing function. We calculate that

/eiy'ﬁr(:c,é“,y)wy)dy = ( (,€,) )

/\

= (13(2,&,) % 0())(8).
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Here 73 indicates that we have taken the Fourier transform of r in the third
variable. By the definition of R¢ we have

Rotw) = [ [Crerta g p)otw) dud

= [ [ e «30) © g

— [ [ w66~ midtn) dne < ag

= [ [ g me= agime =y
/ p(z,n)d(n)e™"" dn.

We see that

Pl ) / R, €,€ — m)e € ge

=/ TR, + €, €) dE.

Now if we expand the function 73(x, 7+ -, §) in a Taylor expansion in powers
of ¢ then it is immediate that p has the claimed asymptotic expansion. In
particular, one sees that p € S™. In detail, we have

o 5
(o, n+68) =) his(n.n.0)
la|<k
Thus (dropping the ubiquitous ¢ from the Fourier integrals)

pla,m) = Z/ o 05 de + [ Rag

la| <k

:Z 8“Dazvo7y /Rd§

|a|<k

The rest is formal checking. O
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With Hormander’s result in hand, we may now prove our first main re-
sult:

Proof of Theorem A2.3.5: Let p € Ui N S™ and choose ¢, € D. Then,
with P the pseudodifferential operator corresponding to the symbol p, we
have

(¢, P*)

(P, )
_ / { / e p(a, €)B(€) dé | Plx) do

- / / / eI y) dy pl, €) dE () da.

Let us suppose for the moment—just as a convenience—that p is compactly
supported in £&. With this extra hypothesis the integral is absolutely conver-
gent and we may write

(¢, P1p) = / o(y) { / / el@=)€ p(x, Eip(x) dédx | dy. (A2.3.5.1)
Thus we have
o) = [ [ <o gu ) dede.
Now let p € C be a real-valued function such that p = 1 on K. Set

r(y, &, x) = p(y) - p(z,§).

Then
Ply) = / / £ T ()i (x) déda

- / Sy, € ) () déde
Ry (y),

where we define R by means of the multiple symbol r. [Note that the roles
of x and y here have unfortunately been reversed.|
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By Proposition A2.3.8, P* is then a classical pseudodifferential operator
with symbol p* whose asymptotic expansion is

Z 02 D2 [p(2)p(y. €)] —
> a(??D?p(z, £).

al
y=z

We have used here the fact that p = 1 on K. Thus the theorem is proved
with the extra hypothesis of compact support of the symbol in &.

To remove the extra hypothesis, let ¢ € C2° satisfy ¢ = 1 if |{] < 1 and
¢ = 0if [¢| > 2. Let

pi(z,&) = o(&/J) - p(z, &)
Observe that p; — p in the C* topology on compact sets for any k. Also, by
the special case of the theorem already proved,

(Op(p))) Zaé“D“py T 6)
~ ZagDa (&/)p(a, )}5

The proof is completed now by letting 7 — oo. O

Theorem A2.3.9 (Kohn-Nirenberg) Let p € WxNS™, q € Vi NS™. Let
P, () denote the pseudodifferential operators associated with p, q respectively.
Then P o @Q = Op(c) where

1. o€ \IfKﬂSm+n;

2.0~ Y, 408p(x,£) DS q(x,€).

Proof: We may shorten the proof by using the following trick: write @) =
(Q*)" and recall that Q* is defined by

@oty) = [ [ o) dude

= ([ ot gia )V< )
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Here we have used (A2.3.5).
Then

Qo(x) = ( / eiy'%(y)mdy) Vi), (42.39.1

where ¢* is the symbol of @Q* (note that ¢* is not g; however we do know that
q is the principal part of ¢*). Then, using (A2.3.9.1), we may calculate that

(PoQ)(d)(x) = / e Ep(z,€)(OD) (€) de
- / / (i, )V (5, ©)b(y) dyde

= // e—i(m—y)»ﬁ [p(l’, g)q* (y’ 6)} ¢(y) dyd .

Set ¢ = ¢*. Define

T($>€> y) = p($>€) ' (Aj(y>€)

One verifies directly that » € T"*™. We leave this as an exercise. Thus R, the
associated operator, equals P o (). By Proposition A2.3.8, there is a classical
symbol o such that R = Op(o) and

1
U($>€) ~ Z aang’f’(l’,g, y)

y=x
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Developing this last line, we obtain

@) ~ X —o¢ 5 (nlar, (0. )|

y=x

- Z_'ag[p@:,s)D;a(y,&)}

y=x

~ Z 8§ (2,8)D3q(x, )]

~ X5 X (ot 0] [or vt o)

alta2=a

2 2 1 1
~ 3 N {8§pzf}{angng(zaf)}W

a alta2=a

1 1 1 2 2 1~
~ Z @{85 p(x,f)}@{ag D3 D3 Q(%Q]

al,a?

1 1 1 1 2 2 o
~ [Z 0% p(x,g)] D {Z ooy Di q(x,ﬁ)]

o a?

1 1 1
~ 3 —370¢ (@, D¢ q(w, ).

ol

Here we have used the fact that the expression inside the second set of brack-
ets in the penultimate line is just the asymptotic expansion for the symbol
of (Q*)*. That completes the proof. 0

EXAMPLE A2.3.10 It is worth writing out the Kohn-Nirenberg result in
the special case that P and () are just partial differential operators. Thus
take

and
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Calculate P o (), taking care to note that the coefficients bg of ) will be
differentiated by P. And compare this result with what is predicted by
Theorem 6.3.8.

Next calculate Q) o P.

Finally calculate Po @ — @ o P. If P is a partial differential operator
of degree p and (@) is a partial differential operator of degree ¢ then of course
Po( has degree p+q and also Q) o P has degree p+¢. But the “commutator”
Po@ — Qo P has degree p+ g — 1. Explain in elementary terms why this is
the case (i.e., the top-order terms vanish because their coefficients have not
been differentiated). O

The next proposition is a useful device for building pseudodifferential
operators. Before we can state it we need a piece of terminology: we say
that two pseudodifferential operators P and () are equal up to a smoothing
operator if P — Q) € S* for all k < 0. In this circumstance we write P ~ Q.

Proposition A2.3.11 Let p;,j =0,1,2,..., be symbols of order m;;,
m; N\, —00o. Then there is a symbol p € S™°, unique modulo smoothing
operators, such that

pNij-
0

Proof: Let ¢y : RY — [0,1] be a C* function such that ¥ = 0 when
|r] <1 and ¥ = 1 when || > 2. Let 1 < t; < t3 < --- be a sequence of
positive numbers that increases to infinity. We will specify these numbers
later. Define

p(z, &) = Zw@/tj)pj(x,@-

Note that, for every fixed x,&, the sum is finite; for (£/t;) = 0 as soon as
t; > [£|. Thus p is a well-defined C'* function.

Our goal is to choose the ¢;’s so that p has the correct asymptotic ex-
pansion. We claim that there exist {¢;} such that

|D20g (0(&/t)ps(2.))| < 279 (1|l
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Assume the claim for the moment. Then, for any multi-indices «, 3, we
have

e e}

DIDep(e, &)l < D0|DIDE (w(E/t)pi(2,9))]

=0

< 3214 feglymale
=0

< O (L fglymetel.

It follows that p € S™°. Now we want to show that p has the right asymptotic
expansion. Let 0 < k € Z be fixed. We will show that

lives in S™*. We have

p—%m = { %wﬂt pw&)]

Jj=0
k—1

=2 (1= v(&/t)pi(@,€)

= q(x,8) +s(x,8).

It follows directly from our construction that ¢(z, &) € S™*. Since [1—(£/t; )]
has compact support in B(0,2t;) for every j, it follows that s(z,§) € S™°

Then
k—1
p—) pjeS™
j=0

<.

as we asserted.
We wish to see that p is unique modulo smoothing terms. Suppose that
g€ S™ and g~ > 7 p;. Then

p—q = (p=Y_p)—(a=> p)
i<k i<k
€ Sk



A2.3. THE CALCULUS OF OPERATORS 417

for any k. that establishes the uniqueness.
It remains to prove the claim. First observe that, for 7 a multi-index
with |7| = j,

IDLoE/)| = —|(Dre)(ety)]

J
t;

< Lsup {0r) - (1 ey |+ 1)

j
by llel<2t,

< G1+Eh,

with C' independent of j because t; — +00. Therefore

22 (vl mi(0.6))| =

> (i)Dgw(S/mD?‘ij(x,g)‘

T<«

> (a> Cy(1+ €))7 IC (1 + [glymo~tel=HD

T<«

< Cra(l+ g™,

IN

Consequently,

‘DfDél(w(&/tj)pj(af,&))‘ < Cjap(l+|€]ymilel
< Cj(1—|—|€|)m1_|a|

for every j > |a| 4+ |3] (here we have set C; = max{Cj .3 |a| + |3] < j}).
Now recall that ¢(§) = 0 if |{] < 1. Then 9(£/t;) # 0 implies that
|€] > t;. Thus we choose t; so large that ¢; > t;_; and
€] >t; implies Cj(1+ [¢[)ymi—mir <277

(remember that t; — —o0). Then it follows that

D2z (416t (0,6))| < 2901+ Iy

which establishes the claim and finishes the proof of the proposition. O
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Remark A2.3.12 In the case that the p; are just finitely many familiar
partial differential operators, one obtains p by just adding up the p;. In the
case of countably many partial differential operators, the proposition already
says something interesting. Basically we create p by adding up the tails of
the symbols of the p;. If we write

p(z, &) = Zw@/tj)pj(a:,&)-

in this case then the pseudodifferential operator corresponding to any partial
sum Z;io P(&/t;)p;(x,€) obviously differs from the ordinary sum Zf:o p; by
a smoothing operator. 0
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