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Preface

Geometric measure theory has roots going back to ancient Greek mathe-
matics. For considerations of the isoperimetric problem (to find the planar
domain of given perimeter having greatest area) led naturally to questions
about spatial regions and boundaries.

In more modern times, the Plateau problem is considered to be the well-
spring of questions in geometric measure theory. Named in honor of the
nineteenth century Belgian physicist Joseph Plateau who studied surface
tension phenomena in general, and soap films and soap bubbles in particu-
lar, the question (in its original formulation) was to show that a fixed, simple
closed curve in three-space will bound a surface of the type of a disc and hav-
ing minimal area. Further, one wishes to study uniqueness for this minimal
surface, and also to determine its other properties.

Jesse Douglas solved the original Plateau problem by considering the
minimal surface to be a harmonic mapping (which one sees by studying the
Dirichlet integral). For this effort he was awarded the Fields Medal in 1936.

Unfortuately, Douglas’s methods do not adapt well to higher dimensions,
so it is desirable to find other techniques with broader applicability. Enter
the theory of currents. Currents are continuous linear functionals on spaces
of differential forms. Brought to fruition by Federer and Fleming in the
1950s, currents turn out to be a natural language in which to formulate the
sorts of extremal problems that arise in geometry. One can show that the
natural differential operators in the subject are closed when acting on spaces
of currents, and one can prove compactness and structure theorems for spaces
of currents that satisfy certain natural bounds. These two facts are key to the
study of generalized versions of the Plateau problem and related questions
of geometric analysis. As a result, Federer and Fleming were able to prove
the existence of a solution to the general Plateau problem in all dimensions
and codimensions in 1960.

v
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Today geometric measure theory, which is properly focused on the study
of currents and their geometry, is a burgeoning field in its own right. Fur-
thermore, the techniques of geometric measure theory are finding good use in
complex geometry, in partial differential equations, and in many other parts
of modern geometry. It is well to have a text that introduces the graduate
student to key ideas in this subject.

The present book is such a text. Demanding minimal background—only
basic courses in calculus and linear algebra and real variables and measure
theory—this book treats all the key ideas in the subject. These include the
deformation theorem, the area and coarea formulas, the compactness theo-
rem, the slicing theorem, and applications to fundamental questions about
minimal surfaces that span given boundaries. In an effort to keep things
as fundamental and near-the-surface as possible, we eschew generality and
concentrate on the most essential results. As part of our effort to keep the
exposition self-contained and accessible, we have limited our treatment of the
regularity theory to proving almost-everywhere regularity of mass-minimizing
hypersurfaces. We provide a full proof of the Lipschitz space estimate for
harmonic functions that underlies the regularity of mass-minimizing hyper-
surfaces.

The notation in this subject—which is copious and complex—has been
carefully considered by these authors and we have made strenuous effort to
keep it as streamlined as possible. This is virtually the only graduate-level
text in geometric measure theory that has figures and fully develops the
subject; we feel that these figures add to the clarity of the exposition.

It should also be stressed that this book provides considerable background
to bring the student up to speed. This includes

• measure theory

• lower-dimensional measures and Carathéodory’s construction

• Haar measure

• covering theorems and differentiation of measures

• Poincaré inequalities

• differential forms and Stokes’s theorem

• a thorough introduction to distributions and currents
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Some students will find that they can skip certain of the introductory mate-
rial; but it is useful to have it all present as a resource, and for reference. We
have also made a special effort to keep this book self-contained. We do not
want the reader running off to other sources for key ideas; he or she should
be able to read this book while sitting at home.

Geometric measure theory uses techniques from geometry, measure the-
ory, analysis, and partial differential equations. This book showcases all these
methodologies, and explains the ways in which they interact. The result is a
rich symbiosis which is both rewarding and educational.

The subject of geometric measure theory deserves to be known to a broad
audience, and we hope that the present text will facilitate the dissemination
to and appreciation of the subject for a new generation of mathematicians.
It has been our pleasure to record these topics in a definitive and accessible
and, we hope, lively form. We hope that the reader will derive the same
satisfaction in studying these ideas in the present text. Of course we welcome
comments and criticisms, so that the book may be kept lively and current
and of course as accurate as possible.

We are happy to thank Randi D. Ruden and Hypatia S. R. Krantz for
genealogical help and Susan Parks for continued strength. It is a particular
pleasure to thank our teachers and mentors, Frederick J. Almgren and Her-
bert Federer, for their inspiration and for the model that they set. Geometric
measure theory is a different subject because of their work.

—Steven G. Krantz
—Harold R. Parks



Chapter 1

Basics

Our purpose in this chapter will be to establish notation and terminology.
The reader should already be acquainted with most of the concepts discussed
and, thus might wish to skim the chapter or skip ahead, returning if clarifi-
cation is needed.

1.1 Smooth Functions

The real numbers will be denoted by R. In this book, we will be concerned
with questions of geometric analysis in an N -dimensional Euclidean space.
That is, we will work in the space RN of ordered N -tuples of real numbers.
The inner product x · y of two elements x, y ∈ RN is defined by setting

x · y =
N∑

i=1

xiyi ,

where
x = (x1, x2, . . . , xN) and y = (y1, y2, . . . , yN ) .

Of course, the inner product is a symmetric, bilinear, positive definite func-
tion on RN × RN . The norm of the element x ∈ RN , denoted |x|, is defined
by setting

|x| =
√
x · x , (1.1)

as we may since the right-hand side of (1.1) is always non-negative. The stan-
dard orthonormal basis elements for RN will be denoted by ei, i = 1, 2, . . . , N .
Specifically, ei is the vector with N entries, all of which are 0s except the

1



2 BASICS

ith entry which is 1. For computational purposes, elements of RN should
be considered column vectors. For typographical purposes, column vectors
can waste space on the page, so we sometimes take the liberty of using row
vector notation, as we did above.

The open ball of radius r > 0 centered at x will be denoted B(x, r) and
is defined by setting

B(x, r) = { y ∈ RN : |x− y| < r } .

The closed ball of radius r ≥ 0 centered at x will be denoted B(x, r) and is
defined by setting

B(x, r) = { y ∈ RN : |x− y| ≤ r } .

The standard topology on the space RN is defined by letting the open
sets consist of all arbitrary unions of open balls. The closed sets are then
defined to be the complements of the open sets. For any subset A of RN (or
of any topological space), there is a largest open set contained in A. That

set, denoted Å, is called the interior of A. Similarly, A is contained in a
smallest closed set containing A and that set, denoted A, is called the closure
of A. The topological boundary of A denoted ∂A is defined by setting

∂A = A \ Å .

Remark 1.1.1

(1) At this juncture, the only notion of boundary in sight is that of the
topological boundary. Since later we shall be led to define another
notion of boundary, we are taking care to emphasize that the present
definition is the topological one. When it is clear from context that we
are discussing the topological boundary, then we will refer simply to
the “boundary of A.”

(2) The notations Å and A for the interior and closure, respectively, of the
set A are commonly used but are not universal. A variety of notations
is used for the topological boundary of A, and ∂A is one of the more
popular choices.

Let U ⊆ RN be any open set. A function f : U → RM is said to
be continuously differentiable of order k, or Ck, if f possesses all partial
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derivatives of order not exceeding k and all of those partial derivatives are
continuous; we write f ∈ Ck or f ∈ Ck(U) if U is not clear from context.
If the range of f is also not clear from context, then we write (for instance)
f ∈ Ck(U ; RM). When k = 1, we simply say f is continuously differentiable.
The function f is said to be C∞, or infinitely differentiable, provided that
f ∈ Ck for every positive k. The function f is said to be in Cω, or real
analytic, provided that it has a convergent power series expansion about
each point of U. We direct the reader to [KPk 02b] for matters related to real
analytic functions. We also extend the preceding notation by using f ∈ C0

to indicate that f is continuous.
The order of differentiability of a function is referred to as its smoothness.

By a smooth function, one typically means an f ∈ C∞, but sometimes an
f ∈ Ck, where k is an integer as large as turns out to be needed.

The support of a continuous function f : U → RM , denoted supp f , is
the closure of the set of points where f 6= 0. We will use Ck

c to denote the Ck

functions with compact support; here k can be a non-negative integer or ∞.
Let Z denote the integers, Z+ the non-negative integers, and N the

positive integers. A multiindex α is an element of (Z+)N , the cartesian
product of N copies of Z+. If α = (α1, α2, . . . , αN) is a multi-index and
x = (x1, x2, . . . , xN) is a point in RN , then we introduce the following stan-
dard notation:

xα ≡ (x1)
α1(x2)

α2 . . . (xN )αN ,

|α| ≡ α1 + α2 + · · · + αN ,

∂|α|

∂xα
≡ ∂α1

∂xα1
1

∂α2

∂xα2
2

· · · ∂
αN

∂xαN
N

,

α! ≡ (α1!)(α2!) . . . (αN !) .

With this notation, a function f on U is Ck if (∂|α|/∂xα)f exists and is
continuous, for all multi-indices α with |α| ≤ k.

Definition 1.1.2 If f is defined in a neighborhood of p ∈ RN and if f takes
values in RM , then we say f is differentiable at p when there exists a linear
function Df(p) : RN → RM such that

lim
x→p

|f(x) − f(p) − 〈Df(p), x− p〉|
|x− p|

= 0 . (1.2)
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In case f is differentiable at p, we call Df(p) the differential of f at p.

Advanced calculus tells us that if f is differentiable as in Definition 1.1.2,
then the first partial derivatives of f exist and that we can evaluate the
differential applied to the vector v using the equation

〈Df(p), v〉 =
N∑

i=1

vi
∂f

∂xi
(p) =

N∑

i=1

(ei · v)
∂f

∂xi
(p) , (1.3)

where v =
∑n

i=1 viei. The Jacobian matrix 1 of f at p is denoted by Jac f
and is defined by

Jac f ≡




∂f1

∂x1
(p)

∂f1

∂x2
(p) · · · ∂f1

∂xN
(p)

∂f2

∂x1

(p)
∂f2

∂x2

(p) · · · ∂f2

∂xN

(p)

...
...

...
∂fM

∂x1
(p)

∂fM

∂x2
(p) · · · ∂fM

∂xN
(p)




.

For v ∈ RN , we have
〈Df(p), v〉 = [Jac f ] v , (1.4)

where on the righthand side of (1.4) the vector v is represented as a column
vector and Jac f operates on v by matrix multiplication. Equation (1.4) is
simply another way of writing (1.3).

We will denote the collection of all M -by-N matrices with real entries by

MM,N .

The Hilbert–Schmidt norm2 on MM,N is defined by setting

∣∣∣ (ai,j)
∣∣∣ =




M∑

i=1

N∑

j=1

(ai,j)
2




1/2

for (ai,j) ∈ MM,N . The standard topology on MM,N is that induced by the
Hilbert–Schmidt norm. Of course, the mapping

(ai,j) 7−→
M∑

i=1

N∑

j=1

ai,j ei+(j−1)M

1Carl Gustav Jacobi (1804–1851).
2David Hilbert (1862–1943), Erhard Schmidt (1876–1959).
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from MM,N to RMN is a homeomorphism.
The function sending a point to its differential, when the differential ex-

ists, takes its values in the space of linear transformations from RN to RM , a
space often denoted Hom(RN ,RM). The space Hom(RN ,RM) can be iden-
tified with MM,N by representing each linear transformation by an M ×N
matrix. The Jacobian matrix provides that representation for the differential
of a function.

The standard topology on Hom(RN ,RM) is that induced by using the
Hilbert–Schmidt norm on MM,N and the identification of Hom(RN ,RM )
with MM,N . On a finite dimensional vector space, all norms induce the same
topology, so, in particular, the same topology is given by using the mapping
norm on Hom(RN ,RM ) defined by

‖L‖ = sup{ |L(v)| : v ∈ RN , |v| ≤ 1 } .

We see that f : U → RM is C1 if and only if

p 7−→ Df(p)

is a continuous mapping from U into Hom(RN ,RM).

Definition 1.1.3 If f ∈ Ck(U,RM), k = 1, 2, . . ., we define the kth differen-
tial of f at p, denoted Dkf(p), to be the k-linear RM -valued function given
by

〈Dkf(p), (v1, v2, . . . , vk)〉 =
N∑

i1,i2 ,...,ik=1

k∏

j=1

(eij · vj)
∂k

∂xi1∂xi2 · · · ∂xik

f(p) .

(1.5)

Note that, in the case k = 1, equations (1.3) and (1.5) agree. Also note that
the equality of mixed partial derivatives guarantees that Dkf(p) is a sym-
metric function. The interested reader may consult [Fed 69; 1.9, 1.10, 3.1.11]
to see the kth differential placed in the context of the symmetric algebra over
a vector space.

Finally note that, in case k > 1, one can show inductively that (1.5)
agrees with the value of the differential at p of the function

〈Dk−1f(·), (v1, v2, . . . , vk−1)〉
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applied to the vector vk, that is,

〈Dkf(p), (v1, v2, . . . , vk)〉 = 〈D 〈Dk−1f(p), (v1, v2, . . . , vk−1)〉, vk〉

holds.
In case M = 1, one often identifies the differential of f with the gradient

vector of f denoted by grad f and defined by setting

grad f =
N∑

i=1

∂f

∂xi
ei .

Similarly, the second differential of f is often identified with the Hessian
matrix 3 of f denoted by Hess (f) and defined by

Hess (f) =




∂2f

∂x2
1

∂2f

∂x1∂x2
. . .

∂2f

∂x1∂xN

∂2f

∂x2∂x1

∂2f

∂x2
2

. . .
∂2f

∂x2∂xN
...

...
...

∂2f

∂xN ∂x1

∂2f

∂xN ∂x2
. . .

∂2f

∂x2
N




.

If f is suitably smooth, one has

v · grad f = 〈Df, v〉

and
v · ([Hess (f)]w) = 〈D2f, (v,w)〉 ,

for vectors v and w represented as columns and where [Hess (f)]w indicates
matrix multiplication.

1.2 Measures

Standard references for basic measure theory are [Fol 84], [Roy 88], and
[Rud 87]. Since there are variations in terminology among authors, we will
briefly review measure theory. We shall not provide proofs of most state-
ments, but instead refer the reader to [Fol 84], [Roy 88], and [Rud 87] for
details.

3Ludwig Otto Hesse (1811–1874).
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Definition 1.2.1 Let X be a nonempty set.

(1) By a measure on X we mean a function µ defined on all subsets of X
satisfying the conditions µ(∅) = 0 and

µ

( ⋃

A∈F
A

)
≤

∑

A∈F
µ(A) if F is collection of subsets of X

with card(F) ≤ ℵ0. (1.6)

(2) If a set A ⊆ X satisfies

µ(E) = µ(E ∩A) + µ(E \A) for all E ⊆ X, (1.7)

then we say that A is µ-measurable.

The condition (1.6) is called countable subadditivity. Since the empty union
is the empty set and the empty sum is zero, countable subadditivity implies
µ(∅) = 0. Nonetheless, it is worth emphasizing that µ(∅) = 0 must hold.

Proposition 1.2.2 Let µ be a measure on the nonempty set X.

(1) If µ(A) = 0, then A is µ-measurable.

(2) If A is µ-measurable and B ⊆ X, then

µ(A ∪B) = µ(A) + µ(B) − µ(A ∩B) .

Definition 1.2.3 Let X be a nonempty set. By a σ-algebra on X is meant
a family M of subsets of X such that

(1) ∅ ∈ M, X ∈ M,

(2) M is closed under countable unions,

(3) M is closed under countable intersections, and

(4) M is closed under taking complements in X.

Theorem 1.2.4 If µ is a measure on the nonempty set X, then the family
of µ-measurable sets forms a σ-algebra.

Theorem 1.2.5 Let µ be a measure on the nonempty set X.
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(1) If F is an at most countable family of pairwise disjoint µ-measurable
sets, then

µ

( ⋃

A∈F
A

)
=
∑

A∈F
µ(A) .

(2) If A1 ⊆ A2 ⊆ A3 · · · is a non-decreasing family of µ-measurable sets,
then

µ

( ∞⋃

i=1

Ai

)
= lim

i→∞
µ(Ai) .

(3) If B1 ⊇ B2 ⊇ B3 · · · is a non-increasing family of µ-measurable sets
and µ(B1) <∞, then

µ

( ∞⋂

i=1

Bi

)
= lim

i→∞
µ(Bi) .

Remark 1.2.6 The conclusion (1) of Theorem 1.2.5 is called countable ad-
ditivity. Many authors prefer the term outer measure for the countably
subadditive functions we have called measures. Those authors define a mea-
sure to be a countably additive function on a σ-algebra. But if M is a
σ-algebra and

m : M → {t : 0 ≤ t ≤ ∞}

is a countably additive function, then one can define µ(A) for any A ⊆ X by
setting

µ(A) = inf{m(E) : A ⊆ E ∈ M } .

With µ so defined, we see that µ(A) = m(A) holds whenever A ∈ M and
that every set in M is µ-measurable. Thus it is no loss of generality to
assume from the outset that a measure is defined on all subsets of X.

The notion of a regular measure, defined next, gives additional useful
structure.

Definition 1.2.7 A measure µ on a nonempty set X is regular if for each
set A ⊆ X there exists a µ-measurable set B with A ⊆ B and µ(A) = µ(B).

One consequence of the additional structure available when working with
a regular measure is given in the next lemma. The lemma is easily proved us-
ing the analogous result for µ-measurable sets; that is, using Theorem 1.2.5(2).
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Lemma 1.2.8 Let µ be a regular measure on the nonempty set X. If a
sequence of subsets {Aj} of X satisfies A1 ⊆ A2 ⊆ · · ·, then

µ




∞⋃

j=1

Aj


 = lim

j→∞
µ(Aj) .

Definition 1.2.9 If X is a topological space, then the Borel sets4 are the
elements of the smallest σ-algebra containing the open sets.

For a measure on a topological space, it is evident that the measurability
of all the open sets implies the measurability of all the Borel sets, but it
is typical for the Borel sets to be a proper subfamily of the measurable
sets. For instance, the sets in RN known as Suslin sets5 or (especially in
the descriptive set theory literature) as analytic sets are µ-measurable for
measures µ of interest in geometric analysis. Any continuous image of a
Borel set is a Suslin set, so every Borel set is ipso facto a Suslin set. Suslin
sets are discussed in Section 1.6.

For the study of geometric analysis, the measures of interest always satisfy
the following condition of Borel regularity.

Definition 1.2.10 Let µ a measure on the topological space X. We say that
µ is Borel regular if every open set is µ-measurable and if, for each A ⊆ X,
there exists a Borel set B ⊆ X with A ⊆ B and µ(A) = µ(B).

Often we will be working in the more restrictive class of Radon measures6

defined next.

Definition 1.2.11 Suppose µ is a measure on a locally compact Hausdorff
space7 X. We say µ is a Radon measure if the following conditions hold:

(1) Every compact set has finite µ measure.

(2) Every open set is µ-measurable and, if V ⊆ X is open, then

µ(V ) = sup{ µ(K) : K is compact and K ⊆ V } .
4Émile Borel (1871–1956).
5Mikhail Yakovlevich Suslin (1895–1919).
6Johann Radon (1887–1956).
7Felix Hausdorff (1869–1942).
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(3) For every A ⊆ X,

µ(A) = inf{ µ(V ) : V is open and A ⊆ V } .

Definition 1.2.12 Let X be a metric space with metric %.

(1) For a set A ⊆ X, we define the diameter of A by setting

diamA = sup{ %(x, y) : x, y ∈ A } .

(2) For sets A,B ⊆ X, we define the distance between A and B by setting

dist(A,B) = inf{ %(a, b) : a ∈ A, b ∈ B } .

If A is the singleton set {a0}, then we will abuse the notation by
writing dist(a0, B) instead of dist({a0}, B).

When working in a metric space, a convenient tool for verifying the measura-
bility of the open sets is often provided by Carathéordory’s criterion8 which
we now introduce.

Theorem 1.2.13 (Carathéodory’s Criterion) Suppose µ is a measure
on the metric space X. All open subsets of X are µ-measurable if and only
if

µ(A) + µ(B) ≤ µ(A ∪B) (1.8)

holds, whenever A,B ⊆ X with 0 < dist(A,B).

Proof. First, suppose all open subsets of X are µ-measurable and let A,B ⊆
X with 0 < dist(A,B) be given. Setting d = dist(A,B), we can define the
open set

V = { x ∈ X : dist(x,A) < d/2 } .

Since V is open, thus µ-measurable, we have

µ(A ∪B) = µ[(A ∪B) ∩ V ] + µ[(A ∪B) \ V ] = µ(A) + µ(B) ,

so (1.8) holds.
Conversely, let V ⊆ X be open and suppose (1.8) holds, whenever A,B ⊆

X with 0 < dist(A,B). Let E ⊆ X be an arbitrary set. For each i = 1, 2, . . .,

8Constantin Carathéodory (1873–1950).
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we apply (1.8) to the sets E ∩V and { x ∈ E : dist(x, V ) > 1/i } to conclude
that

µ
[
(E ∩ V ) ∪ { x ∈ E : dist(x, V ) > 1/i }

]

≤ µ(E ∩ V ) + µ
(
{ x ∈ E : dist(x, V ) > 1/i }

)

≤ µ(E ∩ V ) + µ(E \ V ) .

Since

E =
∞⋃

i=1

[
(E ∩ V ) ∪ { x ∈ E : dist(x, V ) > 1/i }

]
,

we see that

µ(E) = lim
i→∞

µ
[
(E ∩V )∪{ x ∈ E : dist(x, V ) > 1/i }

]
≤ µ(E ∩V ) +µ(E \V )

holds. Since E ⊆ X was arbitrary, V is µ-measurable.

1.2.1 Lebesgue Measure

To close out this section, we define Lebesgue measure9 on R. Other measures
will be defined in Chapter 2.

Definition 1.2.14 For A ⊆ R, the (one-dimensional) Lebesgue measure of
A is denoted L1(A) and is defined by setting L1(A) equal to

inf
{ ∑

I∈I
length(I) : I is a family of bounded open intervals, A ⊆

⋃

I∈I
I
}
.

(1.9)
Here, of course, if I = (a, b) is an open interval, then length(I) = b− a.

It is easy to see that L1 is a measure, and it is easy to apply Carathéodory’s
criterion to see that all open sets in the reals are L1 measurable. The purpose
of the Lebesgue measure is to extend the notion of length to general sets.
It may not be obvious that the result of the construction agrees with the
ordinary notion of length, so we confirm that fact next.

9Henri Léon Lebesgue (1875–1941).
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Lemma 1.2.15 If a bounded, closed interval [a, b] is contained in the union
of finitely many nonempty, bounded, open intervals, (a1, b1), (a2, b2), . . .,
(an, bn), then it holds that

b− a ≤
n∑

i=1

(bi − ai) . (1.10)

Proof. Noting that the result is obvious when n = 1, we argue by induction
on n by supposing that the result holds for all bounded, closed intervals and
all n less than or equal to the natural number N .

Consider

[a, b] ⊆
N+1⋃

i=1

(ai, bi) .

At least one of the intervals contains a, so by renumbering the intervals if
need be, we may suppose a ∈ (aN+1, bN+1). Also, we may suppose bN+1 < b,
because b ≤ bN+1 would give us b− a < bN+1 − aN+1.

We have

[bN+1, b] ⊆
N⋃

i=1

(ai, bi) ,

and thus, by the induction hypothesis,

b− bN+1 ≤
N∑

i=1

(bi − ai) ,

so

b−a ≤ (bN+1−aN+1)+(b−bN+1) ≤ (bN+1−aN+1)+
N∑

i=1

(bi−ai) =
N+1∑

i=1

(bi−ai) ,

as required.

Corollary 1.2.16 The Lebesgue measure of the closed, bounded interval
[a, b] equals b− a.

Proof. Clearly, we have L1([a, b]) ≤ b− a. To obtain the reverse inequality,
we observe that, if [a, b] is covered by a countable family of open intervals,
then by compactness [a, b] is covered by finitely many of the open intervals.
It then follows from the lemma that the sum of the lengths of the covering
intervals exceeds b− a.
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Lebesgue measure is the unique translation-invariant measure on R that
assigns the unit interval measure 1. The next example shows us that not
every set is L1-measurable.

Example 1.2.17 Let Q denote the rational numbers. Notice that, for each
a ∈ R, the set Xa defined by

Xa = { a+ q : q ∈ Q }

intersects the unit interval [0, 1]. Of course, if a1 − a2 is a rational number,
thenXa1 = Xa2, but also, the converse is true: IfXa1 = Xa2 , then a1−a2 ∈ Q.

By the axiom of choice, there exists a set C such that

C ∩ [0, 1] ∩Xa

has exactly one element for every a ∈ R. By the way C is defined, the sets
C − q = { c− q : c ∈ C }, q ∈ [0, 1] ∩ Q, must be pairwise disjoint. Because
L1 is translation-invariant, all the sets C−q have L1 measure equal to L1(C)
and if one of those sets is L1-measurable, then all of them are.

Now, if t ∈ [0, 1], then there is c ∈ [0, 1] ∩ Xt, that is, c = t + q with
q ∈ Q. Equivalently, we can write q = c − t, so we see that −1 ≤ q ≤ 1 and
t ∈ C − q. Thus we have

[0, 1] ⊆
⋃

q∈[0,1]∩Q
(C − q) ⊆ [−1, 2] (1.11)

and the sets in the union are all pairwise disjoint.
If C were L1-measurable, then the lefthand containment in (1.11) would

tell us that L1(C) > 0, while the righthand containment would tell us that
L1(C) = 0. Thus we have a contradiction. We conclude that C is not
L1-measurable.

The construction in the Example 1.2.17 is widely known. Less well known
is the general fact that, if µ is a Borel regular measure on a complete, sepa-
rable metric space such that there are sets with positive, finite measure and
with the property that no point has positive measure, then there must exist
a set that is not µ-measurable (see [Fed 69; 2.2.4]).

The construction of non-measurable sets requires the use of the Axiom
of Choice. In fact, Robert Solovay has used Paul Cohen’s forcing method to
construct a model of set theory in which the Axiom of Choice is not valid
and in which every set of reals is Lebesgue measurable (see [Sov 70]).
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1.3 Integration

The definition of the integral in use in the mid 1800s was that given by
Augustin-Louis Cauchy (1789–1850). Cauchy’s definition is applicable to
continuous integrands, and easily extends to piecewise continuous integrands,
but does not afford more generality. This lack of generality in the definition
of the definite integral compelled Bernhard Riemann (1826–1866) to clarify
the notion of an integrable function for his investigation of the representation
of functions by trigonometric series.

Recall that Riemann’s definition of the integral of a function f : [a, b] → R
is based on the idea of partitioning the domain of the function into sub-
intervals. This approach is mandated by the absence of a measure of the size
of general subsets of the domain. Measure theory takes away that limitation
and allows the definition of the integral to proceed by partitioning the domain
via the inverse images of intervals in the range. While this change of the
partitioning may seem minor, the consequences are far reaching and have
provided a theory that continues to serve us well.

1.3.1 Measurable Functions

Definition 1.3.1 Let µ be a measure on the nonempty set X.

(1) The term µ-almost can serve as an adjective or adverb in the following
ways:

(a) Let P(x) be a statement or formula that contains a free variable
x ∈ X. We say that P(x) holds for µ-almost every x ∈ X if

µ
(
{ x ∈ X : P(x) is false }

)
= 0 .

If X is understood from context, then we simply say that P(x)
holds µ-almost everywhere.

(b) Two setsA,B ⊆ X are µ-almost equal if their symmetric difference

has µ-measure zero, i.e., µ
[
(A \B) ∪ (B \A)

]
= 0.

(c) Two functions f and g, each defined for µ-almost every x ∈ X are
said to be µ-almost equal if f(x) = g(x) holds for µ-almost every
x ∈ X.
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(2) Let Y be a topological space. By a µ-measurable, Y -valued function
we mean a Y -valued function f defined for µ-almost every x ∈ X such
that the inverse image of any open subset U of Y is a µ-measurable
subset of X, that is,

(a) f : D ⊆ X → Y ,

(b) µ(X \D) = 0, and

(c) f−1(U) is µ-measurable whenever U ⊆ Y is open.

Remark 1.3.2

(1) For the purposes of measure and integration, two functions that are
µ-almost equal are equivalent. This defines an equivalence relation.

(2) It is no loss of generality to assume that a µ-measurable function is
defined at every point of X. In fact, suppose f is a µ-measurable, Y -
valued function with domain D and let y0 be any element of Y . We
can define the µ-measurable function f̃ : X → Y by setting f̃ = f on
D and f̃(x) = y0, for all x ∈ X \D. Then f and f̃ are µ-almost equal
and f̃ is defined at every point of X.

Two classical theorems concerning measurable functions are those of Ego-
roff10 and Lusin.11

Theorem 1.3.3 (Egoroff’s theorem) Let µ be a measure on X and let
f1, f2, . . . be real-valued, µ-measurable functions. If A ⊆ X with µ(A) <∞,

lim
n→∞

fn(x) = g(x) exists for µ-almost every x ∈ A,

and ε > 0, then there exists a µ-measurable set B, with µ(A \B) < ε, such
that fn converges uniformly to g on B.

Theorem 1.3.4 (Lusin’s theorem) Let X be a metric space and let µ
be a Borel regular measure on X. If f : X → R is µ-measurable, A ⊆ X
with µ(A) < ∞, and ε > 0, then there exists a closed set C ⊆ A, with
µ(A \C) < ε, such that f is continuous on C.

10Dimitri Fedorovich Egorov (1869–1931).
11Nikolai Nikolaevich Luzin (Nicolas Lusin) (1883–1950).
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One reason for the usefulness of the notion of a µ-measurable function is
that the set of µ-measurable functions is closed under operations of interest in
analysis (including limiting operations). This usefulness is further enhanced
by using the extended real numbers which we define next.

Definition 1.3.5 Often we will allow a function to take the values +∞ =
∞ and −∞. To accommodate this generality, we define the extended real
numbers

R = R ∪ {∞, −∞} .

The standard ordering on R is defined by requiring

x ≤ y if and only if

(x, y) ∈
(
{−∞}× R

) ⋃ (
R × {∞}

) ⋃ { (x, y) ∈ R × R : x ≤ y } .

The operation of addition is extended by requiring that it agree with values
already defined for the real numbers, by demanding that the operation be
commutative, and by assigning the values given in the following table.

+ −∞ x ∈ R +∞
+∞ undefined +∞ +∞
−∞ −∞ −∞ undefined

The operation of multiplication is extended by requiring that it agree with
values already defined for the real numbers, by demanding that the operation
be commutative, and by assigning the values given in the following table.

× −∞ ≤ x < 0 0 0 < x ≤ +∞
+∞ −∞ undefined +∞
−∞ +∞ undefined −∞

The topology on R has as a basis the finite open intervals and the intervals
of the form [−∞, a) and (a,∞] for a ∈ R.

The extensions of the arithmetic operations given above are maximal
subject to maintaining continuity. Nonetheless, when defining integrals, it is
convenient to extend the above definitions by adopting the convention that

0 · ∞ = 0 · (−∞) = 0 .
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1.3.2 The Integral

Definition 1.3.6 For a function f : X → R we define the positive part of f
to be the function f+ : X → [0,∞] defined by setting

f+(x) =

{
f(x) if f(x) > 0,

0 otherwise.

Similarly, the negative part of f is denoted f− and is defined by setting

f−(x) =

{
f(x) if f(x) < 0,

0 otherwise.

Definition 1.3.7

(1) The characteristic function of S ⊆ X is the function with domain X
defined, for x ∈ X, by setting

χ
S
(x) =

{
1 if x ∈ S,
0 if x /∈ S.

(2) By a simple function is meant a linear combination of characteristic
functions of subsets of X; that is, f is a simple function if it can be
written in the form

f =
n∑

i=1

ai χAi
, (1.12)

where the numbers ai can be real or complex, but only finite values are
allowed (that is, ai 6= ±∞).

The non-negative, µ-measurable, simple functions are of particular interest
for integration theory.

Lemma 1.3.8 Let µ be a measure on the nonempty set X. If f : X →
[0,∞] is µ-measurable, then there exists a sequence of µ-measurable, simple
functions hn : X → [0,∞], n = 1, 2, . . . , such that

(1) 0 ≤ h1 ≤ h2 ≤ · · · ≤ f , and

(2) lim
n→∞

hn = f(x), for all x ∈ X.
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Proof. We can set

hn = nχ
Bn

+
n2n−1∑

i=1

i · 2−n χ
Ai
,

where Bn = f−1
(

[n,∞]
)
, and

Ai = f−1
(

[i · 2−n, (i+ 1) · 2−n)
)
, i = 1, 2, . . . , n2n − 1 .

Definition 1.3.9 Let µ be a measure on the nonempty set X. If f : X → R
is µ-measurable, then the integral of f with respect to µ or, more simply, the
µ-integral of f (or, more simply yet, the integral of f when the measure is
clear from context) is denoted by

∫
f dµ =

∫

X
f(x) dµx

and is defined as follows:

(1) In case f is a non-negative, simple function written as in (1.12) with
each Ai µ-measurable, we set

∫
f dµ =

n∑

i=1

ai µ(Ai) . (1.13)

Note that the convention 0 ·∞ = 0 insures that the value on the right-
hand side of (1.13) is always finite.

(2) In case f is a non-negative function, we set
∫
f dµ = sup

{ ∫
h dµ : 0 ≤ h ≤ f, h simple, µ-measurable

}
.

(1.14)

(3) In case at least one of
∫
f+ dµ and

∫
f− dµ is finite, so that

∫
f+ dµ−

∫
f− dµ

is defined, we set
∫
f dµ =

∫
f+ dµ−

∫
f− dµ . (1.15)
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(4) In case both
∫
f+ dµ and

∫
f− dµ are infinite, the quantity

∫
f dµ is

undefined.

Definition 1.3.10

(1) To integrate f over a subset A of X, we multiply f by the characteristic
function of A, that is,

∫

A
f dµ =

∫
f · χ

A
dµ .

(2) The definition of
∫
f dµ extends to complex-valued, respectively, RN -

valued functions, by separating f into real and imaginary parts, respec-
tively, components, and combining the resulting real-valued integrals
using linearity.

(3) If
∫

|f | dµ is finite, then we say that f is µ-integrable or (simply in-

tegrable if the measure µ is clear from context). In particular, f is
µ-integrable if and only if |f | is µ-integrable.

Remark 1.3.11

(1) By a Lebesgue integrable function is meant an L1-integrable function
in the terminology of Definition 1.3.10(3).

(2) The connection between the theory of Riemann integration and Lebesgue
integration is provided by the theorem that states

A bounded, real-valued function on a closed interval is Rie-
mann integrable if and only if the set of points at which the
function is discontinuous has Lebesgue measure zero.

We will not prove this result. A proof can be found in [Fol 84; Theorem
(2.28)].

(3) The reader should be aware that the terminology in [Fed 69] is differ-
ent from that which we use: In [Fed 69] a function is said to be “µ

integrable” if
∫
f dµ is defined, the values +∞ and −∞ being allowed,

and “µ summable” if
∫

|f | dµ is finite.
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The following basic facts hold for integration of non-negative functions.

Theorem 1.3.12 Let µ be a measure on the nonempty set X. Suppose
f, g : X → [0,∞] are µ-measurable.

(1) If A ⊆ X is µ-measurable, and f(x) = 0 holds for µ-almost all x ∈ A,
then ∫

A
f dµ = 0 .

(2) If A ⊆ X is µ-measurable, and µ(A) = 0, then

∫

A
f dµ = 0 .

(3) If 0 ≤ c <∞, then ∫
(c · f) dµ = c

∫
f dµ .

(4) If f ≤ g, then ∫
f dµ ≤

∫
g dµ .

(5) If A ⊆ B ⊆ X are µ-measurable, then

∫

A
f dµ ≤

∫

B
f dµ .

Proof. Conclusions (1)–(4) are immediate from the definitions, and conclu-
sion (5) follows from (4).

Of course it is essential that the equation
∫

(f + g) dµ =
∫
f dµ +

∫
g dµ

hold. Unfortunately, it is not an immediate consequence of the definition.
To prove it we need the next lemma, which is a weak form of Lebesgue’s
monotone convergence theorem.

Lemma 1.3.13 Let µ be a measure on the nonempty set X. If f : X →
[0,∞] is µ-measurable and 0 ≤ h1 ≤ h2 ≤ · · · ≤ f is a sequence of simple,
µ-measurable functions with lim

n→∞
hn = f , then

lim
n→∞

∫
hn dµ =

∫
f dµ .
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Proof. The inequality lim
n→∞

∫
hn dµ ≤

∫
f dµ is immediate from the defini-

tion of the integral.

To obtain the reverse inequality, let ` be an arbitrary simple, µ-measurable
function with 0 ≤ ` ≤ f and write

` =
k∑

i=1

ai χAi
,

where each Ai is µ-measurable. Let c ∈ (0, 1) also be arbitrary.

For each m, set

Em = { x : c · `(x) ≤ hm(x) } and `m = c · ` · χ
Em

.

For m ≤ n, we have `m ≤ hn, so applying Theorem 1.3.12(4), we obtain

∫
`m dµ ≤ lim

n→∞

∫
hn dµ .

Finally, we note that, for each i = 1, 2, . . . , k, the sets Ai ∩Em increase to Ai

as m→ ∞, so, by µ(Ai) = limm→∞ µ(Ai ∩ Em) and thus

c
∫
` dµ =

∫
c · ` dµ = lim

m→∞

∫
`m dµ ≤ lim

n→∞

∫
hn dµ .

The result follows from the arbitrariness of ` and c.

Theorem 1.3.14 Let µ be a measure on the nonempty set X. If f, g : X →
[0,∞] are µ-measurable, then

∫
(f + g) dµ =

∫
f dµ +

∫
g dµ .

Proof. The result clearly holds if f and g are simple functions, and the
general case then follows from Lemmas 1.3.8 and 1.3.13.

Corollary 1.3.15 The µ-integrable functions form a vector space, and the
µ-integral is a linear functional on the space of µ-integrable functions.
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Remark 1.3.16 The decisive results for integration theory are Fatou’s12

lemma and the monotone and dominated convergence theorems of Lebesgue
(see any of [Fol 84], [Roy 88], and [Rud 87]). In the development outlined
above, it is easiest first to prove Lebesgue’s monotone convergence theorem,
arguing as in the proof of Lemma 1.3.13. Then one uses the monotone
convergence theorem to prove Fatou’s lemma and the dominated convergence
theorem.

One of the beauties of measure theory is that we deal in analysis almost
exclusively with measurable functions and sets, and the ordinary operations
of analysis would never cause us to leave the realm of measurable functions
and sets. However, in geometric measure theory it is occasionally necessary
to deal with functions that either are non-measurable or are not known a
priori to be measurable. In such situations, it is convenient to have a notion
of upper and lower integral.

Definition 1.3.17 Let µ be a measure on the nonempty set X and let f :
X → [0,∞] be defined µ-almost everywhere. We denote the upper µ-integral
of f by ∫

f dµ

and define it by setting

∫
f dµ = inf

{ ∫
ψ dµ : 0 ≤ f ≤ ψ and ψ is µ-measurable

}
.

Similarly, the lower µ-integral of f is denoted by
∫
f dµ

and defined by setting
∫
f dµ = sup

{ ∫
φdµ : 0 ≤ φ ≤ f and φ is µ-measurable

}
.

Lemma 1.3.18 If µ is a measure on the nonempty set X and f, g : X →
[0,∞] are defined µ-almost everywhere, then the following hold

(1)
∫
f dµ ≤

∫
f dµ ,

12Pierre Joseph Louis Fatou (1878–1929).
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(2) if f ≤ g, then
∫
f dµ ≤

∫
g dµ and

∫
f dµ ≤

∫
g dµ ,

(3) if f is µ-measurable, then
∫
f dµ =

∫
f dµ =

∫
f dµ

(4) if 0 ≤ c, then
∫
cf dµ = c

∫
f dµ and

∫
cf dµ = c

∫
f dµ ,

(5)
∫
f dµ+

∫
g dµ ≤

∫
(f + g) dµ and

∫
(f + g) dµ ≤

∫
f dµ+

∫
g dµ .

The lemma follows easily from the definitions.

Proposition 1.3.19 Suppose f : X → [0,∞] satisfies
∫
f dµ < ∞. For

such a function, ∫
f dµ =

∫
f dµ

holds if and only if f is µ-measurable.

Proof. Suppose the upper and lower µ-integrals of f are equal. Choose
sequences of µ-measurable functions g1 ≤ g2 ≤ · · · ≤ f and h1 ≥ h2 ≥ · · · ≥
f with

lim
n→∞

∫
gn dµ =

∫
f dµ =

∫
f dµ = lim

n→∞

∫
hn dµ .

Then g = limn→∞ gn and h = limn→∞ hn are µ-measurable with g ≤ f ≤ h.
Since, by Lebesgue’s dominated convergence theorem, the µ-integrals of g
and h are equal, we see that g and h must be µ-almost equal to each other,
and thus µ-almost equal to f .

1.3.3 Lebesgue Spaces

Definition 1.3.20 Fix 1 ≤ p ≤ ∞. Let µ be a measure on the nonempty
set X. The Lebesgue space Lp(µ) (or simply Lp, if the choice of the measure
is clear from context) is the vector space of µ-measurable, complex-valued
functions satisfying

‖f‖p <∞ ,
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where ‖f‖p is defined by setting

‖f‖p =





(∫
|f |p dµ

)1/p

, if p <∞,

inf
{
t : µ

(
X ∩ { x : |f(x)| > t }

)
= 0

}
, if p = ∞.

The elements of Lp are called Lp functions. Of course, the L1 functions
are just the µ-integrable functions. The L2 functions are also called square
integrable functions, and, for 1 ≤ p < ∞, the Lp functions are also called
p-integrable functions.

Remark 1.3.21

(1) A frequently used tool in analysis is Hölder’s13 inequality

∫
fg dµ ≤ ‖f‖p ‖g‖q ,

where f and g are µ-measurable, 1 < p < ∞, and 1/p + 1/q = 1.
We note that Hölder’s inequality is also valid when the integrals are
replaced by upper integrals. The proof of this generalization makes use
of Lemma 1.3.18(2,5).

(2) The function ‖·‖p is called the Lp-norm. In the cases p = 1 and p = ∞,
it is easy to verify that the Lp-norm is, in fact, a norm, but, for the case
1 < p <∞, this fact is a consequence of Minkowski’s 14 inequality

‖f + g‖p ≤ ‖f‖p + ‖g‖p .

(3) Much of the importance of the Lebesgue spaces stems from the discov-
ery that Lp, 1 ≤ p < ∞, is a complete metric space. This result is
sometimes (for instance in [Roy 88]) called the Riesz–Fischer15 theo-
rem.

13Otto Ludwig Hölder (1859–1937).
14Hermann Minkowski (1864–1909).
15Frigyes Riesz (1880–1956), Ernst Sigismund Fischer (1875–1954).
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1.3.4 Product Measures and the Fubini–Tonelli Theo-

rem

Definition 1.3.22 Let µ be a measure on the nonempty set X and let ν be
a measure on the nonempty set Y . The cartesian product of the measures µ
and ν is denoted µ× ν and is defined by setting

(µ × ν)(E) = inf
{ ∞∑

i=1

µ(Ai) · ν(Bi) : E ⊆
∞⋃

i=1

Ai ×Bi,

Ai ⊆ X is µ-measurable, for i = 1, 2, . . .,

Bi ⊆ Y is ν-measurable, for i = 1, 2, . . .
}
. (1.16)

It is immediately verified that µ× ν is a measure on X × Y . Clearly the
inequality

(µ × ν)(A×B) ≤ µ(A) · ν(B)

holds, whenever A ⊆ X is µ-measurable and B ⊆ Y is ν-measurable. The
product measure µ × ν is the largest measure satisfying that condition.

One of the main concerns in using product measures is justifying the in-
terchange of the order of integration in a multiple integral. The next example
illustrates a situation in which the order of integration in a double integral
cannot be interchanged.

Example 1.3.23 The counting measure on X is defined by setting

µ(E) =

{
card(E) if E is finite,

∞ otherwise,

for E ⊆ X. If ν is another measure on X for which 0 < ν(X) and ν({x} ) =
0, for each x ∈ X, and if f : X ×X → [0,∞] is the characteristic function
of the diagonal, that is,

f(x1, x2) =

{
1 if x1 = x2,
0 otherwise,

then ∫ ( ∫
f(x1, x2) dµx1

)
dν x2 =

∫
1 dν = ν(X) > 0 ,

but ∫ ( ∫
f(x1, x2) dν x2

)
dµx1 =

∫
0 dµ = 0 .
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To avoid the phenomenon in the preceding example we introduce a defi-
nition.

Definition 1.3.24 Let µ be a measure on the nonempty set X. We say µ is
σ-finite if X can be written as a countable union of µ-measurable sets each
having finite µ measure.

The main facts about product measures, which often do allow the inter-
change of the order of integration, are stated in the next theorem. We refer
the reader to any of [Fol 84], [Roy 88], and [Rud 87].

Theorem 1.3.25 Let µ be a σ-finite measure on the nonempty set X and
let ν be a σ-finite measure on the nonempty set Y .

(1) If A ⊆ X is µ-measurable and B ⊆ Y is ν-measurable, then A× B is
(µ × ν)-measurable and

(µ× ν)(A×B) = µ(A) · ν(B) .

(2) (Tonelli’s16 theorem) If f : X × Y → [0,∞] is (µ× ν)-measurable,
then

g(x) =
∫
f(x, y) dν y (1.17)

defines a µ-measurable function on X,

h(y) =
∫
f(x, y) dµx (1.18)

defines a ν-measurable function on Y , and

∫
f d(µ × ν) =

∫ ( ∫
f(x, y) dµx

)
dν y =

∫ ( ∫
f(x, y) dν y

)
dµx .

(1.19)

(3) (Fubini’s17 theorem) If f is (µ × ν)-integrable, then

(a) φ(x) ≡ f(x, y) is µ-integrable, for ν-almost every y ∈ Y ,

(b) ψ(y) ≡ f(x, y) is ν-integrable, for µ-almost every x ∈ X,

(c) g(x) defined by (1.17) is a µ-integrable function on X,

16Leonida Tonelli (1885–1946).
17Guido Fubini (1879–1943).
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(d) h(y) defined by (1.18) is a ν-integrable function on Y , and

(e) equation (1.19) holds.

Definition 1.3.26 The N-dimensional Lebesgue measure on RN , denoted
LN , is defined inductively by setting LN = LN−1 ×L1.

1.4 The Exterior Algebra

In an introductory vector calculus course, a vector is typically described
as representing a direction and a magnitude, that is, an oriented line and a
length. When later an oriented plane and an area in that plane are to be rep-
resented, a direction orthogonal to the plane and a length equal to the desired
area are often used. This last device is only viable for (N − 1)-dimensional
oriented planes in N -dimensional space, because the complementary dimen-
sion must be 1. For the general case of an oriented m-dimensional plane and
an m-dimensional area in RN , some new idea must be invoked.

The straightforward way to represent an oriented m-dimensional plane
in RN is to specify an ordered m-tuple of independent vectors parallel to
the plane. To simultaneously represent an m-dimensional area in that plane,
choose the vectors so that the m-dimensional area of the parallelepiped they
determine equals that given m-dimensional area. Of course, a given oriented
m-dimensional plane and m-dimensional area can equally well be represented
by many different ordered m-tuples of vectors, and identifying any two such
ordered m-tuples introduces an equivalence relation on the ordered m-tuples
of vectors. To facilitate computation and understanding, the equivalence
classes of ordered m-tuples are overlaid with a vector space structure. The
result is the alternating algebra of m-vectors in RN . We now proceed to a
formal definition.

Definition 1.4.1

(1) Define an equivalence relation ∼ on

(
RN

)m
= RN × RN × · · · × RN

︸ ︷︷ ︸
m factors

by requiring, for all α ∈ R and 1 ≤ i < j ≤ m,
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(a) (u1, . . . , α ui, . . . , uj, . . . , um) ∼ (u1, . . . , ui, . . . , α uj, . . . , um),

(b) (u1, . . . , ui, . . . , uj, . . . , um) ∼ (u1, . . . , ui+αuj, . . . , uj, . . . , um),

(c) (u1, . . . , ui, . . . , uj, . . . , um) ∼ (u1, . . . , −uj, . . . , ui, . . . , um),

and extending the resulting relation to be symmetric and transitive.

(2) The equivalence class of (u1, u2, . . . , . . . , um) under ∼ is denoted by
u1 ∧ u2 ∧ · · · ∧ um. We call u1 ∧ u2 ∧ · · · ∧ um a simple m-vector.

(3) On the vector space of formal linear combinations of simple m-vectors,
we define the equivalence relation ≈ by extending the relation defined
by requiring

(a) α(u1 ∧ u2 ∧ · · · ∧ um) ≈ (αu1) ∧ u2 ∧ · · · ∧ um,

(b) (u1∧u2∧· · ·∧um)+(v1∧u2∧· · ·∧um) ≈ (u1 +v1)∧u2∧· · ·∧um.

(4) The equivalence classes of formal linear combinations of simple m-
vectors under the relation ≈ are the m-vectors in RN . The vector
space of m-vectors in RN is denoted

∧
m (RN ).

(5) The exterior algebra of RN , denoted
∧
∗ (RN), is the direct sum of the∧

m (RN) together with the exterior multiplication defined by linearly
extending the definition

(u1∧u2∧· · ·∧u`)∧(v1∧v2∧· · ·∧vm) = u1∧u2∧· · ·∧u`∧v1∧v2∧· · ·∧vm .

Remark 1.4.2

(1) When m = 1, Definition 1.4.1(1) is vacuous, so
∧

1 (RN) is isomorphic
to, and will be identified with, RN . If the vectors u1, u2, . . . , um are
linearly dependent, then u1 ∧ u2 ∧ · · · ∧ um is the additive identity in∧

m (RN), so we write u1 ∧ u2 ∧ · · · ∧ um = 0. Consequently, when
N < m,

∧
m (RN) is the trivial vector space containing only 0.

(2) As an exercise, the reader should convince himself that e1∧e2+e3∧e4 ∈∧
2 (R4) is not a simple 2-vector.

For a non-trivial simple m-vector u1 ∧ u2 ∧ · · · ∧ um in RN , the associated
subspace is that subspace spanned by the vectors u1, u2, . . . , um. It is evident
from Definition 1.4.1(1) that if u1 ∧ u2 ∧ · · · ∧ um = ±v1 ∧ v2 ∧ · · · ∧ vm, then
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their associated subspaces are equal. We assert that if u1 ∧ u2 ∧ · · · ∧ um =
±v1 ∧ v2 ∧ · · · ∧ vm, then also the m-dimensional area of the parallelepiped
determined by u1, u2, . . . , um is equal to the m-dimensional area of the par-
allelepiped determined by v1, v2, . . . , vm. To see this last fact, we need the
next proposition which gives us a way to compute the m-dimensional areas
in question. The proof is based on [Por 96].

Proposition 1.4.3 If u1, u2, . . . , um are vectors in RN , then the parallelepiped
determined by those vectors has m-dimensional area

√
det (Ut U), (1.20)

where U is the N ×m matrix with u1, u2, . . . , um as its columns.

Proof: If the vectors u1, u2, . . . , um are pairwise orthogonal, then the result
is immediate. Thus we will reduce the general case to this special case.

Notice that Cavalieri’s Principle18 shows us that adding a multiple of
uj to another vector ui, i 6= j, does not change the m-dimensional area of
the parallelepiped determined by the vectors. But also notice that such an
operation on the vectors ui is equivalent to multiplying U on the right by
an m × m triangular matrix with 1s on the diagonal. The Gram–Schmidt
orthogonalization procedure19 is effected by a sequence of operations of pre-
cisely this type. Thus we see that there is an upper triangular matrix A with
1s on the diagonal such that UA has orthogonal columns and the columns
of UA determine a parallelepiped with the same m-dimensional area as the
parallelepiped determined by u1, u2, . . . , um. Since the columns of UA are

orthogonal, we know that
√

det ((UA)t (UA)) equals the m-dimensional area
of the parallelepiped determined by its columns, and thus equals the m-
dimensional area as the parallelepiped determined by u1, u2, . . . , um. Finally,
we compute

det ((UA)t (UA)) = det (At Ut U A)

= det (At) det (Ut U) det(A)

= det (Ut U) .

18Bonaventura Francesco Cavalieri (1598–1647).
19Jorgen Pedersen Gram (1850–1916).
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Corollary 1.4.4 If u1, u2, . . . , um and v1, v2, . . . , vm are vectors in RN with

u1 ∧ u2 ∧ · · · ∧ um = ±v1 ∧ v2 ∧ · · · ∧ vm ,

then the m-dimensional area of the parallelepiped determined by the vectors
u1, u2, . . . , um equals them-dimensional area of the parallelepiped determined
by the vectors v1, v2, . . . , vm.

Proof. We consider the m-tuples of vectors on the lefthand and righthand
sides of Definition 1.4.1(1a,b,c). Let Ul be the matrix whose columns are the
vectors on the lefthand side and let Ur be the matrix whose columns are the
vectors on the righthand side. For (a), we have Ur = UlA, where A is the
m×m diagonal matrix with 1/α in the ith column and α in the jth column.
For (b), we have Ur = UlA, where A is an m×m triangular matrix with 1s on
the diagonal. For (c), we have Ur = UlA, where A is an m×m permutation
matrix with one of its 1s replaced by −1. In all three cases, det(A) = ±1,
and the result follows.

For computational purposes, it is often convenient to use the basis

ei1 ∧ ei2 ∧ · · · ∧ eim , 1 ≤ i1 < i2 < · · · < im ≤ N , (1.21)

for
∧

m (RN ). Specifying that them-vectors in (1.21) are orthonormal induces
the standard inner product on

∧
m (RN ). The exterior product (sometimes

called the wedge product)

∧ :
∧

` (RN ) × ∧
m (RN) → ∧

`+m (RN )

is an anti-commutative, multilinear multiplication. Any linear F : RN → RP

extends to a linear map Fm :
∧

m (RN) → ∧
m (RP ) by defining

Fm(u1 ∧ u2 ∧ · · · ∧ um) = F (u1) ∧ F (u2) ∧ · · · ∧ F (um) .

1.5 The Hausdorff Distance and Steiner Sym-

metrization

Consider the collection P(RN ) of all subsets of RN . It is often useful, espe-
cially in geometric applications, to have a metric on P(RN). In this section
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S T

Figure 1.1: The Hausdorff distance.

we address methods for achieving this end. In Definition 1.2.12, we defined
dist(A,B) for subsets A,B of a metric space; unfortunately, this function
need not satisfy the triangle inequality. Also, in practice, P(RN) (the en-
tire power set of RN ) is probably too large a collection of objects to have a
reasonable and useful metric topology (see [Dug 66; Section IX.9] for several
characterizations of metrizability). With these considerations in mind, we
shall restrict attention to the collection of nonempty, bounded subsets of RN .
We have:

Definition 1.5.1 Let S and T be nonempty, bounded subsets of RN . We
set

HD (A,B) = max{ sup
a∈A

dist(a,B), sup
b∈B

dist(A, b) }

= sup
x∈RN

|dist(x,A) − dist(x,B)| .

This function is called the Hausdorff distance.

Notice that HD (S, T ) = HD (S, T ) = HD (S, T ) = HD (S, T ), so we
further restrict our attention to the collection of nonempty sets that are
both closed and bounded (i.e., compact) subsets of RN . For convenience, in
this section, we will use B to denote the collection of nonempty, compact
subsets of RN .

In Figure 1.1, if we let d denote the distance from a point on the left to
the line segment on the right, then every point in the line segment is within

distance
√
d2 + (ε/2)2 of one of the points on the left—and that bound is

sharp. Thus we see that HD (S, T ) =
√
d2 + (ε/2)2.

Lemma 1.5.2 Let S, T ∈ B. Then there are points s ∈ S and t ∈ T such
that HD (S, T ) = |s− t|.
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We leave the proof as an exercise for the reader.

Proposition 1.5.3 The function HD is a metric on B.

Proof. Clearly HD ≥ 0 and, if S = T, then HD (S, T ) = 0.
Conversely, if HD (S, T ) = 0 then let s ∈ S. By definition, there are

points tj ∈ T such that |s − tj| → 0. Since T is compact, we may select a
subsequence {tjk

} such that tjk
→ s. Again, since T is compact, we then

conclude that s ∈ T. Hence S ⊂ T . Similar reasoning shows that T ⊂ S.
Hence S = T.

Finally we come to the triangle inequality. Let S, T, U ∈ B. Let s ∈
S, t ∈ T, u ∈ U. Then we have

|s− u| ≤ |s− t| + |t− u|
⇓

dist(S, u) ≤ |s− t| + |t− u|
⇓

dist(S, u) ≤ dist(S, t) + |t− u|
⇓

dist(S, u) ≤ HD (S, T ) + |t− u|
⇓

dist(S, u) ≤ HD (S, T ) + dist(T, u)

⇓
dist(S, u) ≤ HD (S, T ) + sup

u∈U
dist(T, u)

⇓
sup
u∈U

dist(S, u) ≤ HD (S, T ) + sup
u∈U

dist(T, u).

By symmetry, we have

sup
s∈S

dist(U, s) ≤ HD (U, T ) + sup
s∈S

dist(T, s)

and thus

max{ sup
u∈U

dist(S, u) , sup
s∈S

dist(U, s) }

≤ max{HD (S, T ) + sup
u∈U

dist(T, u) , HD (U, T ) + sup
s∈S

dist(T, s)}.
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We conclude that

HD (U,S) ≤ HD (U, T ) + HD (T, S).

There are fundamental questions concerning completeness, compactness,
etc. that we need to ask about any metric space.

Theorem 1.5.4 The metric space (B,HD) is complete.

Proof. Let {Sj} be a Cauchy sequence in the metric space (B,HD). We
seek an element S ∈ B such that Sj → S.

Elementary estimates, as in any metric space, show that the elements Sj

are all contained in a common ball B(0, R). We set S equal to

∞⋂

j=1




∞⋃

`=j

S`


 .

Then S is nonempty, closed, and bounded, so it is an element of B.
To see that Sj → S, select ε > 0. Choose J large enough so that if j, k ≥ J

then HD (Sj, Sk) < ε. For m > J set Tm = ∪m
`=JS`. Then it follows from the

definition, and from Proposition 1.5.3, that HD (SJ , Tm) < ε for every m > J.
Therefore, with Up = ∪∞

`=pS` for every p > J , it follows that HD (SJ , Up) ≤ ε.
We conclude that that HD (SJ ,∩K

p=J+1Up) ≤ ε. Hence, by the continuity
of the distance, HD (SJ , S) ≤ ε. That is what we wished to prove.

As a corollary of the proof of Theorem 1.5.4 we obtain the following:

Corollary 1.5.5 Let {Sj} be a sequence of elements of B. Suppose that
Sj → S in the Hausdorff metric. Then

Ln(S) ≥ lim sup
j→∞

Ln(Sj) .

The next theorem informs us of a seminal fact regarding the Hausdorff
distance topology.

Theorem 1.5.6 The set of nonempty compact subsets of RN with the Haus-
dorff distance topology is boundedly compact, i.e., any bounded sequence has
a subsequence that converges to a compact set.
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Proof. Let A1, A2, . . . be a bounded sequence in the Hausdorff distance. We
may assume without loss of generality that each Ai is a subset of the closed
unit N -cube, C0.

We will use an inductive construction and a diagonalization argument.
Let A0,i = Ai for i = 1, 2, . . . . For each k ≥ 1, the sequence Ak,i, i = 1, 2, . . . ,
will be a subsequence of the preceding sequence Ak−1,i, i = 1, 2, . . . . Also, we
will construct sets C0 ⊃ C1 ⊃ . . . inductively. Each Ck will be the union of
a set of subcubes of the unit cube. The first set in this sequence is the unit
cube itself C0. For each k = 0, 1, . . . , the sequence Ak,i, i = 1, 2, . . . , and the
set Ck are to have the properties that

Ck ∩Ak,i 6= ∅ holds for i = 1, 2, . . . (1.22)

and
Ak,i ⊂ Ck holds for all sufficiently large i. (1.23)

It is clear that (1.22) and (1.23) are satisfied when k = 0.
Assume Ak−1,i, i = 1, 2, . . . and Ck−1 have been defined so that

Ck−1 ∩Ak−1,i 6= ∅ holds for i = 1, 2, . . .

and
Ak−1,i ⊂ Ck−1 holds for all sufficiently large i.

For each integer k ≥ 1, subdivide the unit N -cube into 2kN congruent sub-
cubes of side-length 2−k. We let Ck be the collection of subcubes of side-length
2−k which are subsets of Ck−1. A subcollection, C ⊂ Ck, will be called admis-
sible if there are infinitely many i for which

D ∩ Ak−1,i 6= ∅ holds for all D ∈ C. (1.24)

Let Ck be the union of a maximal admissible collection of subcubes, which
is immediately seen to exist, since Ck is finite. Let Ak,1, Ak,2, . . . be the
subsequence of Ak−1,1, Ak−1,2, . . . consisting of those Ak−1,i for which (1.24)
is true. Observe that Ak,i ⊂ Ck holds for sufficiently large i, else there
is another subcube which could be added to the maximal collection while
maintaining admissibility.

We set

C =
∞⋂

k=0

Ck
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and claim that C is the limit in the Hausdorff distance of Ak,k as k → ∞. Of
course C is nonempty by the finite intersection property. Let ε > 0 be given.
Clearly we can find an index k0 such that

Ck0 ⊂ {x : dist(x,C) < ε}.

There is a number i0 such that for i ≥ i0 we have

Ak0,i ⊂ Ck0 ⊂ {x : dist(x,C) < ε}.

So, for k ≥ k0 + i0, we know that

Ak,k ⊂ {x : dist(x,C) < ε}

holds. We let k1 ≥ k0 + i0 be such that
√
N 2−k1 < ε.

Let c ∈ C be arbitrary. Then c ∈ Ck1 so there is some cube, D, of side-length
2−k1 containing c and for which

D ∩Ak1 ,i 6= ∅

holds for all i. But then if k ≥ k1, we have D ∩Ak,k 6= ∅, so

dist(c,Ak,k) ≤
√
N s−k < ε.

It follows that HD (C,Ak,k) < ε holds for all k ≥ k1.

Next we give two more useful facts about the Hausdorff distance topology.

Definition 1.5.7 A subset C of a vector space is convex if for x, y ∈ C and
0 ≤ t ≤ 1 we have

(1 − t)x+ t y ∈ C .

Proposition 1.5.8 Let C be the collection of all closed, bounded, convex
sets in RN . Then C is a closed subset of the metric space (B,HD).

Proof. There are several amusing ways to prove this assertion. One is by
contradiction. If {Sj} is a convergent sequence in C, then let S ∈ B be its
limit. If S does not lie in C then S is not convex. Thus there is a segment `
with endpoints lying in S but with some interior point p not in S.
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Let ε > 0 be selected so that the open ball U(p, ε) does not lie in S. Let
a, b be the endpoints of `. Choose j so large that HD (Sj, S) < ε/2. For such
j, there exist points aj, bj ∈ Sj such that |aj − a| < ε/3 and |bj − b| < ε/3.
But then each point cj(t) ≡ (1 − t)aj + tbj has distance less than ε/3 from
c(t) ≡ (1 − t)a + tb, 0 ≤ t ≤ 1. In particular, there is a point pj on the
line segment `j connecting aj to bj such that |pj − p| < ε/3. Noting that pj

must lie in Sj, we see that we have contradicted our statement about U(p, ε).
Therefore S must be convex.

Proposition 1.5.9 Let {Sj} be a sequence of elements of B, each of which
is connected. Suppose that Sj → S in the Hausdorff metric. Then S must
be connected.

Proof. Suppose not. Then S is disconnected. So we may write S = A ∪ B
with each of A and B closed and nonempty and A ∩ B = ∅. Then there is a
number η > 0 such that if a ∈ A and b ∈ B then |a− b| > η.

Choose j so large that HD (Sj, S) < η/3. Define

Aj = {s ∈ Sj : dist(s,A) ≤ η/3} and Bj = {s ∈ Sj : dist(s,B) ≤ η/3}.

ClearlyAj∩Bj = ∅ and Aj, Bj are closed and nonempty. Moreover,Aj∪Bj =
Sj . That contradicts the connectedness of Sj and completes the proof.

Remark 1.5.10 It is certainly possible to have totally disconnected sets Ej ,
j = 1, 2, . . . , such that Ej → E as j → ∞ and E is connected (exercise).

Now we turn to a new arena in which the Hausdorff distance is applicable.

Definition 1.5.11 Let V be an (N −1)-dimensional vector subspace of RN .
Steiner symmetrization20 with respect to V is the operation that associates
with each bounded subset T of RN the subset T̃ of RN having the property
that, for each straight line ` perpendicular to V, `∩ T̃ is a closed line segment
with center in V or is empty and the conditions

L1(` ∩ T̃ ) = L1(` ∩ T ) (1.25)

and
` ∩ T̃ = ∅ if and only if ` ∩ T = ∅

hold, where, in (1.25), L1 means the Lebesgue measure resulting from iso-
metrically identifying the line ` with R.

20Jakob Steiner (1796–1863).
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A B

L

Figure 1.2: Steiner symmetrization.

In Figure 1.2, B is the Steiner symmetrization of A with respect to the line
L.

Steiner used symmetrization to give a proof of the Isoperimetric Theorem
that he presented to the Berlin Academy of Science in 1836 (see [Str 36]).
The results in the remainder of this section document a number of aspects
of the behavior of Steiner symmetrization.

Proposition 1.5.12 If T is a bounded LN -measurable subset of RN and if
S is obtained from T by Steiner symmetrization, then S is LN -measurable
and

LN (T ) = LN (S).

Proof. This is a consequence of Fubini’s theorem.

Lemma 1.5.13 Fix 0 < M < ∞. If A and A1, A2, . . . are closed subsets of
RN ∩ B(0,M) such that

∞⋂

i0=1




∞⋃

i=i0

Ai


 ⊂ A,

then
lim sup

i
LN (Ai) ≤ LN (A).
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Proof. Let ε > 0 be arbitrary. Then there exists an open set U with A ⊂ U
and

LN (U) ≤ LN (A) + ε.

A routine argument shows that, for all sufficiently large i, Ai ⊂ U. It follows
that

lim sup
i

LN (Ai) ≤ LN (U),

and the fact that ε was arbitrary implies the lemma.

Proposition 1.5.14 If T is a compact subset of RN and if S is obtained
from T by Steiner symmetrization, then S is compact.

Proof. Let V be an (N−1)-dimensional vector subspace of RN , and suppose
that S is the result of Steiner symmetrization of T with respect to V. It is
clear that the boundedness of T implies the boundedness of S. To see that
S is closed, consider any sequence of points p1, p2, . . . in S that converges to
some point p. Each pi lies in a line `i perpendicular to V, and we know that

dist(pi, V ) ≤ 1

2
L1(`i ∩ S) =

1

2
L1(`i ∩ T ).

We also know that the line perpendicular to V and containing p must be the
limit of the sequence of lines `1, `2, . . . . Further, we know that

dist(p, V ) = lim
i→∞

dist(pi, V ).

The inequality
lim sup

i
L1(`i ∩ T ) ≤ L1(` ∩ T ) (1.26)

would allow us to conclude that

dist(p, V ) = lim
i→∞

dist(pi, V ) ≤ 1

2
lim sup

i→∞
L1(`i ∩ T ) ≤ 1

2
L1(` ∩ T ),

and thus that p ∈ S.
To obtain the inequality (1.26), we let qi be the vector parallel to V that

translates `i to `, and apply Lemma 1.5.13, with N replaced by 1 and with
` identified with R, to the sets Ai = τqi (`i ∩ T ) , which are the translates of
the sets `i ∩ T. We can take A = ` ∩ T, because T is closed.
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Proposition 1.5.15 If T is a bounded, convex subset of RN and S is ob-
tained from T by Steiner symmetrization, then S is also a convex set.

Proof. Let V be an (N−1)-dimensional vector subspace of RN , and suppose
that S is the result of Steiner symmetrization of T with respect to V. Let x
and y be two points of S. We let x′ and y′ denote the points obtained from x
and y by reflection through the hyperplane V. Also, let `x and `y denote the
lines perpendicular to V and passing through the points x and y, respectively.
By the definition of the Steiner symmetrization and the convexity of T, we
see that `x ∩ T must contain a line segment, say from px to qx, of length at
least dist(x, x′). Likewise, `y ∩ T contains a line segment from py to qy of
length at least dist(y, y′). The convex hull of the four points px, qx, py, qy is a
trapezoid, Q, which is a subset of T.

We claim that the trapezoid, Q′, which is the convex hull of x, x′, y, y′

must be contained in S. Let x′′ be the point of intersection of `x and V.
Similarly, define y′′ to be the intersection of `y and V. For any 0 ≤ τ ≤ 1,
the line `′′ perpendicular to V and passing through

(1 − τ )x′′ + τy′′

intersects the trapezoid Q ⊂ T in a line segment of length

(1 − τ )dist(px, qx) + τdist(py, qy) (1.27)

and it intersects the trapezoid Q′ in a line segment, centered about V, of
length

(1 − τ )dist(x, x′) + τdist(y, y′). (1.28)

But S must contain a closed line segment of `′′, centered about V, of length
at least (1.27). Since (1.27) is at least as large as (1.28), we see that

`′′ ∩Q′ ⊂ `′′ ∩ S.

Since the choice of 0 ≤ τ ≤ 1 was arbitrary we conclude that Q′ ⊂ S. In
particular, the line segment from x to y is contained in Q′ and thus in S.

The power of Steiner symmetrization obtains from the following theorem.

Theorem 1.5.16 Suppose that C is a nonempty family of nonempty com-
pact subsets of RN that is closed in the Hausdorff distance topology and that
is closed under the operation of Steiner symmetrization with respect to any
(N − 1)-dimensional vector subspace of RN . Then C contains a closed ball
(possibly of radius 0) centered at the origin.
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Proof. Let C be such a family of compact subsets of RN and set

r = inf{s : there exists T ∈ C with T ⊂ B(0, s)}.

If r = 0, we are done, so we may assume r > 0. By Theorem 1.5.6, any uni-
formly bounded family of nonempty compact sets is compact in the Hausdorff
distance topology, so we can suppose there exists a T ∈ C with T ⊂ B(0, r).

We claim that T = B(0, r). If not, there exists p ∈ B(0, r) and ε > 0, such
that T ⊂ B(0, r)\B(p, ε). Suppose T1 is the result of Steiner symmetrization of
T with respect to any arbitrarily chosen (N−1)-dimensional vector subspace
V. Let ` be the line perpendicular to V and passing through p. For any line
`′ parallel to ` and at distance less than ε from `, the Lebesgue measure
of the intersection of `′ with T must be strictly less than the length of the
intersection of `′ with B(0, r), so the intersection of `′ with ∂B(0, r) is not in
T1. We conclude that if p1 is either one of the points of intersection of the
sphere of radius r about the origin with the line `, then

B(p1, ε) ∩ ∂B(0, r) ∩ T1 = ∅.

Choose a finite set of distinct additional points p2, p3, . . . , pk such that

∂B(0, r) ⊂ ∪k
i=1B(pi, ε).

For i = 1, 2, . . . , k − 1, let Ti+1 be the result of Steiner symmetrization of
Ti with respect to the (N − 1)-dimensional vector subspace perpendicular to
the line through pi and pi+1. By the lemma it follows that

B(pi, ε) ∩ ∂B(0, r) ∩ Tj = ∅

holds for i ≤ j ≤ k. Thus we have

Tk ∩ ∂B(0, r) = ∅,

so

Tk ⊂ B(0, s)

holds for some s < r, a contradiction.
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1.6 Borel and Suslin Sets

In this section, we discuss the Borel and Suslin sets. The goal of the section is
to show that, for all reasonable measures on Euclidean space, the continuous
images of Borel sets are measurable sets (Corollary 1.6.19). This result is
based on three facts: Every Borel set is a Suslin set (Theorem 1.6.9), the
continuous image of a Suslin set is a Suslin set (Theorem 1.6.12), and all
Suslin sets are measurable (Corollary 1.6.18).

While it is also of interest to know that there exists a Suslin set that is
not a Borel set, we will not use that result. We refer the interested reader to
[Fed 69; 2.2.11], [Hau 62; Section 33], or [Jec 78; Section 39].

Construction of the Borel Sets

In Section 1.2.1 we defined the Borel sets in a topological space to be the
members of the smallest σ-algebra that includes all the open sets. The virtue
of this definition is its efficiency, but the price we pay for that efficiency is the
absence of a mechanism for constructing all the Borel sets. In this section,
we will provide that constructive definition of the Borel sets.

For definiteness we work on RN . We will use transfinite induction over the
smallest uncountable ordinal ω1 (see Appendix A.1 for a brief introduction
to transfinite induction) to define families of sets Σ0

α and Π0
α, for α < ω1. For

us, the superscript 0s are superfluous, but we include them since they are
typically used in descriptive set theory.

Definition 1.6.1 Set

Σ0
1 = the family of all open sets in RN ,

Π0
1 = the family of all closed sets in RN .

If α < ω1, and Σ0
β and Π0

β have been defined for all β < α, then set

Σ0
α = the family of sets of the form

A =
∞⋃

i=1

Ai, where each Ai ∈ Π0
β for some β < α, (1.29)

Π0
α = the family of sets of the form RN \A for A ∈ Σ0

α. (1.30)
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Since the complement of a union is the intersection of the complements,
we see that we can also write

Π0
α = the family of sets of the form

A =
∞⋂

i=1

Ai, where each Ai ∈ Σ0
β for some β < α. (1.31)

By transfinite induction over ω1, we see that, for α < ω1, all the elements of
Σ0

α and Π0
α are Borel sets.

Lemma 1.6.2 If 1 ≤ β < α < ω1, then

Σ0
β ⊆ Π0

α , Π0
β ⊆ Σ0

α , Σ0
β ⊆ Σ0

α , Π0
β ⊆ Π0

α

hold.

Proof. By (1.29) and (1.31), we see that Σ0
β ⊆ Π0

α and Π0
β ⊆ Σ0

α hold
whenever 1 ≤ β < α < ω1.

Every open set is a countable union of closed sets, so Σ0
1 ⊆ Σ0

2 holds.
Consequently, we also have Π0

1 ⊆ Π0
2. Since Σ0

1 ⊆ Π0
2 ⊆ Σ0

α holds whenever
2 < α and since Π0

1 ⊆ Σ0
2 holds, we have Σ0

1 ⊆ Σ0
α and Π0

1 ⊆ Π0
α for all

1 < α < ω1.
Next consider 1 ≤ β < α < ω1. Suppose Σ0

γ ⊆ Σ0
α and Π0

γ ⊆ Π0
α hold

whenever γ < β. Any set A ∈ Σ0
β must be of the form A = ∪∞

i=1Ai with
each Ai ∈ Π0

γ for some γ < β. Then since β < α we see that A ∈ Σ0
α. Thus

Σ0
β ⊆ Σ0

α. Similarly, we have Π0
β ⊆ Π0

α.

Corollary 1.6.3 We have

⋃

α<ω1

Σ0
α =

⋃

α<ω1

Π0
α . (1.32)

Theorem 1.6.4 The family of sets in (1.32) is the σ-algebra of Borel subsets
of RN .

Proof. Let B denote the family of sets in (1.32). To see that B is closed under
countable unions, suppose we are given A1, A2, . . . in B. Considering the
lefthand side of (1.32), we see that, for each i, there is αi < ω1 such that Ai ∈
Σ0

αi
. Since the sequence α1, α2, . . . is countable, but ω1 is uncountable, there
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is α∗ < ω1 with αi < α∗ for all i (see By Lemma A.1.4). We conclude that
∪∞

i=1Ai ∈ Σα∗. Thus, B is closed under countable unions. We argue similarly
to see that B is closed under countable intersections and complements.

Because in the definition of Π0
α equation (1.30) can be replaced by (1.31),

Theorem 1.6.4 has the following corollary.

Corollary 1.6.5 The family of Borel sets in RN is the smallest family of sets,
containing the open sets, that is closed under countable unions and countable
intersections. Likewise, the family of Borel sets in RN is the smallest family
of sets, containing the closed sets, that is closed under countable unions and
countable intersections.

Suslin Sets
We let N denote the set of natural numbers, that is, N = { 0, 1, . . . }.

The positive integers will be denoted by N+. We let Ñ denote the set of all
finite sequences of positive integers and we let N denote the set of all infinite
sequences of positive integers, so

Ñ = { (n1, n2, . . . , nk) : k ∈ N+, ni ∈ N+ for i = 1, 2, . . . , k } ,

N = { (n1, n2, . . .) : ni ∈ N+ for i = 1, 2, . . . } .

Definition 1.6.6 Let M be a collection of subsets of a set X. Suppose
that there is a set Mn1 ,n2 ,...,nk

∈ M associated with every finite sequence of

positive integers. We can represent this relation as a function ν : Ñ → M
defined by

(n1, n2, . . . , nk)
ν7−→Mn1 ,n2,...,nk

.

Such a function ν is called a determining system in M. Associated with
the determining system ν is the set called the nucleus of ν denoted by N (ν)
and defined by

N(ν) =
⋃

n∈N
n=(n1 ,n2 ,...)

(Mn1 ∩Mn1 ,n2 ∩ · · · ∩Mn1 ,n2,...,nk
∩ · · ·) .

We will say that N (ν) is a Suslin set generated by M; N (ν) is also called
the result of Suslin’s operation (A) applied to ν. The family of all Suslin
sets generated by M will be denoted by M(A).

By the Suslin sets in a topological space we mean the Suslin sets generated
by the family of closed sets.
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Since N has the same cardinality as the real numbers, we see that the
nucleus is formed by an uncountable union of countable intersections of sets
in M. We might expect that operation (A) could be extremely powerful, but
at the outset it is not immediately clear what can be done with the operation.
The next proposition tells us that operation (A) is at least as powerful as
those used to form the Borel sets.

Proposition 1.6.7 Suppose A1, A2, . . . ∈ M, then there exist determining
systems νU and νI such that

N(νU ) =
∞⋃

i=1

Ai and N (νI) =
∞⋂

i=1

Ai .

Proof. Define νU and νI by

(n1, n2, . . . , nk)
νU→ An1 ,

(n1, n2, . . . , nk)
νI→ Ak .

It is easy to see that νU and νI have the desired properties.

The next theorem that tells us that repeated applications of operation
(A) produce nothing that cannot be produced with only one application of
the operation.

Theorem 1.6.8 If M is a family of sets, if ∅ ∈ M, and if M(A) is the
family of Suslin sets generated by M, then any Suslin set generated by M(A)

is already an element of M(A). Symbolically, we have

(
M(A)

)
(A)

= M(A) .

Proof. Let
(n1, n2, . . . , nk)

ν7−→Mn1 ,n2,...,nk
∈ M(A)

be a determining system in M(A). For each n1, n2, . . . , nk ∈ Ñ , the set
Mn1 ,n2 ,...,nk

must itself be the nucleus of a determining system νn1 ,n2,...,nk
in

M; that is,

(q1, q2, . . . , q`)
νn1 ,n2,...,nk→M q1,q2,...,q`

n1 ,n2,...,nk
∈ M ,

Mn1 ,n2,...,nk
=
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⋃

p∈N
q=(q1,q2,...)

(
M q1

n1 ,n2 ,...,nk
∩M q1 ,q2

n1 ,n2 ,...,nk
∩ · · · ∩M q1 ,q2,...,q`

n1 ,n2 ,...,nk
∩ · · ·

)
,

N (ν) =
⋃

n∈N
n=(n1 ,n2 ,...)

(Mn1 ∩Mn1 ,n2 ∩ · · · ∩Mn1 ,n2,...,nk
∩ · · ·) .

We can rewrite N (ν) as the union, over all n ∈ N and over all sequences
{pi}∞i=1 ⊆ N , of the sets

(
M

q1
1

n1 ∩ M
q1
1 ,q1

2
n1 ∩ · · · ∩ M

q1
1 ,q1

2 ,...,q1
`

n1 ∩ · · ·
)

⋂ (
M

q2
1

n1 ,n2 ∩ M
q2
1 ,q2

2
n1 ,n2 ∩ · · · ∩ M

q2
1 ,q2

2 ,...,q2
`

n1 ,n2 ∩ · · ·
)

...
...

...
...

⋂ (
M

qk
1

n1 ,n2 ,...,nk ∩ M
qk
1 ,qk

2
n1 ,n2 ,...,nk ∩ · · · ∩ M

qk
1 ,qk

2 ,...,qk
`

n1 ,n2,...,nk ∩ · · ·
)

...
...

...
...

.

(1.33)
Notice that the set in the kth row and `th column of (1.33) is indexed by k
subscripts and ` superscripts. The choices of the subscripts and superscripts
are constrained by the following requirements:

in any row, the list of subscripts is constant,
in any row, the list of superscripts grows by concatenation,
in any column, the list of subscripts grows by concatenation.





(1.34)

Let the prime numbers in increasing numerical order be given in the list

p1, p2, p3, . . . .

We can use the list of primes to encode the information concerning the num-
ber of subscripts, the number of superscripts, and their values as follows:
Set

m = pk
1 · p`

2 · pn1
3 · pn2

4 · · · pnk
k+2 · p

qk
1

k+3 · p
qk
2

k+4 · · · pqk
`

`+k+2 . (1.35)

Given a positive integer m, the unique factorization of m into prime powers
determines whether or not m is of the form (1.35). Certainly, not every pos-
itive integer m is of the form (1.35) nor is every sequence of positive integers
m1,m2, . . . consistent with the conditions (1.34), even if the individual num-
bers mi are of the form (1.35). But it is true that any sequence of sets in
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(1.33) will give rise to a sequence of positive integers m1,m2, . . . of the form
(1.35) that satisfies the conditions (1.34).

We now define the determining system

(m1,m2, . . . ,mk)
σ7−→ Sm1,m2 ,...,mk

.

For each positive integer m, set

Tm =




S

qk
1 ,qk

2 ,...,qk
`

n1,n2 ,...,nk if m is of the form (1.35),

∅ otherwise.

Then, for the sequence of positive integers m1,m2, . . ., set

Sm1 ,m2,...,mk
=

{
Tm1 ∩ Tm2 ∩ · · · ∩ Tmk

if (1.34) is not violated,

∅ otherwise.

For m = (m1,m2, . . .) ∈ N , the set

Sm1 ∩ Sm1 ,m2 ∩ · · · ∩ Sm1,m2 ,...,mk
∩ · · ·

is either one of the sets in (1.33) or is the empty set. By construction, every
set in (1.33) gives rise to a sequence m = (m1,m2, . . .) ∈ N such that

Sm1 ∩ Sm1 ,m2 ∩ · · · ∩ Sm1,m2 ,...,mk
∩ · · ·

equals that set in (1.33). Thus we have N (ν) = N (σ).

Theorem 1.6.9 Every Borel set in RN is a Suslin set.

Proof. By Proposition 1.6.7 and Theorem 1.6.8, the collection of Suslin
sets is closed under countable unions and countable intersections. Thus by
Corollary 1.6.5, the collection of Suslin sets contains all the Borel sets.

Continuous Images of Suslin Sets
Suppose f : X → Y is a function from a set X to a set Y . The inverse

image of a union of sets equals the union of the inverse images and likewise
the inverse image of an intersection of sets equals the intersection of the
inverse images. Images of sets under functions are not as well behaved as
inverse images, nonetheless we do have the following result—which is easily
verified.
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Proposition 1.6.10 Let f : X → Y .

(1) If {Aα}α∈I is a collection of subsets ofX, then f (
⋃

α∈I Aα) =
⋃

α∈I f(Aα).

(2) If X ⊇ A1 ⊇ A2 ⊇ · · · , then f (
⋂∞

i=1 Ai) ⊆
⋂∞

i=1 f(Ai) holds and strict
inclusion is possible.

To obtain an equality for images of intersections, we need to look at
continuous functions and decreasing sequences of compact sets.

Proposition 1.6.11 Let X and Y be topological spaces and let f : X → Y
be continuous. If X is sequentially compact, X ⊇ C1 ⊇ C2 ⊇ · · ·, and if each
Ci is a closed subset of X, then f (

⋂∞
i=1 Ci) =

⋂∞
i=1 f(Ci).

Proof. By Prop 1.6.10, we need only show
⋂∞

i=1 f(Ci) ⊆ f (
⋂∞

i=1Ci), so
suppose y ∈ ⋂∞

i=1 f(Ci).
For each i, there is xi ∈ Ci with f(xi) = y, and because the sets Ci are

decreasing, we have xj ∈ Ci whenever j ≥ i.
Set x0,j = xj for j = 1, 2, . . .. Since C1 is sequentially compact, there is a

convergent subsequence {x1,j}∞j=1 of {x0,j}∞j=1. Arguing inductively, suppose
1 ≤ i and that we have already constructed a convergent sequence {xi,j}∞j=1

that is a subsequence of {xh,j}∞j=1, for 0 ≤ h ≤ i−1, and is such that every xi,j

is a point of Ci, for j = 1, 2, . . .. Since {xi,j}∞j=1 is a subsequence of the original
sequence {x0,j}∞j=1, there is a j∗ so that xi,j ∈ Ci+1 holds for all j with j∗ ≤ j.
Since Ci+1 is sequentially compact, we can select a convergent subsequence
{xi+1,j}∞j=1 of {xi,j}∞j=j∗ , and thus satisfy the induction hypotheses.

By construction, the sequence {xj,j}∞j=1 is convergent. Hence we have
limj→∞ xj,j ∈

⋂∞
i=1Ci, f (limj→∞ xj,j) = lim∞

j=1 f (xj,j) = y, and thus we have
shown y ∈ ⋂∞

i=1Ci.

Theorem 1.6.12 If f : RN → RM is continuous and S ⊆ RN is a Suslin
set, then f(S) is a Suslin subset of RM .

Proof. Since any closed subset of RN is a countable union of compact sets,
we see that if K is the collection of compact subsets of RN , then K(A) is the
collection of Suslin sets.

Let S ⊆ RN be a Suslin set, and let ν be a determining system in K such
that S = N (ν). Since any finite intersection of compact sets is compact, we

see that the determining system (n1, n2, . . . , nk)
ν7−→ Kn1 ,n2 ,...,nk

has the same
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nucleus as the determining system (n1, n2, . . . , nk)
ν̃7−→ Hn1 ,n2 ,...,nk

in K given
by

Hn1 ,n2 ,...,nk
= Kn1 ∩Kn1 ,n2 ∩ . . . ∩Kn1 ,n2,...,nk

.

Because the sets {Hn1 ,n2,...,nk
}∞k=1 form a decreasing sequence of compact sets,

we can apply Propositions 1.6.10 and 1.6.11 to conclude that

f(S) = f [N (ν)] = f [N (ν̃)]

= f




⋃

n∈N
n=(n1 ,n2,...)

(Hn1 ∩Hn1 ,n2 ∩ · · · ∩ Hn1 ,n2,...,nk
∩ · · ·)




=
⋃

n∈N
n=(n1 ,n2 ,...)

(
f(Hn1 ) ∩ f(Hn1 ,n2) ∩ · · · ∩ f(Hn1 ,n2 ,...,nk

) ∩ · · ·
)
,

and so we see that f(S) is a Suslin set in RM .

Measurability of Suslin Sets
In order to prove that the Suslin sets are measurable, we need to introduce

some additional structures similar to the nucleus of a determining system.

Definition 1.6.13 Let (n1, n2, . . . , nk)
ν7−→ An1,n2,...,nk

be given. Let h1, h2,
. . ., hs be a finite sequence of positive integers. We define the following sets:

N h1 ,h2,...,hs(ν) =
⋃

(n1 ,n2 ,...)∈N
ni≤hi, 1≤i≤s

An1 ∩An1,n2 ∩ · · · ∩An1,n2 ,...,nk
∩ · · · ,(1.36)

N h1 ,h2,...,hs(ν) =
h1⋃

n1=1

h2⋃

n2=1

· · ·
hs⋃

ns=1

An1 ∩ An1,n2 ∩ · · · ∩An1 ,n2,...,ns .(1.37)

The next proposition follows immediately from the definition.

Proposition 1.6.14 Let (n1, n2, . . . , nk)
ν7−→ An1,n2 ,...,nk

be given. We have

N 1(ν) ⊆ · · · ⊆ N h(ν) ⊆ N h+1(ν) ⊆ · · · ,

N (ν) =
∞⋃

k=1

N k(ν) ,
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N h1 ,...,hs,1(ν) ⊆ · · · ⊆ N h1 ,...,hs,k(ν) ⊆ N h1,...,hs,k+1(ν) ⊆ · · · ,

N h1 ,...,hs(ν) =
∞⋃

k=1

N h1 ,...,hs,k(ν) .

Corollary 1.6.15 If µ is a regular measure on the non-empty set X and ν
is a determining system in any family of subsets of X and if E is any subset
of X, then

lim
k→∞

µ
[
E ∩ N k(ν)

]
= µ

[
E ∩ N(ν)

]
,

lim
k→∞

µ
[
E ∩ N h1 ,h2 ,...,hs,k(ν)

]
= µ

[
E ∩ N h1 ,h2,...,hs(ν)

]
.

Proof. Recall that Lemma 1.2.8 tells us that, for a regular measure, the
measure of the union of an increasing sequence of sets is the limit of the mea-
sures of the sets, so the result follows immediately from Proposition 1.6.14.

We will need the following lemma.

Lemma 1.6.16 Let (n1, n2, . . . , nk)
ν7−→ An1,n2 ,...,nk

and (h1, h2, . . .) ∈ N be
given. Then we have

N h1(ν) ∩ N h1,h2(ν) ∩ · · · ∩ N h1,h2 ,...,hs(ν) ∩ · · · ⊆ N (ν) . (1.38)

Proof. Fix a point x belonging to the lefthand side of (1.38).
First we claim that there exists a positive integer n0

1 ≤ h1 such that, for
every k with 2 ≤ k, there exist n2, n3, . . . , nk with ni ≤ hi, for 2 ≤ i ≤ k,
and with

x ∈ An0
1
∩ An0

1,n2
∩ · · · ∩An0

1 ,n2,...,nk
.

To see this claim, suppose it were not true. Then for each index n1 ≤ h1

there would be exist a positive integer k(n1) such that

x /∈ An1 ∩An1 ,n2 ∩ · · · ∩An1,n2 ,...,nk(n1)

whenever ni ≤ hi for i = 2, 3, . . . , k(n1).
Setting K(1) = max{ k(1), k(2), . . . , k(h1) }, we see that

x /∈
h1⋃

n1=1

h2⋃

n2=1

· · ·
hK(1)⋃

nK(1)=1

An1 ∩An1,n2 ∩ · · · ∩ An1,n2,...,nK(1)
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which contradicts our assumption that x is an element of the lefthand side
of (1.38).

Arguing inductively, suppose we have selected positive integers n0
1, n

0
2,

. . ., n0
s satisfying

n0
1 ≤ h1, n

0
2 ≤ h2, . . ., n

0
s ≤ hs,

for every k with s+ 1 ≤ k, there exist ns+1, ns+2, . . . , nk

with ni ≤ hi, for s+ 1 ≤ i ≤ k, and with
x ∈ An0

1
∩An0

1,n0
2
∩ · · · ∩An0

1 ,n0
2,...,n0

s ,ns+1,ns+2 ,...,nk
.





(1.39)

We claim that we can select n0
s+1 ≤ hs+1 so that (1.39) holds with s replaced

by s+1. If no such n0
s+1 existed, then for each index ns+1 ≤ hs+1 there would

be exist a positive integer k(ns+1) such that

x /∈ An0
1
∩An0

1,n0
2
∩ · · · ∩An0

1,n0
2 ,...,n0

s,ns+1 ,ns+2,...,nk(ns+1)
.

whenever ni ≤ hi for i = s+ 1, s + 2, . . . , k(ns+1).
Setting K(s+ 1) = max{ k(1), k(2), . . . , k(hs+1) }, we see that

x /∈
h1⋃

n1=1

h2⋃

n2=1

· · ·
hK(s+1)⋃

nK(s+1)=1

An1 ∩ An1,n2 ∩ · · · ∩An1 ,n2,...,nK(s+1)

which contradicts our assumption that x is an element of the lefthand side
of (1.38).

Thus there exists an infinite sequence n0
1 ≤ h1, n

0
2 ≤ h2, . . . such that

x ∈ An0
1
∩ An0

1,n0
2
∩ · · · ∩An0

1 ,n0
2,...,n0

k
∩ · · · ,

so x ∈ N (ν).

Theorem 1.6.17 Let µ be a regular measure on the non-empty set X, and
let M be the collection of µ-measurable subsets of X. If ν is a determining
system in M, then N (ν) is µ-measurable.

Proof. Let the determining system ν be (n1, n2, . . . , nk)
ν7−→ Mn1,n2 ,...,nk

,
and set A = N(ν). We need to show that, for any set E ⊆ X, we have

µ(E ∩A) + µ(E \A) ≤ µ(E) .
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We may assume that µ(E) <∞. Let ε > 0 be arbitrary.
Using Corollary 1.6.15, we can inductively define a sequence of positive

integers h1, h2, . . . such that

µ
[
C ∩ N h1(ν)

]
≥ µ

[
E ∩ N (ν)

]
− ε/2

and
µ
[
C ∩ N h1 ,h2,...,hk(ν)

]
≥ µ

[
E ∩ N h1 ,h2,...,hk−1(ν)

]
− ε/2k .

We have N h1 ,h2,...,hk(ν) ⊆ N h1,h2 ,...,hk
(ν), so

µ
[
E ∩ N h1,h2 ,...,hk

(ν)
]
≥ µ

[
E ∩ N h1,h2 ,...,hk(ν)

]
≥ µ(E) − ε

holds, and thus, since N h1,h2 ,...,hk
(ν) is µ-measurable,

µ(E) = µ
[
E ∩ N h1 ,h2,...,hk

(ν)
]

+ µ
[
E \ N h1 ,h2,...,hk

(ν)
]

≥ µ
[
E ∩ N (ν)

]
+ µ

[
E \ N h1,h2 ,...,hk

(ν)
]
− ε .

Now the sequence of sets
{
N h1 ,h2,...,hk

(ν)
}

k=1,2,...
is descending, and by

Lemma 1.6.16 its limit is a subset of N (ν). Consequently, the sequence{
X \ N h1 ,h2,...,hk

}
k=1,2,...

is ascending and its limit contains the set X \ N .

Hence,

lim
k→∞

µ
[
E \ N h1 ,h2,...,hk

(ν)
]

= µ

[
E \

∞⋃

k=1

N h1,h2 ,...,hk
(ν)

]
≥ µ

[
E \ N (ν)

]
,

so
µ(E) ≥ µ

[
E ∩ N (ν)

]
+ µ

[
E \ N (ν)

]
− ε ,

and the result follows since ε is an arbitrary positive number.

Corollary 1.6.18 If µ is a Borel regular measure on the topologically space
X, then all the Suslin sets in X are µ-measurable.

Corollary 1.6.19 If f : RN → RM is continuous, µ is a Borel regular mea-
sure on RM , and S ⊆ RN is a Suslin set, then f(S) is µ-measurable.

Remark 1.6.20 The particular properties of Euclidean space required for
Corollary 1.6.19 are that every open set is a countable union of closed sets
and that every closed set is a countable union of compact sets.
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Chapter 2

Carathéodory’s Construction
and Lower-Dimensional
Measures

In the study of geometric questions about sets it is useful to have various
devices for measuring the size of those sets. Certainly lower-dimensional
measures are one such mechanism. The classic construction of Carathéodory
provides an umbrella paradigm which generates a great many such measures,
suitable for a variety of applications. Our aim in the present chapter is to give
a thorough development of this theory and to present a number of examples
and applications.

Certainly the ideas that we present here began with Hausdorff [Hau 18]
and Carathéodory [Car 14]. In the intervening eighty years they have devel-
oped in a number of startling and powerful new directions. We shall endeavor
to describe both the history as well some of the current directions.

2.1 The Basic Definition

Let F be a collection of sets in RN . These will be our “test sets” for con-
structing Hausdorff-type measures. Let ζ : F → [0,+∞] be a function (called
the gauge of the measure to be constructed). Then preliminary measures φδ,
0 < δ ≤ ∞, are created as follows:

53
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Figure 2.1: Carathéodory’s construction.

If A ⊆ RN , then set

φδ(A) = inf




∑

S∈G
ζ(S) : G ⊆ F ∩ {S : diam S ≤ δ} and A ⊆

⋃

S∈G
S



 .

(2.1)

Each number in the set over which we take the infimum in (2.1) is obtained
by covering A by sets of diameter not exceeding δ (see Figure 2.1). Note that
φδ clearly satisfies the subadditivity requirement of Definition 1.2.1(1) and
thus is a measure.

If 0 < δ1 < δ2 ≤ ∞ then it is immediate that φδ1 ≥ φδ2. Thus we may set

ψ(A) = lim
δ→0+

φδ(A) = sup
δ>0

φδ(A) .

Certainly ψ is also a measure. This process for constructing the measure ψ is
called Carathéodory’s construction. Once the family of sets F and the gauge
ζ have been selected, the resulting measure ψ is uniquely determined.

By applying Carathéodory’s criterion, Theorem 1.2.13, we can immedi-
ately show that any open set is ψ-measurable. Indeed, one sees that

φδ(A ∪B) ≥ φδ(A) + φδ(B)

whenever dist(A,B) > δ > 0. This follows because any set of diameter ≤ δ
that is part of a covering of A ∪ B will either intersect A or intersect B
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but not both. Thus any collection G as above will partition naturally into a
subcollection that covers A and a subcollection that covers B.

Example 2.1.1 Not every open set is φδ-measurable. To see this, let N = 1,
let F be the collection of open intervals, and let ζ(S) = (diam (S))1/2. Define
I1 = (0, δ/2), I2 = (δ/2, δ), and I = I1 ∪ I2. Then it is easy to see that

φδ(I1) = (δ/2)1/2 , φδ(I2) = (δ/2)1/2 , φδ(I) = (δ)1/2 .

But then the inequality

φδ(I) ≥ φδ(I1) + φδ(I2)

clearly fails.

It is not difficult to show that, if all members of F are Borel sets, then
every subset A of RN is contained in a Borel set Ã with the same φδ measure
(just take the intersection of the unions of covers). Thus ψ is a Borel regular
measure.

We now describe an alternative approach to Carathéodory’s construction
that is due to Federer [Fed 54]. In fact ψ(A) can be characterized as the
infimum of the set of all numbers t with this property:

For each open covering U of A there exists a countable subfamily
G of F such that each member of G is contained in some member

of U , G covers A, and ∑

S∈G
ζ(S) < t .

(2.2)

One advantage of this new definition—important for us—is that it frees the
definition of ψ from any reference to a metric. This is particularly useful if
one wants to define Hausdorff measure on a manifold.

2.1.1 Hausdorff Measure and Spherical Measure

Hausdorff measure and spherical measure were introduced by Hausdorff in
[Hau 18].

Let m be a non-negative integer and Ωm the m-dimensional volume of
the unit ball in Euclidean m-space, that is,

Ωm =
2πm/2

mΓ(m/2)
=

[Γ(1/2)]m

Γ(m/2 + 1)
. (2.3)
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Now we specialize to the situation in which F is the collection of all sets S
and

ζ1(S) = Ωm 2−m(diam S)m (2.4)

for S 6= ∅. [Note that this definition makes sense for any m ≥ 0 with Ωm

defined by (2.3), although the interpretation of Ωm as the volume of a ball is
no longer relevant or valid when m is not an integer.]

We call the resulting measure the m-dimensional Hausdorff measure on
RN , denoted by Hm. It is worth noting that the same measure would result
if we let F be the collection of all closed sets or all open sets. In fact, because
any set and its convex hull have the same diameter, we could restrict attention
to convex sets.

It is immediate that the measure H0 is counting measure.

Proposition 2.1.2 For 0 ≤ s < t <∞ and A ⊆ RN , we have that

(1) Hs(A) <∞ implies that Ht(A) = 0;

(2) Ht(A) > 0 implies that Hs(A) = ∞.

Proof. It will be convenient to use Hs
δ (respectively, Ht

δ) to denote the
preliminary measure φδ constructed using the gauge ζ1 in (2.4) with m = s
(respectively, m = t).

For (1), let A ⊆ ⋃
iEi, with diam (Ei) ≤ δ and

Ωs 2−s
∑

i

diam (Ei)
s ≤ Hs

δ(A) + 1 .

Then

Ht
δ(A) ≤ Ωt 2−t

∑

i

diam (Ei)
t

≤ δt−s Ωt 2−t
∑

i

diam (Ei)
s ≤ δt−s (Ωt/Ωs) 2s−t (Hs

δ(A) + 1) .

As δ → 0+, this estimate gives (1).
Statement (2) is really just the contrapositive of (1). But it is worth

stating separately as it is the basis for the theory of Hausdorff dimension.

When F is the family of all closed balls in RN , and ζ1 as above, then
the resulting measure ψ is called the m-dimensional spherical measure. We
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denote this measure by Sm. The same measure results if we use the family
of all open balls.

Of course it is immediate that

Hm ≤ Sm ≤ 2m · Hm .

More precise comparisons are possible, and we shall explore these in due
course.

2.1.2 A Measure Based on Parallelepipeds

Let M > 0 be an integer and assume that M ≤ N , the dimension of the
Euclidean space RN . Now suppose we use the new gauge function defined by

ζ2(S) = ΩM ·2−M · sup
{
|(a1−b1)∧· · ·∧ (aM −bM )| : a1, b1, . . . , aM , bM ∈ S

}
.

(2.5)
See Figure 2.2. We will learn more about this gauge in Lemma 2.1.3. Then
Carathéodory’s construction on the family F of all nonempty subsets of RN

will be denoted by T M and will be called M-dimensional Federer1 measure
on RN . Of course we could use all open sets S, or all compact sets S, or all
convex sets S; the same measure would result.

Since

|(a1 − b1) ∧ · · · ∧ (aM − bM)| ≤
M∏

i=1

|ai − bi| ,

we conclude that
ζ2(S) ≤ ΩM · 2−M (diam S)M

and thus that T M ≤ HM . Observe that the gauge ζ2 assigns the same value
to any set and to its convex hull. This follows because the map of (RN)2M

into
∧

M (RN) yielding the preceding exterior product is affine with respect
to each of the 2M variables a1, b1, . . . , aM , bM .

2.1.3 Projections and Convexity

Continue to assume M > 0 is an integer with M ≤ N , the dimension of the
Euclidean space RN . We let O(N,M) denote the collection of orthogonal
injections of RM into RN , so each element of O(N,M) is a linear map from

1This measure was introduced by H. Federer in [Fed 69].
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Figure 2.2: A construction based on exterior algebra.

RM to RN that is represented by an N×M matrix with orthonormal columns.
In case M = N , we write O(M) = O(M,M) so that O(M) is the orthogonal
group. Furthermore, O∗(N,M) will be the set of adjoints of elements of
O(N,M) from RN onto RM) (these are of course orthogonal projections).
For S ⊆ RN , we set

ζ3(S) = sup{LM [p(S)] : p ∈ O∗(N,M)} , (2.6)

where LM is the M -dimensional Lebesgue measure.

Gross Measure

Let F be the family of all Borel subsets of RN . Then Carathéodory’s con-
struction, with ζ3 as in (2.6), gives the M-dimensional Gross measure2 on
RN . It is denoted by GM .

Carathéodory Measure

Let F be the family of all open, convex subsets of RN . Then Carathéodory’s
construction, with ζ3 as in (2.6), gives the M-dimensional Carathéodory mea-

2Introduced in [Gro 18a] and [Gro 18b].
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sure3 on RN . We denote this measure by CM . The family of all closed,
convex subsets give rise to just the same measure.

It is worth noting that, when M = 1, then ζ3(S) = diam (S) when S is
convex and hence

C1 = H1 .

2.1.4 Other Geometric Measures

Fix RN as usual and select a positive integer M such that M ≤ N . For
1 ≤ t ≤ ∞, we now proceed to define a gauge function ζ4,t:

For S ⊆ RN , define fS : O∗(N,M) → R by setting

fS(p) = LM [p(S)] for all p ∈ O∗(N,M) .

Let θ∗N,M be the Haar4 measure on O∗(N,M), that is, the measure invariant
under the action of the orthogonal group. (We will prove the existence of
Haar measure in Chapter 3 where our arguments are independent of this
chapter.) To insure that the measures resulting from Carathéodory’s con-
struction using the gauge ζ4,t give values that agree with those found for
smooth surfaces using calculus, we need to introduce a normalizing factor
βt(N,M). For completeness, we give the definition here. For 1 ≤ t <∞, let
βt(N,M) be the positive number that satisfies the equation

(∫
|(∧Mp)ξ|t dθ∗N,M p

)1/t

= βt(N,M) · |ξ|

for any simple M -vector ξ of RN . Set β∞(N,M) = 1. Finally, set

ζ4,t(S) =
(
βt(N,M)

)−1
(∫ ∣∣∣fS(p)

∣∣∣
t
dθ∗N,M p

)1/t

, (2.7)

whenever fS(p) = LM [p(S)] is θ∗N,M-measurable.
In fact, fS is θ∗N,M -measurable whenever S is a Borel or Suslin set. This

measurability holds because

{ (x, y, p) : x ∈ S, y = p(x) }

is a Suslin set in RN × RM × O∗(N,M) whenever S is a Borel or Suslin set
in RN .

3Introduced in [Car 14].
4Alfréd Haar (1885–1933).
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The map
t 7−→ βt(N,M)ζ4,t(S) (2.8)

sends t to the Lt-norm of a fixed function on a space with total measure 1, so,
using Hölder’s inequality and Lebesgue’s convergence theorems, we see that
the map (2.8) is nondecreasing and continuous; thus ζ4,t(S) is continuous as
a function of t.

Integral Geometric Measure

Let F be the family of all Borel subsets of RN . Using Carathéodory’s con-
struction with gauge ζ4,t, we construct the M-dimensional integral geometric
measure with exponent t on RN . This measure is denoted by IM

t . Roughly
speaking, integral geometric measure measures all projections of the given
set, and then integrates out (using Haar measure) over all projections. The
M -dimensional integral geometric measure with exponent 1 was introduced
by Jean Favard (1902–1965) in [Fav 32] and is sometimes called Favard mea-
sure.

It is worth noting that IM
t (A) = 0 if and only if the set A is contained in

a Borel set B with LM [p(B)] = 0 for θ∗N,M -almost every p ∈ O∗
N,M . Thus all

the measures IM
t , 1 ≤ t ≤ ∞, have the same null sets.

Gillespie Measure

Let F be the family of all open, convex subsets of RN . The Carathéodory
construction with gauge ζ4,t then gives the measure QM

t . We call this measure
the M-dimensional Gillespie5 measure with exponent t on RN . The same
measure results when we use instead the family of all closed, convex subsets
of RN .

Since the function fS is continuous for any bounded, open, convex set S,
we see that QM

∞ = CM .

5David Clinton Gillespie (1879–1935) suggested the measure QM
1 to Anthony Perry

Morse (1911–1984) and John A. F. Randolph (see [MR 40]).
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2.1.5 Summary

In the table below, we summarize the measures, and their constructions, that
have been described in this section.

Gauges

m ∈ R, 0 ≤ m < ∞
ζ1(S) = Ωm 2−m(diam S)m

M ∈ Z, 1 ≤ M ≤ N

ζ2(S) = ΩM · 2−M · sup{|(a1 − b1) ∧ · · · ∧ (aM − bM )| : a1, . . . , bM ∈ S}

ζ3(S) = sup{LM [p(S)] : p ∈ O∗(N,M)}

ζ4,t(S) =
(
βt(N,M)

)−1 ∥∥∥LM [p(S)]
∥∥∥

t

Notation Name of Measure Family of Sets F Gauge

Hm Hausdorff all sets ζ1

Sm spherical balls ζ1

T M Federer all sets ζ2

GM Gross Borel sets ζ3

CM Carathéodory open, convex sets ζ3

IM
1 Favard Borel sets ζ4,1

IM
t integral geometric Borel sets ζ4,t

with exponent t

QM
t Gillespie open, convex sets ζ4,t

with exponent t

Measures Resulting From Carathéodory’s Construction
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To establish the relationships between the measures listed in the table,
we will need to understand ζ2 a little better.

Lemma 2.1.3 If S ⊆ RM is a nonempty subset, then

LM (S) ≤ ΩM ·2−M ·sup{|(a1−b1)∧· · ·∧(aM −bM )| : a1, b1, . . . , aM , bM ∈ S} .

Proof. Let M = N and let ζ2(S) be as above. Take λ, µ > 0. Define C
to be the collection of all nonempty, compact, convex subsets S of RN such
that

LM (S) ≥ λ and ζ2(S) ≤ µ .

By the upper semicontinuity of Lebesgue measure with respect to the
Hausdorff distance, i.e., Corollary 1.5.5, and by the definition of ζ2, C is
closed with respect to the Hausdorff metric. We further claim that if the set
T is obtained from S ∈ C by Steiner symmetrization, then T ∈ C. To see
that this claim holds, recall that Proposition 1.5.12 tells us that Steiner sym-
metrization preserves Lebesgue measure, while symmetrization also preserves
the gauge ζ2 just by linearity.

Now, in case C is nonempty, we can conclude from Theorem 1.5.16 that
there is some ball B(0, r) in C. Thus

λ ≤ LM [B(0, r)] = ΩM · rM = ζ2[B(0, r)] ≤ µ .

That proves our result.

Corollary 2.1.4 For S ⊆ RN , it holds that

ζ3(S) ≤ ζ2(S) .

Proof. For p ∈ O∗(N,M), we have

|p(a1 − b1) ∧ · · · ∧ p(aM − bM)| ≤ |(a1 − b1) ∧ · · · ∧ (aM − bM)|

so, by Lemma 2.1.3,

LM [p(S)]

≤ ΩM · 2−M · sup{|(a1 − b1) ∧ · · · ∧ (aM − bM)| : a1, b1, . . . , aM , bM ∈ p(S)}

≤ ΩM · 2−M · sup{|p(a1 − b1) ∧ · · · ∧ p(aM − bM )| : a1, b1, . . . , aM , bM ∈ S}

≤ ΩM · 2−M · sup{|(a1 − b1) ∧ · · · ∧ (aM − bM)| : a1, b1, . . . , aM , bM ∈ S}

= ζ2(S)
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holds. Taking the supremum over p ∈ O∗(N,M), we obtain the result.

The following six facts will allow us to compare the measures we have
created using Carathéodory’s construction.

(1) making the family of sets F smaller cannot decrease the measure re-
sulting from Carathéodory’s construction,

(2) ζ2 ≤ ζ1,

(3) ζ3 ≤ ζ2,

(4) βt(N,m) ζ4,t(S) is a nondecreasing function of t,

(5) β∞(N,m) = 1 by definition, and

(6) ζ3 and ζ4,∞ agree on the open, convex sets.

Proposition 2.1.5 For M an integer with 1 ≤ M ≤ N and for ∞ ≥ t ≥
s ≥ 1, the following relationships hold:

SM ≥ HM ≥ T M

∨
CM = QM

∞ ≥ βt(N,M) · QM
t ≥ βs(N,M) · QM

s

∨ ∨ ∨ ∨
GM ≥ IM

∞ ≥ βt(N,M) · IM
t ≥ βs(N,M) · IM

s .

Proof. Use the six facts above.

Noting that βt(N,N) = 1 for 1 ≤ t ≤ ∞, we see that, when N = M , IN
1

is smallest of the measures that we have defined in this section. Also note
that the equation

IN
1 (A) ≥ LN (A), for all A ⊆ RN (2.9)

is evident from the definition of IN
1 . Ultimately (see Corollary 4.3.9) we

will show that, in RN , the measures SN , HN , T N , CN , GN , QN
t , and IN

t

(1 ≤ t ≤ ∞) all agree with the N -dimensional Lebesgue measure LN .
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2.2 The Densities of a Measure

At a point p of a smooth m-dimensional surface S in RN , we know that the
m-dimensional area of S ∩ B(p, r) approaches 0 like rm as r ↓ 0. We might
hope to generalize that observation to less smooth surfaces and more general
measures, or we might wish to show that if some measure behaves in that
way on a set S, then that set exhibits some other desirable behavior. The
tools for such investigations are the densities of a measure which we define
next.

Definition 2.2.1 Let µ be a measure on RN . Fix a point p ∈ RN and fix
0 ≤ m <∞ (m need not be an integer).

(1) The m-dimensional upper density of µ at p is denoted by Θ∗m(µ, p)
and is defined by setting

Θ∗m(µ, p) = lim sup
r↓0

µ
[
B(p, r)

]

Ωm rm
.

(2) Similarly, the m-dimensional lower density of µ at p is denoted by
Θm∗ (µ, p) and is defined by setting

Θm∗ (µ, p) = lim inf
r↓0

µ
[
B(p, r)

]

Ωm rm
.

(3) In case Θm∗ (µ, p) = Θ∗m(µ, p), we call their common value the m-
dimensional density of µ at p and denote it by Θm(µ, p).

Because Hausdorff measure and spherical measure are based on diameters
of sets and balls, respectively, a bound on the upper density of a measure µ
should imply a relationship between µ and Hausdorff measure and between
µ and spherical measure. To obtain such results, we need to require the
measure µ to be regular. Recall that Lemma 1.2.8 tells us that, for a regular
measure, the measure of the union of an increasing sequence of sets equals
the limit of their measures.

Proposition 2.2.2 Let µ be a regular measure on RN , and let 0 ≤ t < ∞
be fixed. If Hm(A) <∞ and Θ∗m(µ, p) ≤ t holds for all p ∈ A, then

µ(A) ≤ t · 2m · Hm(A) ≤ t · 2m · Sm(A) .
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Proof. Since Hm ≤ Sm, we need only consider the Hausdorff measure.
Let s with t < s <∞ be arbitrary. For each positive integer j, set

Aj = A ∩
{
p : µ

[
B(p, r)

]
≤ s, for all r ≤ 1/j

}
.

By Lemma 1.2.8, the fact that Hm(Aj) < ∞, and the arbitrariness of s, it
suffices to prove

µ(Aj) ≤ 2m · s · Hm(Aj) (2.10)

holds for each j.
Now let δ satisfy 0 < δ ≤ 1/j. Let S1, S2, . . . be a family of sets of

diameter not exceeding δ such that Aj ⊆ ∪∞
i=1Si. Without loss of generality,

we may assume each Si intersects Aj in a point Pi. We conclude that

µ(Aj) ≤
∞∑

i=1

µ(Si) ≤
∞∑

i=1

µ
[
B(pi, diamSi)

]

≤
∞∑

i=1

sΩm (diamSi)
m ≤ 2m s

∞∑

i=1

ζ1(Si)

holds, where ζ1(S) is the gauge function

ζ1(S) = Ωm 2−m (diamS)m .

Since the countable covering {Si} by sets with diameter not exceeding δ was
otherwise arbitrary, we conclude that

µ(Aj) ≤ 2m · s · φ1/j(Aj) .

Letting δ ↓ 0, we obtain (2.10).

Definition 2.2.3 If µ is a measure on the nonempty set X and A ⊆ X is
any set, define the measure µ A on X by setting

(µ A)(E) = µ(A ∩ E)

for each E ⊆ X. It is easy to check that µ A is, in fact, a measure, and it is
also easy to check that any set that is µ-measurable is also µ A-measurable.
We call µ A the restriction of µ to A.
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Corollary 2.2.4 Fix 0 ≤ t < 2−m. If A ⊆ RN with Hm(A) < ∞ and if
Θ∗m(Hm A, p) < t holds for each p ∈ A, then Hm(A) = 0.

Proof. Argue by contradiction. Assume Hm(A) > 0 and apply Proposi-
tion 2.2.2 to the measure µ = Hm A on the set A.

Remark 2.2.5 In fact the conclusion of Corollary 2.2.4 remains true even
without the hypothesis Hm(A) < ∞ as long as A is assumed to be a Suslin
set. To obtain this generalization requires the next result, which we shall not
prove here.

Theorem 2.2.6 [Bes 52] If A is a compact subset of RN with Hm(A) = ∞,
then there is a compact set B with B ⊆ A and 0 < Hm(B) <∞.

2.3 A One-Dimensional Example

Suppose g : R → R is nondecreasing. Let F be the family of all nonempty,
bounded open subintervals of R. Define the gauge

ζ
(
{t ∈ R : a < t < b}

)
= g(b) − b(a) (2.11)

whenever −∞ < a < b < ∞. Now applying Carathéodory’s construction
produces a measure ψ that we will investigate.

Lemma 2.3.1 If g is continuous at a and b, then

ψ{t ∈ R : a < t < b} = g(b) − g(a) .

Proof. First we observe that, using the gauge in (2.11), all the measures φδ,
for 0 < δ < ∞, in Carathéodory’s construction are equal. This is because if
g is continuous at points t1 < t2 < · · · < tN+1 then

g(tN+1) − g(t1) = lim
ε→0+

n∑

j=1

[g(tj+1 + ε) − g(tj − ε)] .

From the equality of all the approximating measures φδ, we conclude that
ψ({t ∈ R : a < t < b}) ≤ g(b) − g(a).
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To obtain the opposite inequality, notice that if G is any countable family
of open intervals covering the interval (a, b), and if ε > 0, then {t ∈ R : a+ε ≤
t ≤ b − ε} is covered by some finite subfamily of G. Call this subcovering
(u1, v1), (u2, v2), . . . , (uk, vk). Thus

k∑

j=1

[g(vj) − g(uj)] ≥ g(b− ε) − g(a+ ε) ,

and that proves the result.

The measure ψ is the measure associated with Riemann-Stieltjes6 inte-
gration with respect to g. See [Rud 79; Chap. 6] or [Fed 69; 2.5.17] for more
on the Riemann-Stieltjes integral.

Example 2.3.2 In the special case that g(x) = x, the gauge ζ defined in
(2.11) agrees with the gauge ζ1 used to define Hausdorff measure (or spherical
measure) on R, so that ψ = H1 = S1. The lemma tells us that H1 and S1

assign the same measure to any open interval as does L1. We conclude that,
on R, L1 = H1 = S1.

2.4 Carathéodory’s Construction and Map-

pings

Carathéodory’s construction is complicated enough that it is often a chal-
lenge to compute values of the resulting measure. For this reason, the next
proposition is of considerable utility.

First recall that a partition of a set A is a collection P of pairwise disjoint
subsets of A whose union equals A; that is,

P1 ∩ P2 = ∅ if P1, P2 ∈ P with P1 6= P2 ,

A =
⋃

P∈P
P .

Proposition 2.4.1 Let ψ be the result of applying Carathéodory’s construc-
tion to the family F using a gauge function ζ. Suppose that every element

6Thomas Jan Stieltjes (1856–1894).
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of F is a Borel set, and suppose that the gauge function satisfies the sub-
additivity condition

ζ(A) ≤
∑

B∈G
ζ(B) (2.12)

whenever G is a countable subfamily of F with A ⊆ ⋃
B∈GB.

If A ⊆ RN is any set in F , then we have

ψ(A) = sup

{∑

B∈H
ζ(B) : H is a F partition of A

}
.

Furthermore, if H1,H2, . . . are F partitions of A, then

lim sup
j→∞

{diam B : B ∈ Hj} = 0 implies lim
j→∞

∑

B∈Hj

ζ(B) = ψ(A) .

Proof. Of course ζ(S) ≤ ψ(S) holds for every set S ∈ F . Since any
S ∈ F is a Borel set and any Borel set is ψ-measurable, thus every S ∈ F is
ψ-measurable. It follows that

∑

B∈H
ζ(B) ≤

∑

B∈H
ψ(B) = ψ(A)

whenever H is a F partition of A.
If the diameters of the members of the partitions Hj of A approach 0 as

j → ∞, then we also have

ψ(A) ≤ lim inf
j→∞

∑

B∈Hj

ζ(B) ≤ lim inf
j→∞

∑

B∈Hj

ψ(B) .

Proposition 2.4.1 can be applied to the construction of Gm and Im
t . One

concludes that
Im

t = lim
s→t−

Im
s for 1 ≤ t ≤ ∞ .

The theorem cannot be applied to Hm, Sm, T m, or Qm
t . For instance, there

is no hope of ζ1 satisfying (2.12) since, in general, diam (A∪B) is in no way
bounded by the two numbers diamA and diamB.

Now we introduce the notion of the multiplicity of a mapping.

Definition 2.4.2 Suppose that f : X → Y . We let N(f, y) denote the
number of elements of f−1({y}). More precisely, for y ∈ Y , we set

N(f, y) =

{
card{x ∈ X : f(x) = y} if {x ∈ X : f(x) = y} is finite,

∞ otherwise.

We call N(f, y) the multiplicity of f at y.
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Proposition 2.4.3 Let µ be a measure on RN , let f : RM → RN , and let
F be the family of Borel subsets of RM . Assume that f(A) is µ-measurable
whenever A ∈ F . If we set

ζ(S) = µ[f(S)] for S ⊆ X ,

and if ψ is the result of Carathéodory’s construction on RM using the gauge
ζ on the family F , then

ψ(A) =
∫
N(f |A, y) dµ(y) for every A ∈ F .

Proof. Let H1,H2, . . . be Borel partitions of A such that each member of
Hj is the union of some subfamily of Hj+1 and

sup{diam S : S ∈ Hj} → 0 as j → ∞ .

Then ∑

S∈Hj

χ
f(S)

(y) ↑ N(f |A, y) as j ↑ ∞

for each y ∈ Y . Thus the last proposition and the Lebesgue monotone
convergence theorem imply that

ψ(A) = lim
j→∞

∑

S∈Hj

µ[f(S)] = lim
j→∞

∫ ∑

S∈Hj

χf(S) dµ =
∫
N(F |A, y) dµ(y) .

Definition 2.4.4 Let X and Y be metric spaces with metrics distX and
distY , respectively. A function f : X → Y is said to be Lipschitz of order 1,7

or simply Lipschitz, if there exists M <∞ such that

distY [f(x1), f(x2)] ≤M distX [x, y] (2.13)

holds for all x1, x2 ∈ X. The least choice of M that makes (2.13) true is
called the Lipschitz constant for f and is denoted by Lip f .

Corollary 2.4.5 If f is a Lipschitz mapping of RM into RN , if 0 ≤ m <∞,
and if A ⊆ RM is Borel, then

(Lip f)m · Hm(A) ≥
∫
N(f |A, y) dHm(y) .

7Rudolf Otto Sigismund Lipschitz (1832–1903).
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Proof. We apply Proposition 2.4.3 with µ replaced by Hm, so we have
ζ(S) = Hm[f(S)]. It is elementary that

Hm[f(S)] ≤ (Lip f)m · Hm(S) for S ⊆ RM ,

and the result follows.

Now an interesting geometric upshot of this discussion is the following:

Corollary 2.4.6 If C ⊆ RM is connected then

H1(C) ≥ diam C .

Proof. We may of course assume that H1(C) < ∞. Choose a Borel set
B ⊇ C such that H1(B) = H1(C).

For a, b ∈ C, we define F : RM → R by setting F (x) = dist(a, x) for
x ∈ RM . Then, by the previous corollary and our discussion of Hausdorff
measure in one dimension,

H1(C) = H1(B) ≥
∫
N(F |B, y) dH1(y) ≥ H1[F (C)] ≥ dist(a, b)

just because 0 = F (a) and F (b) belong to the interval F (C). That proves
the result.

The reader may have noticed that Corollary 2.4.5 allows us to conclude
that (Lip f)m · Hm(A) ≥ Hm[f(A)]. In fact, this last conclusion follows
directly from the definition without any hypothesis on A.

Proposition 2.4.7 If f is a Lipschitz mapping of RM into RN , if 0 ≤ m <
∞, and if A ⊆ RM is any set, then

(Lip f)m · Hm(A) ≥ Hm[f(A)] .

2.5 The Concept of Hausdorff Dimension

The concept of Hausdorff dimension relies on the following conclusions of
Proposition 2.1.2:
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Figure 2.3: The Sierpinski gasket.

(1) If Hm(A) <∞ then Hk(A) = 0 for any m < k <∞.

(2) If Hm(A) = +∞ then Hk(A) = +∞ for any 0 ≤ k < m.

Definition 2.5.1 The Hausdorff dimension of a set A ⊆ RN is

dimHA = sup{s : Hs(A) > 0} = sup{s : Hs(A) = ∞}

= inf{t : Ht(A) <∞} = inf{t : Ht(A) = 0} .

It is clear that the Hausdorff dimension of a set A ⊆ RN is that unique
extended real number α with the property that

s < α implies Hs(A) = ∞ ,

t > α implies Ht(A) = 0 .

When s = α = dimHA, we cannot know anything for sure about Hs(A).
That is to say, the value could be 0 or positive finite or infinity. If, for a
given A, we can find an s such that 0 < Hs(A) < ∞ then it must be that
s = dimHA. While the Hausdorff dimension of the set A can be an integer,
in general this is not the case. Figure 2.3 illustrates a classic example [due to
Waclaw Sierpinski (1882–1969)] of a set with Hausdorff dimension log 3/ log 2.
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Clearly the notion of Hausdorff dimension has the properties of mono-
tonicity and stability with respect to countable unions:

dimHA ≤ dimHB for A ⊆ B ⊆ RN ;

dimH




∞⋃

j=1

Aj


 = sup

j
dimHAj for Aj ⊆ RN , j = 1, 2, . . . .

It is not difficult to show that dimH RN = N and the dimension of a line
segment is 1. More generally, the dimension of any compact, C1 curve is 1.
For one can use the implicit function theorem to locally flatten the curve,
and then the result follows from that for a segment. The dimension of any
discrete set is 0.

Sometimes sets have surprising Hausdorff dimensions. Probably the first
such surprise was exhibited in [Osg 03] when William Fogg Osgood (1864–
1943) published his example of a Jordan arc8 γ in R2 that has positive area,
hence dimH γ = 2 (see [PS 92] for a generalization to a Jordan arc γ in RN

with dimH γ = N).
A recent result of note is that of Mitsuhiro Shishikura [Shi 98] showing

that the boundary of the Mandelbrot set has Hausdorff dimension 2.9

We construct the m-dimensional Hausdorff measure by summing mth
powers of the diameters of the covering sets. But, in some contexts, it is
convenient to apply another function to the diameters. For example, in the
study of Brownian motion10 (see Figure 2.4) it is useful to consider the gauges

ζ(S) = [diam S]2 · log log[diam S]−1 in dimension ≥ 3

and

ζ(S) = [diam S]2 · log[diam S]−1 · log log[diam S]−1 in dimension 2 .

It can be shown that the trajectories of Brownian motion have positive
and σ-finite measure with respect to the measures that are created from
Carathéodory’s construction with these gauges ζ.

8Marie Ennemond Camille Jordan (1838–1922).
9Earlier numerical work by John H. Ewing and Glenn Edward Schober (1938–1991)

in [ES 92] had suggested that the boundary of Mandelbrot set has positive 2-dimensional
Lebesgue measure.

10Robert Brown (1773-1858).



2.6. SOME CANTOR SET EXAMPLES 73

Figure 2.4: Brownian motion.

2.6 Some Cantor Set Examples

In this section, we construct examples of sets of various Hausdorff dimensions.
Much of our discussion follows [Mat 95]. Certainly additional examples can
be found in Sections 2.10.28, 2.10.29, 3.3.19, and 3.3.20 of [Fed 69].

2.6.1 Basic Examples

Fix a parameter 0 < λ < 1/2. Set I0 = [0, 1] and let I1,1 and I1,2 be
the intervals [0, λ] and [1 − λ, 1] respectively. Inductively, if the 2k−1 in-
tervals Ik−1,1, Ik−1,2, . . . , Ik−1,2k−1, each having length λk−1, have been con-
structed, then we define Ik,1, . . . , Ik,2k by deleting an interval of length (1 −
2λ) · diam (Ik−1,j) = (1− 2λ) · λk−1 from the middle of each Ik−1,j. All of the

2k intervals thus obtained at this kth step have length λk, so H1
[⋃2k

j=1 Ik,j

]
=

(2λ)k.

We may pass to a limit of this construction in the usual “direct limit” or
“limsup” manner: We set

C(λ) =
∞⋂

k=0

2k⋃

j=1

Ik,j .

See Figure 2.5. Then it is easy to see that C(λ) is a compact, nonempty, per-
fect set and therefore is uncountable. It has no interior and it has Lebesgue
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I
0,1

I I1,1 1,2

I I I I2,1 2,2 2,3 2,4

I3,1 3,8I

Figure 2.5: A Cantor set.

measure zero. Every C(λ), 0 < λ < 1/2, is a Cantor set11, and any two are
homeomorphic. The most frequently encountered rendition of the sets C(λ)
is the case λ = 1/3, which is the Cantor middle-thirds set.

It is convenient now to study the Hausdorff measures and dimensions of
these Cantor sets. The nature of Carathéodory’s construction shows imme-
diately that it is easier to find upper bounds than lower bounds for Hausdorff
measure. This is because any particular covering gives an upper bound, but
a lower bound requires an estimate over all coverings. Our calculations will
bear out this assertion.

We let Hm
δ denote the preliminary measure φδ of (2.1) constructed using

the gauge ζ1 of (2.4); that is,

Hm
δ (A) = inf

{ ∑

S∈G
Ωm 2−m(diam S)m :

G ⊆ {S : diam S ≤ δ} and A ⊆
⋃

S∈G
S

}
.

To begin, for each k = 1, 2, . . ., we have C(λ) ⊆ ⋃
j Ik,j hence

Hm
λk [C(λ)] ≤

2k∑

j=1

diam (Ik,j)
m = 2kλkm = (2λm)k .

11Georg Ferdinand Ludwig Philipp Cantor (1845–1918).
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To make this upper bound truly useful, we would like it to remain uniformly
bounded as k → +∞. Of course the least value of m for which this occurs is
provided by the equation 2λm = 1, i.e.,

m =
log 2

log(1/λ)
.

For this choice of m we have

Hm[C(λ)] = lim
k→+∞

Hm
λk [C(λ)] ≤ 1 .

Hence dimHC(λ) ≤ m.
Our next calculation will show that Hm[C(λ)] ≥ 1/4. Hence we will be

able to conclude that

dimH C(λ) =
log 2

log(1/λ)
. (2.14)

To prove this new estimate, we need only show that

∑

j

diam (Ij)
m ≥ 1

4
(2.15)

whenever the Ij are open intervals covering C(λ). The set C(λ) is compact,
hence finitely many of the Ijs cover C(λ). Hence we may as well assume from
the outset that C(λ) is covered by I1, . . . , In.

Since C(λ) certainly has no interior, we can suppose (making the Ij

slightly larger if necessary) that the endpoints of each Ij lie outside C(λ).
Then we may select a number δ > 0 such that the Euclidean distance from
the set of all endpoints of the Ij to C(λ) is at least δ. We select k > 0 so
large that δ > λk = diam (Ik,i). Thus each interval Ik,i is contained in some
Ij.

Next we claim that, for any open interval I and any fixed index `, we
have the inequality

∑

I`,i⊆I

diam (I`,i)
m ≤ 4 · diam (I)m . (2.16)

This claim will give (2.15), since

4
∑

j

diam (Ij)
m ≥

∑

j

∑

Ik,`⊆Ij

diam (Ik,i)
m ≥

2k∑

i=1

diam (Ik,i)
m = 1 .
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It remains then to prove (2.16).
So suppose that there are some intervals I`,i which lie inside I and let

n be the least integer for which I contains some In,i. Then n ≤ `. Let
In,j1 , In,j2, . . . , In,jp be all the nth-generation intervals which have nontrivial
intersection with I. Then p ≤ 4 since otherwise I would contain some In−1,i.
Thus

4·diam (I)m ≥
p∑

s=1

diam (In,js)
m =

p∑

s=1

∑

I`,i⊆In,js

diam (I`,i)
m ≥

∑

I`,i⊆I

diam (I`,i)
m .

That completes the proof.

It is actually possible, with some refined efforts, to show that
∑

diam(Ij)
m ≥

1, which gives the sharper fact that Hm[C(λ)] = 1.
It is worth noting the intuitive fact that, when λ increases, the size of

the deleted holes decreases and therefore the sets C(λ) become larger. Cor-
responding to this intuitive observation, (2.14) shows that dimHC(λ) in-
creases as λ increases. Also observe that, when λ increases from 0 to 1/2
then dimHC(λ) takes all the values between 0 and 1.

2.6.2 Some Generalized Cantor Sets

In the preceding construction of Cantor sets we always kept constant the
ratio of the lengths of intervals in two successive stages of the construction.
We are not bound to do so, and we can thus introduce the following variant
of the construction.

Let T = {λi} be a sequence of numbers in the interval (0, 1/2). We
construct a set C(T ) as in the last subsection, but we now take the intervals
Ik,j to have length λk ·diam (Ik−1,i). Then, for each k, we obtain 2k intervals
of length sk = λ1 · λ2 · · · λk.

Let h : [0,∞) → [0,∞) be a continuous, increasing function satis-
fying h(sk) = 2−k. Then, by the argument of the preceding subsection,
the measure ψ resulting from Carathéodory’s construction using the gauge
ζ(S) = h(diam S) satisfies

1

4
≤ ψ[C(T )] ≤ 1 .

We can also run this argument in the converse direction. Beginning with
any continuous, increasing function h : [0,∞, ) → [0,∞) satisfying h(0) = 0
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and h(2r) < 2h(r) for 0 < r < ∞, we inductively select λ1, λ2, . . . so that
h(sk) = h(λ1 ·λ2 · · ·λk) = e−k holds. For any such h there is then a compact
set Ch ⊆ R1 such that 0 < ψh(Ch) < ∞, where ψh is the measure resulting
from Carathéodory’s construction using the gauge ζ(S) = h(diam S).

Now, fix 0 < m ≤ 1. Letting h(0) = 0 and h(r) = rm log(1/r) for r
small, we observe that the condition h(2r) < 2h(r) is satisfied for r small
and thus we can find a compact set Ch with ψh(Ch) positive and finite. By
comparing rm log(1/r) to rm for r small, we conclude that Hm(Ch) = 0, while,
by comparing rm log(1/r) to rs, 0 ≤ s < r, for r small, we conclude that
dimHCh = m. On the other hand, choosing h(r) = rm/ log(1/r) instead (for
r small), we see that the condition h(2r) < 2h(r) is again satisfied for r small
and we see that Ch has non-σ-finite Hm measure and Hausdorff dimension
m. In particular, the extreme cases s = 0 and s = 1 give, respectively, a
set of dimension 1 with zero Lebesgue measure and an uncountable set of
dimension zero.
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Figure 2.6: A higher-dimensional Cantor set.

2.6.3 Cantor Sets in Higher Dimensions

Of course Cantor sets can be constructed in dimensions 2 and higher, follow-
ing the paradigm of the last section. The idea is illustrated in Figure 2.6.

To illustrate the utility of these Cantor sets in constructing examples for
Hausdorff dimension, we now describe one result.

Suppose that, for k = 1, 2, . . . we have compact sets Ei1 ,i2,...,ik with ij =
1, . . . , nj. Further assume that

Ei1 ,...,ik ,ik+1
⊆ Ei1,...,ik , (2.17)

dk = max
i1,...,ik

diam (Ei1 ,...,ik) → 0 as k → ∞ , (2.18)

nk+1∑

j=1

diam (Ei1,...,ik ,j)
m = diam (Ei1,...,ik)m , (2.19)

∑

B∩Ei1,...,ik
6=∅

diam (Ei1 ,...,ik)m ≤ c · diam (B)m

for any ball B with diam (B) ≥ dk , (2.20)
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where 0 < c <∞ is a constant. Define the set

E =
∞⋂

k=1

⋃

i1,...,ik

Ei1,...,ik . (2.21)

It is immediate from (2.19) that Hm(E) is finite. To see that Hm(E) is also
positive, suppose that E is covered by a family of sets of diameter less than δ.
We can replace each set in the family by an open ball of slightly more than
twice the set’s diameter while still covering E. Thus we may suppose that
E is covered by a family of open balls. Since E is compact, we may suppose
the family of open balls is finite. So we have E ⊆ ⋃A

α=1 Uα, where each Uα is
an open ball. Since as a function of k,

⋃
i1 ,...,ik Ei1 ,...,ik is a decreasing family

of compact sets, there is a k0 so that

⋃

i1,...,ik0

Ei1,...,ik0
⊆

A⋃

α=1

Uα .

Now using (2.20), we estimate

A∑

α=1

diam Uα ≥ c−1
A∑

α+1

∑

Uα∩Ei1,...,ik0
6=∅

diam (Ei1 ,...,ik0
)m

≥ c−1
∑

i1,...,ik0

diam (Ei1,...,ik0
)m = c−1

n1∑

i1=1

diam (Ei1)
m .

Thus Hm(E) is greater than C ·∑n1
i1=1 diam (Ei1)

m, where C depends only on
c,m.

Example 2.6.1 Let E be the unit ball B(0, 1) ⊆ R2. Consider the subset
Ẽ of E consisting of balls or radius 1/4 centered at the four points

v1 = (3/4, 0) , v2 = (1/4,
√

2/2) ,

v3 = (−3/4, 0) , v4 = (−1/4, −
√

2/2) .

We want to recursively define sets of closed balls by starting with Ẽ and at
each stage of the construction replacing each ball with a scaled copy of Ẽ
(see Figure 2.7). More precisely, for k = 1, 2, . . . and ij ∈ {1, 2, 3, 4}, for
j = 1, 2, . . . , k, set

p11,i2,...,ik =
k∑

j=1

(1/4)j−1 vij , Ei1,i2,...,ik = B
[
p11 ,i2,...,ik , (1/4)k

]
.
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Figure 2.7: The first two stages in the construction in Example 2.6.1.

These sets satisfy (2.17)–(2.20) with dk = 2(1/4)k , m = 1, and c = 4. With
E defined as in (2.21), we conclude that 0 < H1(E) <∞, so E is of Hausdorff
dimension 1.

The set E that we have just constructed projects orthogonally onto the full
interval [−1, 1] on the x-axis. For orthogonal projection onto any line with
slope 1/

√
2, E projects to a set of Hausdorff dimension 1/2. An interesting

feature of this set is that, for lines with slope −
√

2, i.e., lines perpendicular
to those with slope 1/

√
2, E again projects to a set of Hausdorff dimension

1/2.

There is an extensive literature of self-similar sets and their Hausdorff
measures and dimensions. We refer the reader to [Mat 95] and [Rog 98] for
further particulars on this topic.

References for additional interesting and instructive sets can be found in
Sections 2.10.6 and 3.3.21 of [Fed 69].



Chapter 3

Invariant Measures and the
Construction of Haar Measure

The N -dimensional Lebesgue measure LN , the most commonly used mea-
sure on RN , has the property that LN (A) = LN (b + A) for any set A and
translation by any element b ∈ RN . In fact this translation invariance essen-
tially characterizes Lebesgue measure on RN . However, consider instead the
space R+ ≡ {x ∈ R : x > 0} with the group operation being multiplication
(instead of addition). Now what is the invariant measure?

In fact the reader may verify that the measure dx/x is invariant under
the group action. Indeed, if A is a measurable set and b ∈ R+ then

∫

R+

χ
A

(x · b) dx
x

=
∫

R+

χ
A

(x)
dx

x
.

More generally, one may ask “Is it possible to find an invariant measure
on any topological group?” By a topological group we mean a topological
space that also comes equipped with a binary operation that induces a group
structure on the underlying set. We require that the group operations (prod-
uct and inverse) be continuous in the given topology. Examples of topological
groups are

(1) (RN ,+), N -dimensional Euclidean space under the operation of vector
addition,

(2) (T, · ), the circle group consisting of the complex numbers with modulus
1 under the operation of complex multiplication,

81
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Figure 3.1: Constructing Haar measure.

(3) (O(N), · ), the orthogonal group consisting of the orthogonal transfor-
mations of RN under the operation of composition or, equivalently,
consisting of the N × N orthogonal matrices under the operation of
matrix multiplication,

(4) (SO(N), · ), the special orthogonal group consisting of the orientation
preserving orthogonal transformations of RN under the operation of
composition or, equivalently, consisting of the N × N orthogonal ma-
trices with determinant 1 under the operation of matrix multiplication.

While an invariant measure, called Haar measure, exists on any locally
compact group, we shall concentrate our efforts in the present chapter on
compact groups. One advantage of compact groups is that the left-invariant
Haar measure and the right-invariant Haar measure are identical. For our
purposes, the study of compact groups will suffice.

3.1 The Fundamental Theorem

The basic theorem about the existence and uniqueness of Haar measure is as
follows. We first enunciate a result about invariant integrals. Of course an
integral can be thought of as a linear functional on the continuous functions.
Then we use a simple limiting argument to extend this functional from con-
tinuous functions to characteristic functions (see the corollary). Figure 3.1
illustrates the process of using translates of the graph of a function to ap-
proximate the characteristic function of a set.

Theorem 3.1.1 Let G be a compact topological group. There is a unique,
invariant integral λ on G such that λ(1) = 1.
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Remark 3.1.2 Specifically, the theorem requires that λ be a monotone (or
positive) Daniell integral,1 that is, a linear functional on the continuous
functions such that, for continuous f , g, and fn, n = 1, 2, . . ., f ≤ g implies
λ(f) ≤ λ(g) and fn ↑ f implies λ(fn) ↑ λ(f) (see [Fed 69; 2.5] or [Roy 88;
Chapter 16]). The invariance of λ means that, if ϕ is a continuous function
on G, if g ∈ G, and if ϕg(x) ≡ ϕ(gx), then

λ(ϕ) = λ(ϕg) .

Corollary 3.1.3 Let G be a compact topological group. There is a unique,
invariant Radon measure µ on G such that µ(G) = 1. The invariance of µ
means that, for all sets A ⊆ G and g ∈ G,

µ(A) = µ{ga : a ∈ A} = µ{ag−1 : a ∈ A} .
Proof of the Theorem: We take B to be the family of sets of the form

{(x, y) : xy−1 ∈ V }
for V a neighborhood of e, the identity in the group G. Then B is the basis
for a uniformity on G (see [Kel 50] for the concept of uniformity).

Now let C(G) denote the continuous functions on G, and let C(G)+ de-
note the non-negative, continuous functions. If h ∈ G then let Ah denote the
operator of left-multiplication by h. If u ∈ C(G)+ and 0 6= v ∈ C(G)+, then
let W (u, v) be the set of all maps ξ : G → {t ∈ R : 0 ≤ t <∞} for which

{g ∈ G : ξ(g) > 0} is finite and

u(x) ≤
∑

g∈G

ξ(g) · (v ◦Ag)(x) =
∑

g∈G

ξ(g) · v(gx) .

Now define the Haar ratio

(u : v) ≡ inf

{∑

G

ξ : ξ ∈ W (u, v)

}
.

Clearly W (u, v) 6= ∅ and (u : v) ≥ [supx∈G u(x)]/[supx∈G v(x)] . Also

(u ◦Ah : v) = (u : v) for h ∈ G ;

(cu : v) = c(u : v) for 0 < c <∞ ;

(u1 + u2 : v) ≤ (u1 : v) + (u2 : v) ;

u1 ≤ u2 implies (u1 : v) ≤ (u2 : v) .

1Percy John Daniell (1889–1946).
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If u, v,w ∈ C(G)+ are all non-zero, then

(u : w) ≤ (u : v) · (v : w)

just because ξ ∈ W (u, v) and η ∈ W (v,w) imply

u ≤
∑

g∈G

ξ(g) ·
∑

h∈G

η(h) · (w ◦Ah ◦Ag) =
∑

k∈G

(w ◦Ak) ,

with ζ(k) =
∑

hg=k ξ(g) · η(h) and
∑

G ζ =
∑

G ξ ·
∑

G η. As a result,

1

(w : u)
≤ (u : v)

(w : v)
≤ (u : w) .

Now fix a 0 6= w ∈ C(G)+ and consider the cartesian product P of the
compact intervals

{t ∈ R : 0 ≤ t ≤ (u : w)}

corresponding to all u ∈ C(G)+. Whenever 0 6= v ∈ C(G)+, we define pv ∈ P
by

pv(u) =
(u : v)

(w : v)
for u ∈ C(G)+ .

With each β ∈ B (here B is the uniformity specified at the outset of this
proof) we associate the closed set

S(β) = {pv : (spt v) × (spt v) ⊆ β} .

If β1, β2, β3 ∈ B and β1 ∩ β2 ⊇ β3 then S(β1) ∩ S(β2) ⊇ S(β3) 6= ∅. Thus,
since P is compact, there is a point

λ ∈
⋂

β∈B
S(β) .

This function λ turns out to be a nonzero invariant integral on C(G)+. That
is to say, it is a bounded linear functional on C(G)+, and it extends naturally
to C(G). The properties that we desire for λ follow immediately from the
properties of the approximating functions pv. The only nontrivial part of the
verification is proving that

λ(u1 + u2) ≥ λ(u1) + λ(u2) whenever u1, u2 ∈ C(G)+ . (3.1)
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To prove (3.1), we choose f ∈ C(G)+ satisfying

sptu1 ∪ spt u2 ⊆ {x ∈ G : f(x) > 0} .

For any ε > 0, we define s, r1, r2 ∈ C(G)+ so that

s = u1 + u2 + εf , rjs = uj and spt rj = spt uj for j ∈ {1, 2} .

Now we use the uniform continuity of r1, r2 to obtain β ∈ B such that

|rj(x) − fj(y)| ≤ ε whenever (x, y) ∈ β, j ∈ {1, 2} .

For any v ∈ S(β), a ∈ spt v, ξ ∈ W (s, v), we define

ξj(G) =
[
fj(g

−1a) + ε
]
ξ(g) whenever g ∈ G and j ∈ {1, 2} .

We infer that

uj(x) = rj(x) · s(x) ≤
∑

g∈G

rj(x) · ξ(g) · v(gx) ≤
∑

g∈G

ξj(g) · v(gx)

just because v(gx) 6= 0 implies that (gx, a) ∈ β and (x, g−1a) ∈ β. Thus
ξj ∈ W (uj, v) and

(u1 : v) + (u2 : v) ≤
∑

G

ξ1 +
∑

G

ξ2 ≤ (1 + 2ε)
∑

G

ξ

since r1 + r2 ≤ 1.
It follows that

pv(u1) + pv(u2) ≤ (1 + 2ε)pv(s) ≤ (1 + 2ε)
[
pv(u1 + u2) + εpv(f)

]

whenever v ∈ S(β). Since λ ∈ S(β), we may now conclude that

λ(u1) + λ(u2) ≤ (1 + 2ε)
[
λ(u1 + u2) + ελ(f)

]
.

Proof of the Corollary: If E ⊆ G then let us say that a sequence of
continuous functions fj is adapted to E if

(a) 0 ≤ f1 ≤ f2 ≤ · · · ;

(b) 1 ≤ lim
j→∞

fj(x) whenever x ∈ E .
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We define a set-function φ by

φ(E) = inf
{

lim
j→∞

λ(fj) : {fj} is adapted to E
}
. (3.2)

Of course λ is monotone, in the sense that f ≤ g implies λ(f) ≤ λ(g). So
the limit in (3.2) will always exist.

Claim 1: The function φ is a measure on G.
To verify this assertion we must show that, if E ⊂ ⋃∞

j=1 Bj then µ(E) ≤
∑

j µ(Bj). This follows because if {f j
` } is adapted to Bj then the sequence

of functions

gm =
m∑

j=1

f j
m

is adapted to E. Moreover,

λ(gm) =
m∑

j=1

λ(f j
m) ≤

∞∑

j=1

lim
`→∞

λ(f j
` ) .

Claim 2: Suppose that g ∈ C(G)+, E is a set, g(x) ≤ 1 for x ∈ E, and
g(x) = 0 for x 6∈ E. Then λ(g) ≤ φ(A).

To see this, let {fj} be adapted to E. Then certainly

hm ≡ inf{fm, g} ↑ g as m ↑ ∞ .

Thus
λ(g) = lim

m→∞
λ(hm) ≤ lim

m→∞
λ(fm) .

Claim 3: Every f ∈ C(G)+ is φ-measurable.
To prove this claim, let T ⊆ X and −∞ < a < b < ∞. We shall show

that
φ(T ) ≥ φ(T ∩ {x : f(x) ≤ a}) + φ(T ∩ {x : f(x) ≥ b}) .

The assertion is trivial if a ≤ 0. Thus take a ≥ 0 and assume that {gj} is
adapted to T . Define

h =
1

b− a
·
[
inf{f, b} − inf{f, a}

]

and
km = inf{gm, h} .

Since
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(a) 0 ≤ km+1 − km ≤ gm+1 − gm,

(b) h(x) = 1 whenever f(x) ≥ b,

(c) h(x) = 0 whenever f(x) ≤ a,

we see that the sequence {kj} is adapted to the set

B ≡ T ∩ {x : f(x) ≥ b}

and the sequence {gj − kj} is adapted to the set

A = T ∩ {x : f(x) ≤ a} .

In conclusion,

lim
m→∞

λ(gm) = lim
m→∞

[λ(km) + λ(gm − km)] ≥ φ(B) + φ(A) .

Claim 4: If f ∈ C(G)+ then λ(f) =
∫
fdφ.

For this assertion, let ft = inf{f, t} whenever t ≥ 0.
Now if k > 0 is a positive integer and ε > 0, then

(a) 0 ≤ fkε(x) − f(k−1)ε(x) ≤ ε for x ∈ G;

(b) fkε(x) − f(k−1)ε(x) = ε whenever f(x) ≥ kε;

(c) fkε(x) − f(k−1)ε(x) = 0 whenever f(x) ≤ (k − 1)ε.

As a result,

λ
(
fkε − f(k−1)ε

)
≥ εφ{x : f(x) ≥ kε}

≥
∫

(f(k+1)ε − fkε) dφ

≥ εφ{x : f(x) ≥ (k + 1)ε}

≥ λ(f(k+2)ε − f(k+1)ε) .

Summing in k from 1 to m, we see that

λ(fmε) ≥
∫

(f(m+1)ε − fε) dφ ≥ λ(f(m+2)ε − f2ε) .
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Certainly fmε ↑ f as m ↑ ∞ and λ(f) ≥
∫

(f − fε) dφ ≥ λ(f − f2ε). Also
fε ↓ 0. It follows that λ(f) =

∫
f dφ.

Now we use linearity to extend our assertion to all of C(G). Let f be any
continuous function on G. Write f = f+ − f−, where f+ ≥ 0 and f− ≥ 0.
Then

λ(f) = λ(f+) − λ(f−) =
∫
f+ dφ−

∫
f− dφ =

∫
f dφ .

Finally, if U is any open subset of G, then let f1 ≤ f2 ≤ · · · be continuous
functions so that fj(x) converges to the characteristic function χ

U
of U . Then

it follows that µ is translation invariant on U . This assertion may then be
extended to Borel sets in an obvious way. Finally, one deduces the invariance
of µ for measurable sets. This establishes the corollary.

If G is a compact topological group and also happens to be a metric space
(such as the orthogonal group—see below), then we say that the metric d is
invariant if

d(gh, gk) = d(hg, kg) = d(h, k)

for any g, h, k in the group. It follows, for such a metric, that g[B(h, r)] =
B(gh, r) for any (open) metric ball. Since the Haar measure is invariant, we
conclude that the Haar measure of all balls with the same radii are the same.
In fact this property characterizes Haar measure, as we shall now see.

Definition 3.1.4 A Borel regular measure µ on a metric space X is called
uniformly distributed if the measures of all non-trivial balls are positive and,
in addition,

µ(B(x, r)) = µ(B(y, r)) for all x, y ∈ X, 0 < r <∞ .

Proposition 3.1.5 Let µ and ν be uniformly distributed, Borel regular mea-
sures on a separable metric space X. Then there is a positive constant c such
that µ = c · ν.

Proof. Define

g(r) = µ(B(x, r)) and h(r) = ν(B(x, r)) ,

where our hypothesis guarantees that these definitions are unambiguous (i.e.,
do not depend on x ∈ X). Suppose that U ⊆ X is any non-empty, open,
bounded subset of X. Then

lim
r↓0

ν(U ∩ B(x, r))

h(r)
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clearly exists and equals 1 for any x ∈ U . Now we have

µ(U) =
∫

U
lim
r↓0

ν(U ∩ B(x, r))

h(r)
dµ(x)

(Fatou)

≤ lim inf
r↓0

[
1

h(r)

∫

U
ν(U ∩ B(x, r)) dµ(x)

]

(Fubini)
= lim inf

r↓0

[
1

h(r)

∫

U
µ(B(y, r)) dν(y)

]

=

[
lim inf

r↓0

g(r)

h(r)

]
ν(U) .

A symmetric argument shows that

ν(U) ≤
[
lim inf

r↓0

h(r)

g(r)

]
µ(U) .

It follows immediately that c ≡ limr↓0[g(r)/h(r)] exists. Furthermore, µ(U) =
c · ν(U) for any bounded, open set U ⊆ X. Now the full equality follows by
Borel regularity.

It is a matter of some interest to determine the Haar measure on some
specific groups and symmetric spaces. We have already noted that Haar
measure on RN is Lebesgue measure (or any constant multiple thereof). Since
this group is non-compact, we must forego the stipulation that the total mass
of the measure be 1.

In this book we are particularly interested in groups that bear on the
geometry of Euclidean space. We have already noted the Haar measure on
the multiplicative reals, which corresponds to the dilation group. And the
preceding paragraph treats the Haar measure of the group of translations.
The next section treats the other fundamental group acting on space, which
is the group of rotations.
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3.2 Haar Measure for the Orthogonal Group

and the Grassmanian

Let SN−1 be the standard unit sphere in RN ,

SN−1 = {x ∈ RN : |x| =
N∑

j=1

x2
j = 1} .

Of course SN−1 bounds BN , which is the unit ball

BN = {x ∈ RN : |x| =
N∑

j=1

x2
j < 1} .

Then SN−1 is an (N − 1)-dimensional manifold, and is naturally equipped
with the Hausdorff measure HN−1.

An equivalent method for defining an invariant measure on SN−1 is as
follows: If A ⊆ SN−1 we define

Ã = {ta : 0 ≤ t ≤ 1, a ∈ A} .

Then set

σN−1(A) = HN−1(SN−1) · LN (Ã)

LN (BN)
.

It may be verified—by first checking on spherical caps in SN−1 and then using
Vitali’s theorem and outer regularity of the measure—that HN−1 and σN−1

are equal measures on SN−1. Of course we may normalize either measure to
have total mass 1 by dividing out by the surface area of the sphere, and we
will assume this normalization in what follows.

The orthogonal group O(N) consists of those linear transformations L
with the property that

L−1 = Lt . (3.3)

This is the standard, if not the most enlightening, definition. If L is orthog-
onal according to (3.3) then notice that, for x, y ∈ RN ,

Lx · Ly = x · (LtLy) = x · y . (3.4)

Conversely, if
Lx · Ly = x · y
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for all x, y ∈ RN then

x · (LtLy) = x · y

hence

LtLy = y

for all y and so LtL = I or Lt = L−1.
A useful interpretation of (3.4) is that L will take any orthonormal basis

for RN to another orthonormal basis. Conversely, if u1, . . . , uN and v1, . . . , vN

are orthonormal bases for RN and if we set L(uj) = vj for every j and extend
by linearity, then the result is an orthogonal transformation of RN .

Recall that the special orthogonal group SO(N) consists of those orthog-
onal transformations having determinant 1. These will be just the rotations.

In R2 the condition of orthogonality has a particularly simple formulation:
if u1, u2 is an orthonormal basis for R2 then any orthogonal transformation
will either preserve the orientation (i.e., the order) of the pair, or it will not.
In the first instance the transformation is a rotation. In the second it is a
reflection in some line through the origin. In RN we may say analogously
that a linear transformation is orthogonal if and only if it is (i) a rotation,
(ii) a reflection in some hyperplane through the origin, or (iii) a composition
of these.

We know that the orthogonal group is compact. Indeed, the row entries of
the matrix representation of an element of O(N) will just be an orthonormal
basis of RN ; so the set is closed and bounded. It is convenient to describe
Haar measure θN on the orthogonal group O(N) by letting the measure be
induced by the action of the group on the sphere.

Proposition 3.2.1 Fix a point s ∈ SN−1. Let A ⊆ O(N). Then it holds
that

θN(A) = σN−1({gs : g ∈ A}) .

Proof. Define f : O(N) → SN−1 by f(g) = gs. We define the push forward
measure [f∗θN ] on SN−1 by

[f∗θn](B) = θN(f−1(B)) for B ⊆ SN−1 .

We observe that, with f−1(B) = A,

[f∗θN ](B) = θN (A) = θN({g ∈ O(N) : gs ∈ B} .
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It is our job, then, to show that [f∗θN ] = σN−1. Since both these measures
have total mass 1 on SN−1, it suffices by Proposition 3.1.5 to show that f∗θN

is uniformly distributed.
Now let a, b ∈ SN−1. There is a (not necessarily unique) element g̃ ∈

O(N) such that g̃a = b. In order to discuss the concept of “uniformly
distributed” on SN−1, we need a metric; we simply take that metric induced
on the sphere by the standard metric on Euclidean space.2 Let B(x, r) denote
the closed metric ball with center x ∈ SN−1 and radius r. Then it is clear
that g(B(a, r)) = B(b, r) for any r > 0. But then the invariance of θN (since
it is Haar measure) gives

[f∗θN ](B(b, r)) = θN({g ∈ O(N) : |gs− g̃a| ≤ r})

= θN({g ∈ O(N) : |g̃−1gs− a| ≤ r}

= θN({h ∈ O(N) : |hs− a| ≤ r}

= [f∗θN ](B(a, r)) .

Thus [f∗θN ] is uniformly distributed and we are done.

Now fix 0 < M < N . The Grassmannian3 G(N,M) is the collection
of all M -dimensional linear subspaces of RN . In fact it is possible to equip
G(N,M) with a manifold structure, and we shall say a little bit about this
point later. For the moment, we wish to consider a natural measure on
G(N,M).

In case M = 1 the task is fairly simple. When N = 2, each line is
uniquely determined by the angle it subtends with the positive x-axis. Thus
we may measure subsets of G(N,M) by measuring the cognate set in the
interval [0, π) using Lebesgue measure. Similarly, a line in RN , N ≥ 2, is
determined by its two points of intersection with the unit sphere SN−1. So we
may measure a set in G(N,M) by measuring the cognate set in the sphere.
When N > M > 1 then things are more complicated.

2It is worth noting that O(N ) is also a metric space: If g, h ∈ O(N ) then we define
d(g, h) as usual by

d(g, h) = ‖g − h‖ = sup
x∈SN−1

|g(x) − g(y)| .

3Hermann Grassmann (1809–1877).
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To develop a general framework for defining a measure on G(N,M), we
make use of Euclidean orthogonal projections. Let 0 < M < N and let
E ∈ G(N,M). Define

PE : RN → RN

to be the Euclidean orthogonal projection onto E. If E,F ∈ G(N,M) then
we define a metric

d(E,F ) = ‖PE −PF‖ ;

here, as usual, ‖ ‖ denotes the standard operator norm. This metric makes
G(N,M) compact (it is obviously bounded, and it is easy to check that it is
closed).

We see immediately that the action of O(N) on G(N,M) is distance-
preserving. Namely, the action of an orthogonal transformation on space
will evidently preserve the relative positions of two M -planes. Alternatively,
such a transformation preserves inner products so it will preserve the set
of vectors to which each of E,F ∈ G(N,M) is orthogonal and hence will
preserve d(E,F ). More specifically, if g ∈ O(N), then

d(gE, gF ) = d(E,F ) .

We further verify that O(N) acts transitively on G(N,M). This means
that, if E,F ∈ G(N,M), then there is an element g ∈ O(N) such that
gE = F . To see this, let u1, . . . , uM be an orthonormal basis for E and
v1, . . . , vM be an orthonormal basis for F . Complete the first basis to an
orthonormal basis u1, . . . , uN for RN and likewise complete the second basis to
an orthonormal basis v1, . . . , vN for RN . Then the map uj ↔ vj, j = 1, . . . , N
extends by linearity to an element of O(N), and it takes E to F .

Now fix an element H ∈ G(N,M). Define the map

fH : O(N) → G(N,M)

g 7→ gH .

Now we define a measure on G(N,M) by

γN,M = [fH]∗θN .

More explicitly, if A ⊆ G(N,M) then

γN,M(A) = θN{g ∈ G(N,M) : gH ∈ A} .
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Now, since θN is an invariant measure on O(N), we may immediately
deduce that the measure γN,M is invariant on G(N,M) under the action of
O(N). This means that, for g ∈ O(N) and A ⊆ G(N,M),

γN,M(gA) = γN,M(A) .

Since O(N) acts transitively on G(N,M), and in a distance-preserving man-
ner, it is immediate that each O(N)-invariant Radon measure on G(N,M)
is uniformly distributed. As a result, by Proposition 3.1.5, the measure is
unique up to multiplication by a constant. One important consequence of
this discussion is that the measure γN,M is independent of the choice of H.

We may also note that, for any A ⊆ G(N,M),

γN,M(A) = γN,N−M({E⊥ : E ∈ A} . (3.5)

Here E⊥ is the usual Euclidean orthogonal complement of E in RN . One
may check this assertion by showing that the right-hand side of (3.5) is O(N)
invariant (just because [gE]⊥ = g(E⊥) for g ∈ O(N), E ∈ G(N,M)).

Again, the uniqueness of uniformly distributed measures allows us to
relate γN,M to the surface measure σN−1 on the sphere. To wit, for A ⊆
G(N, 1)

γN,1(A) = σN−1

( ⋃

E∈A

E ∩ SN−1

)

and

γN,N−1(A) = σN−1

( ⋃

E∈A

E⊥ ∩ SN−1

)
.

We leave the details of these identities to the interested reader.

Similarly we can construct the invariant measure θ∗N,M on O∗(N,M), the
collection of orthogonal injections of RM into RN . Fix p ∈ O∗(N,M) and
define fp : O → O∗(N,M) by fp(g) = p ◦ g. Then we define θ∗N,M = [fp]∗θN .

3.2.1 Remarks on the Manifold Structure of G(N, M)

Fix 0 < M < N <∞ and consider G(N,M). We will now sketch two meth-
ods for giving G(N,M) a manifold structure.

Method 1: Let E be an M -dimensional subspace of RN . Then there is
a natural bijection Φ between Hom (E,E⊥) and a subset UE ⊆ G(N,M).
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Specifically, Φ sends a linear map L from E to E⊥ to its graph ΓL ⊆ E⊕E⊥.
An element of the graph is of course an ordered pair (x,L(x)), with x ∈ RM

and L(x) ∈ RN−M . The graph is thus a linear subspace of RN of dimension
M ; it is therefore an element of G(N,M).

We use the inverse mappings Φ : UE → Hom(E,E⊥) as the coordinate
charts for our manifold structure.

Method 2: Let E be an M -dimensional subspace of RN , and let PE :
RN → RN be orthogonal projection onto E. If T = TE is the N ×N matrix
representation of PE then T is symmetric (since a projection must be self-
adjoint), has rankM , and is idempotent (i.e., T 2 = T ). Conversely, if T̃ is any
symmetricN×N matrix which has rankM and is idempotent then there is an
M -dimensional subspace Ẽ ⊆ RN for which T̃ is the matrix representation of
the orthogonal projection onto Ẽ. The reference [Hal 51] contains an incisive
discussion of these ideas. Because of these considerations, we may identify
G(N,M) with the set of symmetric, idempotent, N ×N matrices of rank M .

Now we take T to have the form
(
A B
C D

)
=

(
AM×M BM×(N−M)

C(N−M)×M D(N−M)×(N−M)

)
, (3.6)

where we take A to be an M ×M matrix and thus the sizes of B,C,D are
as indicated.

If A is non-singular, then we can compute
(

I 0
−C I

)(
A−1 0

0 I

)(
A B
C D

)
=

(
I A−1B
0 D − CA−1B

)
,

so we see that T has rank M if and only if D = CA−1B. If we further
assume that T is symmetric of rankM , thenA is non-singular and symmetric,
C = Bt, and so it must be that D = BtA−1B. It follows that T is idempotent
if and only if A2 +BBt = A.

From the last paragraph, we see that G(N,M) can be identified with the
set of N ×N matrices of the form (3.6) satisfying

(1) A is non-singular and symmetric;

(2) C = Bt;

(3) D = BtA−1B;



96 HAAR MEASURE

(4) A2 +BBt = A.

It then follows from the implicit function theorem that G(N,M) is a manifold
of dimension M(N −M).



Chapter 4

Covering Theorems and the
Differentiation of Integrals

A number of fundamental problems in geometric analysis—ranging from de-
compositions of measures to density of sets to approximate continuity of
functions—depend on the theory of differentiation of integrals. These results,
in turn, depend on a variety of so-called “covering theorems” for families of
balls (and other geometric objects). Thus we come upon the remarkable,
and profound, fact that deep analytic facts reduce to rather elementary (but
often difficult) facts about Euclidean geometry.

The technique of covering lemmas has become an entire area of mathe-
matical analysis (see, for example, [DGz 75] and [Ste 93]). It is intimately
connected with problems of differentiation of integrals, with certain maximal
operators (such as the Hardy-Littlewood maximal operator), with the bound-
edness of multiplier operators in harmonic analysis, and (concomitantly) with
questions of summation of Fourier series.

The purpose of the present chapter is to introduce some of these ideas.
We do not strive for any sort of comprehensive treatment, but rather to
touch upon the key concepts and to introduce some of the most pervasive
techniques and applications.

97
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Figure 4.1: Wiener’s covering lemma.

4.1 Wiener’s Covering Lemma and its Vari-

ants

Let S ⊆ RN be a set. A covering of S will be a collection U = {Uα}α∈A of sets
such that

⋃
α∈AUα ⊇ S. If all the sets of U are open, then we call U an open

covering of S. A subcovering of the covering U is a covering V = {Vβ}β∈B
such that each Vβ is one of the Uα. A refinement of the covering U is a
collection W = {Wγ}γ∈G of sets such that each Wγ is a subset of some Uα. If
U is a covering of a set S then the valence of U is the least positive integer
M such that no point of S lies in more than M of the sets in U .

It is elementary to see that any open covering of a set S ⊆ RN has
a countable subcover. We also know, thanks to Lebesgue, that any open
covering of S has a refinement with valence at most N + 1 (see [HW 41;
Theorem V 1]).

Wiener’s covering lemma concerns a covering of a set by a collection of
balls. The lemma presumes that, in the interest of obtaining a covering by
fewer balls, one is willing to replace any particular ball by a ball with the
same center but triple its radius—see Figure 4.1.

Lemma 4.1.1 (Wiener1) Let K ⊆ RN be a compact set with a covering
U = {Bα}α∈A, Bα = B(cα, rα), by open balls. Then there is a subcollection
Bα1, Bα2, . . . , Bαm, consisting of pairwise disjoint balls, such that

m⋃

j=1

B(cαj , 3rαj ) ⊇ K.

1Norbert Wiener (1894–1964).
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Proof. Since K is compact, we may immediately assume that there are
only finitely many Bα. Let Bα1 be the ball in this collection that has the
greatest radius (this ball may not be unique). Let Bα2 be the ball that is
disjoint from Bα1 and has greatest radius among those balls that are disjoint
from Bα1 (again, this ball may not be unique). At the jth step choose the
(not necessarily unique) ball disjoint from Bα1, . . . , Bαj−1 that has greatest
radius among those balls that are disjoint from Bα1, . . . , Bαj−1. Continue.
The process ends in finitely many steps. We claim that the Bαj chosen in
this fashion do the job.

It is enough to show that Bα ⊆ ∪jB(cαj , 3rαj) for every α. Fix an α. If
α = αj for some j then we are done. If α 6∈ {αj}, let j0 be the first index j
with Bαj ∩Bα 6= ∅ (there must be one, otherwise the process would not have
stopped). Then rαj0

≥ rα; otherwise we selected Bαj0
incorrectly. But then

(by the triangle inequality) B(cαj0
, 3rαj0

) ⊇ B(cα, rα) as desired.

For completeness, and because it is such an integral part of the classical
theory of measures, we now present the venerable covering theorem of Vitali.2

Proposition 4.1.2 LetA ⊆ RN and let B be a family of open balls. Suppose
that each point of A is contained in arbitrarily small balls belonging to B.
Then there exist pairwise disjoint balls Bj ∈ B such that

LN


A \

⋃

j

Bj


 = 0

Furthermore, for any ε > 0, we may choose the balls Bj in such a way that

∑

j

LN (Bj) ≤ LN (A) + ε .

Proof. The last statement will follow from the substance of the proof. For
the first statement, let us begin by making the additional assumption (which
we shall remove at the end) that the setA ≡ A0 is bounded. Select a bounded
open set U0 so that A0 ⊆ U0 and

LN(U0) ≤ (1 + 5−N )LN(A0) .

2Giuseppe Vitali (1875–1932).
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Now focus attention on those balls that lie in U0. By Lemma 4.1.1, we may
select a finite, pairwise disjoint collection Bj = B(xj, rj) ∈ B, j = 1, . . . , k1,
such that Bj ⊆ U0 and

A0 ⊆
k1⋃

j=1

B(xj, 3rj) .

Now we may calculate that

3−NLN (A0) ≤ 3−N
∑

j

LN [B(xj, 3rj)] = 3−N
∑

j

3NLN (Bj) =
∑

j

LN (Bj) .

Let

A1 = A0 \
k1⋃

j=1

Bj .

Then

LN(A1) ≤ LN


U0 \

k1⋃

j=1

Bj


 = LN (U0) −

k1∑

j=1

LN(Bj)

≤ (1 + 5−N − 3−N )LN (A0) ≡ u · LN (A0) ,

where u ≡ 1 + 5−N − 3−N < 1. Now A1 ⊆ RN \ ⋃k1
j=1Bj , and this latter set

is bounded. Hence we may find a bounded, open set U1 such that

A1 ⊆ U1 ⊆ RN \
k1⋃

j=1

Bj

and
LN (U1) ≤ (1 + 5−N )LN (A1) .

Just as in the first iteration of this construction, we may now find disjoint
balls Bj , j = k1 + 1, . . . , k2, for which Bj ⊆ U1 and

LN (A2) ≤ u · LN (A1) ≤ u2 LN (A0) ;

here

A2 = A1 \
k2⋃

j=k1+1

Bj = A0 \
k2⋃

j=1

Bj .

By our construction, all the balls B1, . . . , Bk2 are disjoint.
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After m repetitions of this procedure, we find that we have balls B1, B2,
. . ., Bkm such that

LN


A0 \

km⋃

j=1

Bj


 ≤ um LN (A0) .

Since u < 1, the result follows.
For the general case, we simply decompose RN into closed unit cubes Q`

with disjoint interiors and sides parallel to the axes and apply the result just
proved to each A0 ∩Q`.

The Maximal Function

A classical construct, due to Hardy and Littlewood,3 is the so-called maxi-
mal function. It is used to control other operators, and also to study questions
of differentiation of integrals.

Definition 4.1.3 If f is a locally integrable function on RN , we let

Mf(x) = sup
R>0

1

LN [B(x,R)]

∫

B(x,r)
|f(t)| dLN (t) .

The operator M is called the Hardy-Littlewood maximal operator. The
functions to which M is applied may be real-valued or complex-valued. A
few facts are immediately obvious about M :

(1) M is not linear, but it is sublinear in the sense that

M [f + g](x) ≤Mf(x) +Mg(x) .

(2) Mf is always non-negative, and it could be identically equal to infinity.

(3) Mf makes sense for any f ∈ Lp, 1 ≤ p ≤ ∞.

We will in fact prove that Mf is finite LN -almost everywhere, for any
f ∈ Lp. In order to do so, it is convenient to formulate a weak notion of
boundedness for operators. To begin, we say that a measurable function f

3Godfrey Harold Hardy (1877–1947), John Edensor Littlewood (1985–1977).
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is weak type p, 1 ≤ p <∞, if there exists a C = C(f) with 0 < C <∞ such
that, for any λ > 0,

LN ({x ∈ RN : |f(x)| > λ}) ≤ C

λp
.

An operator T on Lp, taking values in the collection of measurable functions,
is said to be of weak type (p, p) if there exists a C = C(T ) with 0 < C <∞
such that, for any f ∈ Lp and for any λ > 0,

LN ({x ∈ RN : |Tf(x)| > λ}) ≤ C ·
(
‖f‖Lp

λ

)p

.

A function is defined to be weak type ∞ when it is L∞. For 1 ≤ p < ∞,
an Lp function is certainly weak type p, but the converse is not true. In fact,
we note that the function f(x) = x−1/p on R1 is weak type p, but not in
Lp, for 1 ≤ p < ∞. The Hilbert transform (see [Kra 99]) is an important
operator that is not bounded on L1 but is in fact weak type (1, 1).

Proposition 4.1.4 The Hardy-Littlewood maximal operatorM is weak type
(1, 1).

Proof. Let λ > 0. Set Sλ = {x : |Mf(x)| > λ}. Let K ⊆ Sλ be a compact
subset with 2LN (K) ≥ LN (Sλ). For each x ∈ K, there is a ball Bx = B(x, rx)
with

λ <
1

LN (Bx)

∫

Bx

|f(t)|dLN(t) .

Then {Bx}x∈K is an open cover of K by balls. By Lemma 4.1.1, there is a
subcollection {Bxj}M

j=1 which is pairwise disjoint, but so that the threefold
dilates of these selected balls still covers K. Then

LN (Sλ) ≤ 2LN (K) ≤ 2LN




M⋃

j=1

B(xj, 3rj)


 ≤ 2

M∑

j=1

LN [B(xj, 3rj)]

≤
M∑

j=1

2 · 3N LN (Bxj)

≤
M∑

j=1

2 · 3N

λ

∫

Bxj

|f(t)|dLN (t)

≤ 2 · 3N

λ
‖f‖L1 .
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One of the venerable applications of the Hardy-Littlewood operator is the
Lebesgue differentiation theorem:

Theorem 4.1.5 Let f be a locally Lebesgue integrable function on RN .
Then, for LN -almost every x ∈ RN , it holds that

lim
R→0+

1

LN [B(x,R)]

∫

B(x,R)
f(t) dLN (t) = f(x) .

Proof. Multiplying f by a compactly supported C∞ that is identically 1
on a ball, we may as well suppose that f ∈ L1. We may also assume, by
linearity, that f is real-valued. We begin by proving that

lim
R→0+

1

LN [B(x,R)]

∫

B(x,R)
f(t) dLN (t)

exists.
Let ε > 0. Select a function ϕ, continuous with compact support, and

real-valued, so that ‖f − ϕ‖L1 < ε2. Then

LN
{
x ∈ RN :

∣∣∣∣lim sup
R→0+

1

LN [B(x,R)]

∫

B(x,R)
f(t) dLN (t)

− lim inf
R→0+

1

LN [B(x,R)]

∫

B(x,R)
f(t) dLN (t)

∣∣∣∣ > ε
}

≤ LN
{
x ∈ RN : lim sup

R→0+

1

LN [B(x,R)]

∫

B(x,R)
|f(t) − ϕ(t)| dLN (t)

+
∣∣∣∣lim sup

R→0+

1

LN [B(x,R)]

∫

B(x,R)
ϕ(t) dLN (t)

− lim inf
R→0+

1

LN [B(x,R)]

∫

B(x,R)
ϕ(t) dLN (t)

∣∣∣∣

+ lim sup
R→0+

1

LN [B(x,R)]

∫

B(x,R)
|ϕ(t) − f(t)| dLN (t) > ε

}

≤ LN
{
x ∈ RN : lim sup

R→0+

1

LN [B(x,R)]

∫

B(x,R)
|f(t) − ϕ(t)| dLN (t) >

ε

3

}

+ LN
{
x ∈ RN :

∣∣∣∣lim sup
R→0+

1

LN [B(x,R)]

∫

B(x,R)
ϕ(t) dLN (t)

− lim inf
R→0+

1

LN [B(x,R)]

∫

B(x,R)
ϕ(t) dLN (t)

∣∣∣∣ >
ε

3

}
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+ LN
{
x ∈ RN : lim sup

R→0+

1

LN [B(x,R)]

∫

B(x,R)
|ϕ(t) − f(t)| dLN (t) >

ε

3

}

≡ I + II + III .

Now II = 0 because the set being measured is empty (since ϕ is contin-
uous). Each of I and III may be estimated by

LN
{
x ∈ RN : M(f − ϕ)(x) > ε/3

}

and this, by Proposition 4.1.4, is majorized by

C · ε
2

ε/3
= c · ε .

In sum, we have proved the estimate

LN
{
x ∈ RN :

∣∣∣∣lim sup
R→0+

1

LN [B(x,R)]
∫
B(x,R) f(t) dLN (t)

− lim inf
R→0+

1

LN [B(x,R)]

∫

B(x,R)
f(t) dLN (t) > ε

}
≤ c · ε .

It follows immediately that

lim
R→0+

1

LN [B(x,R)]

∫

B(x,R)
f(t) dLN (t)

exists for LN -almost every x ∈ RN .
The proof that the limit actually equals f(x) at LN -almost every point

follows exactly the same lines. We shall omit the details.

Corollary 4.1.6 If A ⊂ RN is Lebesgue measurable, then, for almost every
x ∈ RN , it holds that

χ
A

(x) = lim
r→0+

LN (A ∩ B(x, r))

LN (B(x, r))
.

Proof. Set f = χ
A
. Then
∫

B(x,r)
f(t) dt = LN (A ∩ B(x, r))

and the corollary follows from Theorem 4.1.5.
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Definition 4.1.7 A function f : RN → R is said to be approximately con-
tinuous if, for almost every x0 ∈ RN and for each ε > 0, the set {x :
|f(x) − f(x0)| > ε} has density 0 at x0, that is,

0 = lim
r→0+

LN ({x : |f(x) − f(x0)| > ε} ∩ B(x0, r))

LN (B(x0, r))
.

Corollary 4.1.8 If a function f : RN → R is Lebesgue measurable, then it
is approximately continuous.

Proof. Suppose that f is Lebesgue measurable. Let q1, q2, . . . be an enu-
meration of the rational numbers. For each positive integer i, let Ei be the
set of points x /∈ {z : f(z) < qi} for which

0 < lim sup
r→0+

LN ({z : f(z) < qi} ∩ B(x, r))

LN (B(x, r))

and let Ei be the set of points x /∈ {z : qi < f(z)} for which

0 < lim sup
r→0+

LN ({z : qi < f(z)} ∩ B(x, r))

LN (B(x, r))
.

By Corollary 4.1.6 and the Lebesgue measurability of f,we know that LN (Ei) =
0 and LN (Ei) = 0. Thus we see that

E =
∞⋃

i=1

(Ei ∪ Ei)

is also a set of Lebesgue measure zero.
Consider any point x0 /∈ E and any ε > 0. There exist rational numbers

qi and qj such that

f(x0) − ε < qi < f(x0) < qj < f(x0) + ε.

We have {x : |f(x) − f(x0)| > ε} ⊂ {z : f(z) < qi} ∪ {z : qj < f(z)}. By the
definition of Ei and Ej we have

0 = lim
r→0+

LN ({z : f(z) < qi} ∩ B(x0, r))

LN (B(x0, r))
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and

0 = lim
r→0+

LN({z : qj < f(z)} ∩ B(x0, r))

LN (B(x0, r))
.

It follows that

0 = lim
r→0+

LN ({x : |f(x) − f(x0)| > ε} ∩ B(x0, r))

LN (B(x0, r))
.

Since x0 /∈ E and ε > 0 were arbitrary, we conclude that f is approximately
continuous.

4.2 The Besicovitch Covering Theorem

Preliminary Remarks
The Besicovitch4 covering theorem, which we shall treat in the present

section, is of particular interest to geometric analysis because its statement
and proof do not depend on a measure. This is a result about the geometry
of balls in space.

The Besicovitch Covering Theorem

Theorem 4.2.1 Let N be a positive integer. There is a constantK = K(N)
with the following property. Let B = {Bj}M

j=1 be any finite collection of open
balls in RN with the property that no ball contains the center of any other.
Then we may write

B = B1 ∪ · · · ∪ BK

so that each Bj, j = 1, . . . ,K, is a collection of pairwise disjoint balls.

It is a matter of some interest to determine what the best possible K is
for any given dimension N . Significant progress on this problem has been
made in [Sul 94]. See also [Loe 93]. Certainly our proof below will give little
indication of the best K.

We shall see that the heart of this theorem is the following lemma about
balls. We shall give two different proofs of this lemma. One, contrary to our
avowed philosophy in the present section, will in fact depend on measure—
or at least on the notion of volume. Another proof will rely instead on
trigonometry.

4Abram Samoilovitch Besicovitch (1891–1970).
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Lemma 4.2.2 There is a constant K = K(N), depending only on the di-
mension of our space RN , with the following property: Let B0 = B(x0, r0) be
a ball of fixed radius. Let B1 = B(x1, r1), B2 = B(x2, r2), . . . , Bp = B(xp, rp)
be balls such that

(1) Each Bj has nonempty intersection with B0, j = 1, . . . , p;

(2) The radii rj ≥ r0 for all j = 1, . . . , p;

(3) No ball Bj contains the center of any other Bk for j, k ∈ {0, . . . , p}
with j 6= k.

Then p ≤ K.

Here is what the lemma says in simple terms: fix the ball B0. Then at
most K pairwise disjoint balls of (at least) the same size can touch B0. [Note
here that being ‘pairwise disjoint’ and ‘intersecting but not containing the
center of the other ball’ are essentially equivalent: if the second condition
holds then shrinking each ball by a factor of one half makes the balls pair-
wise disjoint; if the balls are already pairwise disjoint, have equal radii, and
are close together, then doubling their size arranges for the first condition to
hold.]

First Proof of the Lemma: The purpose of providing this particular proof,
even though it relies on the concept of volume, is that it is quick and intuitive.
The second proof is less intuitive, but it introduces the important idea of a
‘directionally limited’ space.

First note that if we can prove the lemma with all balls having the single
radius r0 then this will imply the general case. So we assume that all balls
have the same radius. With the balls as given, replace each ball by 1

2
Bj—same

center but radius r0/2. It should cause no confusion to denote the shrunken
balls by Bj = B(xj, r0/2). Then each ball is contained in B(x0, 3r0).

We calculate that

p =
LN

(⋃p
j=1 Bj

)

ΩN (r0/2)N
≤ LN [B(x0, 3r0)]

ΩN (r0/2)N
= 6N

(recall ΩN denotes the volume of the unit ball in RN ).
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As a result of this calculation, we see that K(N) exists and does not
exceed 6N .

Second Proof of the Lemma: For this argument, see Krantz and Parsons
[KPn 86]. In fact we shall prove the following more technical statement

(∗)

Let the universe be the 2-dimensional plane R2,
and let Σ = {reiθ : 0 ≤ r <∞, 0 ≤ θ ≤ π/6}. Set
S = {z ∈ Σ : |z| ≥ 3}. If a, b ∈ S and if each of the balls
B(a, r), B(b, s) intersects B(0, 1), then |a−b| < max(r, s).

A moment’s thought reveals that this yields the desired sparseness condition
in dimension two. The N -dimensional result is obtained by slicing with two
dimensional planes.

To prove (∗), we first note the inequalities

(i) (α− 1)2 − (2 −
√

3)α2 ≥ 0 if α ≥ 3;

(ii) (β − 1)2 − (α2 −
√

3αβ + β2) ≥ 0 if β ≥ α ≥ 3.

The first of these is proved by noting that the derivative of the left side of
(i), in the variable α, is positive when α ≥ 3; and the inequality is obviously
satisfied when α = 3. So the result follows from the fundamental theorem of
calculus.

Similarly, the derivative of the left side of (ii), in the variable β, is positive
when β ≥ α ≥ 3, and the case β = α ≥ 3 is just inequality (i), which has
already been established.

With these inequalities in hand, we introduce polar coordinates in the
plane, writing a = αeiθ and b = βeiφ. We assume without loss of generality
that α ≤ β. The hypothesis that B(b, s)∩B(0, 1) 6= ∅ entails s > β− 1; thus
it suffices to show that

|a− b|2 ≤ (β − 1)2. (4.1)

The law of cosines tells us that

|a− b|2 = a2 − 2αβ cos(φ− θ) + β2. (4.2)

Since cos(φ−θ) ≥ cosπ/6 =
√

3/2, it follows that the right side of (4.2) does
not exceed a2 −

√
3ab+ b2. The inequality (4.1) now follows from (ii).
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Figure 4.2: Besicovitch’s covering theorem.

H. Federer’s concept of a directionally limited metric space—see [Fed 69;
2.8.9]—formalizes the geometry that goes into (the second proof of) our last
lemma. More precisely, it generalizes to abstract contexts the notion that a
cone in a given direction can contain only a certain number of points with
distance η > 0 from the vertex and distance η from each other. The interested
reader is advised to study that source.

Now we can present the proof of Besicovitch’s covering theorem:

Proof of Theorem 4.2.1: We have an iterative procedure for selecting
balls.

Select B1
1 to be a ball of maximum radius. Then select B1

2 to be a ball
of maximum radius that is disjoint from B1

1. Continue until this selection
procedure is no longer possible (remember that there are only finitely many
balls in total). Set B1 = {B1

j }.

Now work with the remaining balls. Let B2
1 be the ball with greatest

radius. Then select B2
2 to be the remaining ball with greatest radius, disjoint

from B2
1. Continue in this fashion until no further selection is possible. Set

B2 = {B2
j }.
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Working with the remaining balls, we now produce the family B3, and
so forth (see Figure 4.2). Clearly, since in total there are only finitely many
balls, this procedure must stop. We will have produced finitely many—say
q—nonempty families of pairwise disjoint balls, B1, . . . ,Bq. It remains to say
how large q can be.

Suppose that q > K(N) + 1, where K(N) is as in the lemma. Let Bq
1

be the first ball in the family Bq. That ball must have intersected a ball in
each of the preceding families; by our selection procedure, each of those balls
must have been at least as large in radius as Bq

1. Thus Bq
1 is an open ball

with at least K(N) + 1 “neighbors” as in the lemma. But the lemma says
that a ball can only have K(N) such neighbors. That is a contradiction.

We conclude that q ≤ K(N) + 1. That proves the theorem.

Recall the notion of a Radon measure from Definition 1.2.11 in Sec-
tion 1.2.1. Using the Besicovitch covering theorem instead of Wiener’s cov-
ering lemma, we can prove a result like Vitali’s (Proposition 4.1.2) for more
general Radon measures:

Proposition 4.2.3 Let µ be a Radon measure on RN . Let A ⊆ RN and
let B be a family of closed balls such that each point of A is the center of
arbitrarily small balls in B. Then there are disjoint balls Bj ∈ B such that

µ
(
A \

⋃

j

Bj

)
= 0 .

Proof. We shall follow the same proof strategy as for Proposition 4.1.2. We
may as well suppose that µ(A) > 0, else there is nothing to prove. We also
suppose (as we have done in the past) that A is bounded. Let K be as in
Theorem 4.2.1. The Radon property of µ now implies that there is an open
set U such that A ⊆ U and

µ(U) ≤ (1 + [4 ·K]−1)µ(A) .

Now Theorem 4.2.1 implies that there are subfamilies B1,B2, . . . ,BK such
that each Bj is a collection of pairwise disjoint balls and

A ⊆
K⋃

j=1


 ⋃

B∈Bj

B


 ⊆ U .
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Now it is clear that

µ(A) ≤
K∑

j=1

µ


 ⋃

B∈Bj

B


 .

Hence there is a particular index j0 such that

µ(A) ≤ K · µ


 ⋃

B∈Bj0

B


 .

We set A1 = A \ ⋃B∈Bj0
B. Then we may estimate

µ(A1) ≤ µ
(
U \

⋃

B∈Bj0

B
)

= µ(U) − µ
( ⋃

B∈Bj0

B
)

≤ (1 + [4 ·K]−1 −K−1) · µ(A)

= u · µ(A) ,

with u = 1 − (3/4) ·K−1. Now we simply iterate the construction, just as in
the proof of Proposition 4.1.2.

We may dispense with the hypothesis that A is bounded just as in
the proof of Proposition 4.1.2—making the additional observation that the
Radon measure µ can measure at most countably many hyperplanes parallel
to the axes with positive measure (so that we can avoid them when we chop
up space into cubes).

4.3 Decomposition and Differentiation of Mea-

sures

Next we turn to differentiation theorems for measures. These are useful in
geometric measure theory and also in the theory of singularities for partial
differential equations.
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Suppose that µ and λ are Radon measures on RN . We define the upper
derivate of µ with respect to λ at a point x ∈ RN to be

Dλ(µ, x) ≡ lim sup
r↓0

µ[B(x, r)]

λ[B(x, r)]

and the lower derivate of µ with respect to λ at a point x ∈ RN to be

Dλ(µ, x) ≡ lim inf
r↓0

µ[B(x, r)]

λ[B(x, r)]
.

At a point x where the upper and lower derivates are equal, we define the
derivative of µ by λ to be

Dλ(µ, x) = Dλ(µ, x) = Dλ(µ, x) .

Remark 4.3.1 It is convenient when calculating these derivates to declare
0/0 = 0 (this is analogous to other customs in measure theory). The derivates
that we have defined are Borel functions. To see this, first observe that
x 7→ µ[B(x, r)] is continuous. This is in fact immediate from Lebesgue’s
dominated convergence theorem. Next notice that our definition of the three
derivates does not change if we restrict r to lie in the positive rationals. Since,
for each fixed r, the function

x 7−→ µ[B(x, r)]

λ[B(x, r)]

is continuous, and since the supremum and infimum of a countable family of
Borel functions is Borel, we are done.

Definition 4.3.2 Let µ and λ be measures on RN . We say that µ is abso-
lutely continuous with respect to λ if, for A ⊆ RN ,

λ(A) = 0 implies µ(A) = 0 .

It is common to denote this relation by µ << λ.

Our next result will require the following lemma:

Lemma 4.3.3 Let µ and λ be Radon measures on RN . Let 0 < t <∞ and
suppose that A ⊆ RN .
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(1) If Dλ(µ, x) ≤ t for all x ∈ A then µ(A) ≤ tλ(A).

(2) If Dλ(µ, x) ≥ t for all x ∈ A then µ(A) ≥ tλ(A).

Proof. If ε > 0 then the Radon property gives us an open set U such that
A ⊆ U and λ(U) ≤ λ(A) + ε. Then the Vitali theorem for Radon measures
(Proposition 4.2.3) gives disjoint, closed balls Bj ⊆ U such that

µ(Bj) ≤ (t+ ε)λ(Bj) (provided the balls are sufficiently small)

and

µ


A \

⋃

j

Bj


 = 0 .

We conclude that

µ(A) ≤
∑

j

µ(Bj) ≤ (t+ ε)
∑

j

λ(Bj)

≤ (t+ ε)λ(U) ≤ (t+ ε)(λ(A) + ε) .

Letting ε → 0 yields µ(A) ≤ t · λ(A). This is assertion (1). Assertion (2)
may be established in just the same way.

Theorem 4.3.4 Suppose that µ and λ are Radon measures on RN .

(1) The derivative Dλ(µ, x) exists λ-almost everywhere.

(2) For any Borel set B ⊆ RN ,

∫

B
Dλ(µ, x) dλ(x) ≤ µ(B) ,

with equality if µ << λ.

(3) The relation µ << λ holds if and only if Dλ(µ, x) <∞ for µ-almost all
x ∈ RN .
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Proof.
(1) Let 0 < r <∞ and 0 < s < t <∞. Define

As,t(r) = {x ∈ B(0, r) : Dλ(µ, x) ≤ s < t ≤ Dλ(µ, x)}

and
At(r) = {x ∈ B(0, r) : Dλ(µ, x) ≥ t} .

Now Lemma 4.3.3 implies that

t · λ(As,t(r)) ≤ µ(As,t(r)) ≤ s · λ(As,t(r)) <∞

and, for u > 0,

u · λ(Au(r)) ≤ µ(Au(r)) ≤ µ[B(0, r)] <∞ .

Since s < t, these inequalities imply that λ(As,t(r)) = 0 and λ(
⋂

u>0 Au(r)) =
limu→∞ λ(Au(r)) = 0. But

RN \ {x ∈ RN : Dλ(µ, x) exists and is finite}

=
⋃

s,t∈Q+ , s<t
r∈N

As,t(r) ∪
⋂

u>0, r∈N
Au(r) .

We see then that this set has λ-measure 0, and this proves assertion (1).

(2) For 1 < t <∞ and p = 0,±1,±2, . . ., we define

Bp = {x ∈ B : tp ≤ Dλ(µ, x) < tp+1} .

Then part (1) above and Lemma 4.3.3(2) yield that

∫

B
Dλ(µ, x) dλ(x) =

∞∑

k=−∞

∫

Bk

Dλ(µ, x) dλ(x)

≤
∞∑

k=−∞
tk+1 λ(Bk)

≤ t ·
∞∑

k=−∞
µ(Bk)

≤ t · µ(B) .

Letting t ↓ 1 yields then
∫
B Dλ(µ, x) dλ(x) ≤ µ(B).
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Suppose now that µ << λ. Then the sets of λ-measure 0 are of course also
sets of µ-measure zero. Part (1) tells us that Dλ(µ, x) = 1/Dµ(λ, x) > 0 for
µ-almost every x. We conclude that µ(B) =

∑∞
k=−∞ µ(Bk) and an argument

similar to the one just given (using Lemma 4.3.3(2)) gives the inequality∫
B Dλ(µ, x) dλ(x) ≥ µ(B).

(3) By (1), we know that Dλ(µ, x) <∞ at λ-almost every x; if µ << λ then
this also holds at µ-almost every x.

For the reverse direction in (3), assume that Dλ(µ, x) < ∞ for µ-almost
all x ∈ RN . Take A ⊆ RN with λ(A) = 0. For u = 1, 2, . . ., Lemma 4.3.3(2)
gives

µ({x ∈ A : Dλ(µ, x) ≤ u} ≤ u · λ(A) = 0 .

We conclude that µ(A) = 0.

Now we reach our first goal, which is a density theorem and a theorem
on the differentiation of integrals for Radon measures.

Theorem 4.3.5 Let λ be a Radon measure on RN .

(1) If A ⊆ RN is λ-measurable then the limit

lim
r↓0

λ(A ∩ B(x, r))

λ[B(x, r)]

exists and equals 1 for λ-almost every x ∈ A and equals 0 for λ-almost
every x ∈ RN \A.

(2) If f : RN → R is locally λ-integrable, then

lim
r↓0

1

λ[B(x, r)]

∫

B(x,r)
f(x) dλ(x) = f(x)

for λ-almost every x ∈ RN .

Proof. Part (1) follows from part (2) by setting f = χ
A

. To prove (2), we
may take f ≥ 0. Define µ(A) =

∫
A f(x) dλ(x). Then µ is a Radon measure

and µ << λ. Theorem 4.3.4(2) now yields that
∫

E
Dλ(µ, x) dλ(x) = µ(E) =

∫

E
f dλ

for all Borel sets E. This clearly entails f(x) = Dλ(µ, x) for λ-almost all
x ∈ RN . That proves (2).
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We say that two Radon measures µ and λ are mutually singular if there
is a set A ⊆ RN such that λ(A) = 0 = µ(RN \A). Now we have a version of
the Radon-Nikodym theorem combined with the Lebesgue decomposition.

Theorem 4.3.6 Suppose that λ and µ are finite Radon measures on RN .
Then there is a Borel function f and a Radon measure ν such that λ and ν
are mutually singular and

µ(E) =
∫

E
f dλ + ν(E)

for any Borel set E ⊆ RN . Furthermore, µ << λ if and only if ν = 0.

Proof. Define

A = {x ∈ RN : Dλ(µ, x) <∞} .

Recalling that denotes the restriction of a measure, we set

µ1 = µ A and ν = µ (RN \A) .

Then obviously µ = µ1 + ν, and λ and ν are mutually singular by Theo-
rem 4.3.4(1). Now Lemma 4.3.3(1), gives µ1 << λ, hence µ1 has the required
representation by Theorem 4.3.4(2) with f(x) = Dλ(µ, x). The last state-
ment of the theorem is now obvious.

We conclude this section with some results concerning densities of mea-
sures (see Definition 2.2.1).

Theorem 4.3.7 Fix 0 < t. If µ is a Borel regular measure on RN and
A ⊆ C ⊆ RN , then

t ≤ Θ∗M(µ C, x) , for all x ∈ A, implies t · SM(A) ≤ µ(C) .

Remark 4.3.8 Since spherical measure is always at least as large as Haus-
dorff measure, we also have the conclusion

t ≤ Θ∗M(µ C, x) , for all x ∈ A, implies t · HM (A) ≤ µ(C) .
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Proof. Without loss of generality, we may assume 0 < t and µ(C) < ∞.
It will also be sufficient to prove t < Θ∗M(µ B, x), for all x ∈ A, implies
t · SM (A) ≤ µ(B).

Fix 0 < δ. We will estimate the approximating measure SM
6δ (A). This

estimation will require a special type of covering which we construct next.
Set

B = {B(x, r) : x ∈ A, 0 < r ≤ δ, t · ΩM · rm ≤ (µ C)B(x, r) } ,

B1 = {B(x, r) ∈ B : 2−1δ < r ≤ δ } ,

and let B′
1 be a maximal pairwise disjointed subfamily of B1.

Assuming B′
1,B′

2, . . . ,B′
k have already been defined, set

Bj+1 =
{

B(x, r) ∈ B : 2−(j+1)δ < r ≤ 2−jδ, ∅ = B(x, r)
⋂ j⋃

i=1

⋃

B∈B′
i

B
}
,

and let B′
j+1 be a maximal pairwise disjointed subfamily of Bj+1.

Note that the assumption µ(B) < ∞ insures that each B′
i is finite. Also

note that, by construction, any two closed balls in the family
⋃∞

i=1 B′
i are

disjoint, so we have

∞∑

i=1

∑

B∈B′
i

(µ C)(B) = (µ C)
(⋃∞

i=1

⋃
B∈B′

i
B
)
≤ µ(C) . (4.3)

Claim: For each n,

A ⊆
(⋃n

i=1

⋃
B∈B′

i
B
) ⋃(⋃∞

i=n+1

⋃
B∈B′

i
B̂
)

(4.4)

holds, where, for each ball B = B(x, r), we set B̂ = B(x, 3r).
To verify the claim, consider x /∈ ⋃n

i=1

⋃
B∈Bi

B. Since
⋃n

i=1

⋃
B∈Bi

B is
closed, there is B(x, r) ∈ B so that

∅ = B(x, r)
⋂⋃j

i=1

⋃
B∈B′

i
B .

Letting k be such that 2−k < r ≤ 2−(k−1), we see that if B(x, r) /∈ B′
k, then

∅ 6= B(x, r)
⋂⋃k

i=j+1

⋃
B∈B′

i
B .
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Thus there is B(y, t) ∈ B′
i, where n+1 ≤ i ≤ k, such that ∅ 6= B(x, r)∩B(y, t).

Since r ≤ 2−(k−1 and 2−k < t, we have x ∈ B(y, r + t) ⊆ B(y, 3t). The claim
is proved.

Let ε > 0 be arbitrary. By (4.3), we choose n so that

∞∑

i=1

∑

B∈B′
i

(µ C)(B) < ε .

Using the claim and letting radB denote the radius of the ball B, we estimate

SM
6δ (A) ≤




n∑

i=1

∑

B∈B′
i

ΩM (radB)M


+




∞∑

i=n+1

∑

B∈B′
i

ΩM (rad B̂)M




=




n∑

i=1

∑

B∈B′
i

ΩM (radB)M


+ 3M




∞∑

i=n+1

∑

B∈B′
i

ΩM (radB)M




≤ t−1




n∑

i=1

∑

B∈B′
i

(µ C)B


+ 3M t−1




∞∑

i=n+1

∑

B∈B′
i

(µ C)B




≤ t−1 [µ(C) + 3M ε ] .

Since ε > 0 was arbitrary, we conclude that SM
6δ (A) ≤ t−1 µ(C). The result

follows, since δ > 0 was also arbitrary.

Corollary 4.3.9 In RN , the measures SN , HN , T N , CN , GN , QN
t , and IN

t

(1 ≤ t ≤ ∞) all agree with the N -dimensional Lebesgue measure LN .

Proof. Noting that βt(N,N) = 1, for 1 ≤ t ≤ ∞, and using Proposi-
tion 2.1.5, we see that SN is the largest of the measures SN , HN , T N , CN ,
GN , QN

t , and IN
t , while IN

1 is the smallest. Theorem 4.3.7 implies SN ≤ LN

and (2.9) gives us IN
1 ≥ LN , so the result follows.

Corollary 4.3.10 If µ is a Borel regular measure on RN , A ⊆ RN is µ-
measurable, and µ(A) <∞, then

Θ∗M (µ A, x) = 0

holds for SM -almost every x ∈ RN \A.
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Proof. Let j be a positive integer and set

Cj =
{
x ∈ (RN \A) : j−1 ≤ Θ∗M(µ A, x)

}
.

Arguing by contradiction, suppose that HM (Cj) is positive. Then, by the
Borel regularity of µ, we can find a closed set E ⊆ A such that

µ(A \ E) < j−1 · HM (Cj) .

For x ∈ Cj, since E is closed and x /∈ E, we have

j−1 ≤ Θ∗M (µ A, x) = Θ∗M [µ (A \ E) , x]

= Θ∗M [ (µ A) (RN \ E) , x] .

So we can apply Theorem 4.3.7 (with the roles of µ, A, and B played by
µ A, RN \ E, and Cj, respectively), to conclude that

t · SM(Cj) ≤ (µ A)(RN \ E) = µ(A \ E) ,

a contradiction.
Thus we have SM(Cj) = 0 and the result follows.

4.4 Maximal Functions Redux

It is possible to construe the Hardy–Littlewood maximal function in the more
general context of measures.

Definition 4.4.1 Let µ be a Radon measure on RN . If f is a µ-measurable
function and x ∈ RN then we define

Mµf(x) = sup
r>0

1

µ[B(x, r)]

∫

B(x,r)
|f(t)| dµ(t) .

Further, and more generally, if ν is a Radon measure on RN then we define

Mµν(x) = sup
r>0

ν[B(x, r)]

µ[B(x, r)]
.
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Finally, it is sometimes useful to have the non-centered maximal operator
M̃µ defined by

M̃µf(x) = sup
B(z,r)3x

1

µ[B(z, r)]

∫

B(z,r)
|f(t)| dµ(t) .

A similar definition may be given for the maximal function of a Radon mea-
sure.

The principal result about these maximal functions is the following:

Theorem 4.4.2 The operator Mµ is weak type (1, 1) in the sense that

µ
{
x ∈ RN : Mµν(x) > s

}
≤ C · ν(RN )

s
.

In particular, if f ∈ L1(µ) then

µ
{
x ∈ RN : Mµf(x) > s

}
≤ C · ‖f‖L1

s
.

In case the measure µ satisfies the enlargement condition µ[B(x, 3r)] ≤
c · µ[B(x, r)], then we have

µ
{
x ∈ RN : M̃µν(x) > s

}
≤ c · ν

{
x ∈ RN : M̃µν(x) > s

}
.

The proof of this result follows the same lines as the development of
Proposition 4.1.4, and we omit the details. A full account may be found in
[Mat 95].



Chapter 5

Analytical Tools: the Area
Formula, the Coarea Formula,
and Poincaré Inequalities

5.1 The Area Formula

The main result of this section is the following theorem.

Theorem 5.1.1 (Area Formula) If f : RM → RN is a Lipschitz function
and M ≤ N, then

∫

A
JMf(x) dLMx =

∫

RN
card(A ∩ f−1(y)) dHMy (5.1)

holds for each Lebesgue measurable subset A of RM .

See Figure 5.1. Here JMf denotes the M -dimensional Jacobian of f which
will be defined below in Definition 5.1.3. In case M = N, the M -dimensional
Jacobian agrees with the usual Jacobian |det(Df)|.

The proof of the area formula separates into three fundamental parts. The
first is understanding the situation for linear maps. The second is extending
our understanding to the behavior of maps which are well approximated
by linear maps. This second part of the proof is essentially multivariable
calculus, and the area formula for C1 maps follows readily. The third part of
the proof brings in the measure theory that allows us to reduce the behavior
of Lipschitz maps to that of maps that are well approximated by linear maps.

121
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Figure 5.1: The area formula.

In the next section we will treat the coarea formula which applies to a
Lipschitz map f : RM → RN , but with M ≥ N instead of M ≤ N. The
proof of the coarea formula is similar to the proof of the area formula in that
the same three steps of understanding linear maps, understanding maps well
approximated by linear maps, and applying measure theory are fundamental.
The discussion of linear maps in the next subsection will be applicable to both
the area formula and the coarea formula.

5.1.1 Linear Maps

A key ingredient in the area formula is the K-dimensional Jacobian which is
a measure of how K-dimensional area transforms under the differential of a
mapping. Since a linear map sends one parallelepiped into another, the fun-
damental question is “What is the K-dimensional area of the parallelepiped
determined by a set of K vectors in RN?” Of course the answer is known,
and G. J. Porter gave a particularly lucid derivation in [Por 96]. We follow
Porter’s approach in the argument given below.

Since we will often need to divide by the K-dimensional area of a par-
allelepiped, when we say that P is a K-dimensional parallelepiped, we will
assume that P is not contained in any (K − 1)-dimensional subspace. That
is, when P is a K-dimensional parallelepiped we mean that there are linearly
independent vectors v1,v2, . . . ,vK such that

P =

{
K∑

i=1

λi vi : 0 ≤ λi ≤ 1, for i = 1, 2, . . . ,K

}
.
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Proposition 5.1.2 If

vi =




v1 i

v2 i

...

vN i




, for i = 1, 2, . . . ,K , (5.2)

are vectors in RN , then the parallelepiped determined by those vectors has
K-dimensional area √

det (V t V ) , (5.3)

where V is the N ×K matrix having v1,v2, . . . ,vK as its columns.

Proof. If the vectors v1,v2, . . . ,vK are orthogonal, then the result is im-
mediate. Thus we will reduce the general case to this special case.

Notice that Cavalieri’s Principle shows us that adding a multiple of vi

to another vector vj, j 6= i, does not change the K-dimensional area of the
parallelepiped determined by the vectors. But also notice that such an op-
eration on the vectors vi is equivalent to multiplying V on the right by a
K ×K triangular matrix with 1s on the diagonal (upper triangular if i < j
and lower triangular if i > j). The Gram–Schmidt orthogonalization pro-
cedure is effected by a sequence of operations of precisely this type. Thus
we see that there is an upper triangular matrix A with 1s on the diagonal
such that V A has orthogonal columns and the columns of V A determine a
parallelepiped with the same K-dimensional area as the parallelepiped deter-
mined by v1,v2, . . . ,vN . Since the columns of V A are orthogonal, we know

that
√

det ((V A)t (V A)) equals the K-dimensional area of the parallelepiped
determined by its columns, and thus equals the K-dimensional area of the
parallelepiped determined by v1,v2, . . . ,vK. Finally, we compute

det ((V A)t (V A)) = det (At V t V A)

= det (At) det (V t V ) det(A)

= det (V t V ) .
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Definition 5.1.3 Suppose that U ⊆ RM , f : U → RN , f is differentiable at
a, and K ≤ M. We define the K-dimensional Jacobian of f at a, denoted
JKf(a), by setting

JKf(a) = sup

{
HK[Df(a)(P )]

HK [P ]
:

P is a K-dimensional parallelepiped contained in RM

}
. (5.4)

The conventional situation considered in elementary multivariable calculus
is that in which K = M = N. In that case, it is easily seen from Proposi-
tion 5.1.2 that one may choose P to be the unit M -dimensional cube and
that JMf(a) = JNf(a) = |det(Df(a))|.

Two other special cases are of interest: They are when K = M < N
and when M > N = K. When K = M < N, again one can choose P to
be the unit M -dimensional cube in RM . The image of P under Df(a) is the
parallelepiped determined by the columns of the matrix representing Df(a).

It follows from Proposition 5.1.2 that JMf(a) =
√

det [(Df(a))t (Df(a))].
When M > N = K, then P should be chosen to lie in the orthogonal

complement of the kernel of Df(a). This follows because if P is any paral-
lelepiped in RM , then the image under Df(a) of the orthogonal projection
of P onto the orthogonal complement of the kernel of Df(a) is the same as
the image of P under Df(a), while N -dimensional area of the orthogonal
projection is no larger than the N -dimensional area of P .

It is plain to see that the orthogonal complement of the kernel of Df(a) is
the span of the columns of (Df(a))t. If we begin with the parallelepiped de-
termined by the columns of (Df(a))t, then that parallelepiped maps onto the
parallelepiped determined by the columns of (Df(a)) (Df(a))t. By Proposi-
tion 5.1.2, the N -dimensional area of the first parallelepiped is

√
det [(Df(a)) (Df(a))t]

and the N -dimensional area of the second parallelepiped is

√
det

[
((Df(a)) (Df(a))t)t ((Df(a)) (Df(a))t)

]

= det [(Df(a)) (Df(a))t] ,
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so the ratio is JNf(a) =
√

det [(Df(a)) (Df(a))t]. (The preceding discussion
could also have been phrased in terms of the effect of the adjoint of Df on
the area of a parallelepiped in RN .)

We summarize the above facts in the following lemma.

Lemma 5.1.4 Suppose f : RM → RN is differentiable at a.

(1) If M = N, then

JMf(a) = JNf(a) = |det(Df(a))|. (5.5)

(2) If M ≤ N, then

JMf(a) =
√

det [(Df(a))t (Df(a))] . (5.6)

(3) If M ≥ N, then

JNf(a) =
√

det [(Df(a)) (Df(a))t] . (5.7)

Remark 5.1.5 The generalized Pythagorean theorem from [Por 96] allows
one to see that the righthand side of either (5.6) or (5.7) is equal to the
square root of the sum of the squares of the K ×K minors of Df(a), where
K = min{M,N}. This is the form one is naturally led to if one develops the
K-dimensional Jacobian via the alternating algebra over RM and RN as in
[Fed 69].

We will also need to make use of the polar decomposition of linear maps.

Theorem 5.1.6 (Polar Decomposition)

(1) If M ≤ N and T : RM → RN is linear, then there exists a symmetric
linear map S : RM → RM and an orthogonal linear map U : RM → RN

such that T = U ◦ S.

(2) If M ≥ N and T : RM → RN is linear, then there exists a symmetric
linear map S : RN → RN and an orthogonal linear map U : RN → RM

such that T = S ◦ Ut.
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Proof.
(1) For convenience, let us first suppose that T is of full rank. The M ×M
matrix T t T is symmetric and positive definite. So T t T has a complete set
of M orthonormal eigenvectors v1,v2, . . . ,vM associated with the positive
eigenvalues λ1, λ2, . . . , λM .

We define S : RM → RM by setting

S(vi) =
√
λi vi .

Using the orthonormal basis v1,v2, . . . ,vM , we see that S is represented by
a diagonal matrix, thus S is symmetric.

We define U : RM → RN by setting

U(vi) =
1√
λi

T (vi) .

We calculate

U(vi) · U(vj) =
1√
λi

1√
λj

T (vi) · T (vj)

=
1√
λi

1√
λj

vi · (T t T )(vj)

=
1√
λi

1√
λj

λj vi · vj = δij .

Thus U is an orthogonal map.
In case T is not of full rank, it follows that some of the λis may be zero.

For such is we may choose U(vi) arbitrarily, subject only to the requirement
that U(v1), U(v2), . . . , U(vn) be an orthonormal set.

(2) We apply (1) to the mapping T t to obtain a symmetric S and orthogonal
U so that T t = U ◦ S, but then T = (U ◦ S)t = S ◦ Ut.

The first application of the Jacobian is in the following basic lemma con-
cerning the behavior of Lebesgue measure under a linear map.

Lemma 5.1.7 If A ⊆ RM is Lebesgue measurable and T : RM → RM is
linear, then

LM (T (A)) = |det(T )| LM(A) .
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Proof. Given ε > 0, we can find an open U with A ⊆ U and LM (U \A) < ε.
We subdivide U into cubes and the image of each cube is a parallelepiped.
So

LM (T (A)) ≤ LM (T (U)) ≤ |det(T )| LM(U) ≤ |det(T )| [ε+ LM (A)] .

Letting ε ↓ 0, we see that

LM (T (A)) ≤ |det(T )| LM(A) .

Now we need to prove the reverse inequality. Note that if det(T ) = 0,
then we are done. Assuming det(T ) 6= 0, we apply the case already proved
to T (A) and T−1 to see that

LM (A) = LM (T−1(T (A))) ≤ |det(T−1)| LM (T (A)) .

The result follows since det(T−1) = (det(T ))−1.

Lemma 5.1.8 (Main Estimates for the Area Formula)
Suppose that M ≤ N , T : RM → RN is linear and of full rank, and that
0 < ε < 1

2
. Let Π be orthogonal projection onto the image of T. Set

λ = inf {〈T, v〉 : |v| = 1} . (5.8)

If the Lebesgue measurable set A ⊆ RM is such that

(1) Df(a) exists for a ∈ A,

(2) ‖Df(a) − T‖ < ε holds for a ∈ A,

(3) |f(y) − f(a) − 〈Df(a), y − a〉| < ε |y − a| holds for y, a ∈ A,

(4) Π|f(A) is one-to-one,

then

(1 − 3ελ−1)M · JMT · LM (A) ≤ HM (f(A))

≤ (1 + 2ελ−1)M · JMT · LM (A) . (5.9)
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Proof. First we bound HM (f(A)) from above. We use the polar decomposi-
tion to write T = U ◦S, where S : RM → RM is symmetric and U : RM → RN

is orthogonal, and we note that S is non-singular with JMS = JMT and with
λ−1 = ‖S−1‖.

Set B = S(A) and g = f ◦ S−1. We know that

LM (B) = JMS · LM (A) = JML · LM (A) .

We claim that
Lip (g|B) ≤ 1 + 2ελ−1 .

To see this, suppose z, b ∈ B. Then with a = S−1(b), y = S−1(z), it follows
that |y − a| ≤ λ−1|z − b|. Therefore we have

|g(z) − g(b)|

≤ |g(z) − g(b) − 〈Dg(b), z − b〉| + |〈Dg(b) − U, z − b〉| + |〈U, z − b〉|

= |f(y) − f(a) − 〈Df(a), y − a〉|

+|〈(Df(a) − T ) ◦ S−1, z − b〉| + |z − b|

≤ ε |y − a| + ‖Df(a) − T‖ · ‖S−1‖ · |z − b| + |z − b|

≤ (1 + 2ελ−1) |z − b| . (5.10)

Finally, we have

HM (f(A)) = HM (g(B))

≤ (1 + 2ελ−1)M · LM (B)

= (1 + 2ελ−1)M · JMT · LM (A) .

Next we bound HM (f(A)) from below. We continue to use the same
notation for the polar decomposition. Set C = Π(f(A)) = Π(g(B)) and
h = (Π ◦ g|B)−1. We claim that

Lip (h|C) ≤ (1 − 3ελ−1)−1 .

To see this, suppose w, c ∈ C. Let b ∈ B be such that Π ◦ g(b) = c and z ∈ B
be such that Π ◦ g(z) = w. Arguing as we did to obtain the upper bound
(5.10), but with some obvious changes, we see that

|g(z) − g(b)| ≥ (1 − 2ελ−1) |z − b| .
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Also, we have

ελ−1|z − b| ≥ |g(z) − g(b) − 〈Dg(b), z − b〉|

= |Π(g(z) − g(b) − 〈Dg(b), z − b〉)

+Π⊥(g(z) − g(b) − 〈Dg(b), z − b〉)|

≥ |Π⊥(g(z) − g(b) − 〈Dg(b), z − b〉)|

= |Π⊥(g(z) − g(b))| .

Thus we have

|Π(g(z)) − Π(g(b))| ≥ |g(z) − g(b)| − |Π⊥(g(z) − g(b))|

≥ (1 − 2ελ−1) |z − b| − ελ−1 |z − b| .

Finally, we have

JMT · HM (A) = LM (B)

≤ (1 − 3ελ−1)M · LM (C)

≤ (1 − 3ελ−1)M · HM (f(A)) .

5.1.2 C1 Functions

Now we can prove the area formula for C1 functions.

Theorem 5.1.9 Suppose that M ≤ N . If f : RM → RN is a C1 function,
then ∫

A
JMf(x) dLMx =

∫

RN
card(A ∩ f−1(y)) dHMy

holds for each Lebesgue measurable subset A of RM .

Proof. By σ-additivity, it will suffice to prove the result for bounded sets
A. We first prove the result under the additional assumptions that f is
one-to-one and that JMf(a) > 0 holds at every point of A.

It is plain that, for any ε > 0, every subset of A with sufficiently small
diameter satisfies conditions (1)–(3) of Lemma 5.1.8 for some full rank linear
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T : RM → RN—namely, we can choose T to be Df at any point in such a
sufficiently small set. Since that Df on A is the restriction of a continuous
function, we can find a positive lower bound for λ in (5.8). To see that
condition (4) of Lemma 5.1.8 is also satisfied on a subset of A of small
enough diameter, we suppose that Π ◦ f(y) = Π ◦ f(z); we show that, in
this case, ε > 0 can be chosen small enough compared to λ that conditions
(1)–(3) lead to a contradiction. Using (1)–(3), we estimate

|〈T, y − z〉| = |Π 〈T, y − z〉)|

≤ |Π 〈T −Df(a), y − z〉| + |Π 〈Df(a) −Df(z), y − z〉|

+|Π 〈Df(z), y − z〉|

≤ ‖T −Df(a)‖ |y − z| + ‖Df(a) −Df(z)‖ |y − z|

+|Π 〈Df(z), y − z〉|

= ‖T −Df(a)‖ |y − z| + ‖Df(a) −Df(z)‖ |y − z|

+|Π(f(y) − f(z) − 〈Df(z), y − z〉)|

≤ ‖T −Df(a)‖ |y − z| + ‖Df(a) −Df(z)‖ |y − z|

+|f(y) − f(z) − 〈Df(a), y − z〉| .

By choosing a, y, z in a small enough set we can bound the righthand side of
the preceding inequality above by 3 ε |y−z|, while the lefthand side is bounded
below by λ |y − z|. Choosing ε smaller than 1

3
λ gives a contradiction. Thus

(4) also must hold on subsets of small enough diameter, and the result follows
by decomposing A into such sufficiently small sets.

In case f is not necessarily one-to-one, but still assuming JMf(a) > 0
holds at every point of A, there is σ > 0 so that f is one-to-one in any ball
of radius σ about any point in A. Write

A =
⋃

j

Aj

where the sets Aj, j = 1, 2, . . . , are pairwise disjoint HM -measurable sets all
having diameter less than σ. Then we have

∑

j

χ
f(Ai,j)

(y) = card(A ∩ f−1(y)) for each y ∈ RN .
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We conclude that
∫

A
JMf(x) dLMx =

∑

j

∫

Aj

JMf(x) dLMx

=
∑

j

HM [f(Ai,j)]

=
∫

RN

∑

j

χ
f(Ai,j)

dHM

=
∫

RN
card(A ∩ f−1(y)) dHM .

To complete the proof, we need to show that the image of a set on which
JMf = 0 has measure zero. That fact follows by defining fε : RM → RM+N

by

x 7−→
(
εx, f(x)

)
.

This definition of fε gives us the full rank hypothesis, but only increases
the Jacobian by a bounded multiple of ε. The image of f is the orthogonal
projection of the image of fε and thus its Hausdorff measure is no larger
than the Hausdorff measure of the image of fε. We conclude as ε ↓ 0 that the
Hausdorff measure of the image of f is 0.

The last part of the preceding proof gives us the next corollary, which
is known as Sard’s theorem.1 The sharp version of Sard’s theorem, the
Morse–Sard–Federer theorem, can be found in [Fed 69; 3.4.3].

Corollary 5.1.10 Suppose that M ≤ N . If f : RM → RN is a C1 function
and A = {x : JMf(x) = 0}, then HM [ f(A) ] = 0.

5.1.3 Rademacher’s Theorem

Theorem 5.1.11 (Rademacher’s Theorem)2 If f : RM → RN is a Lip-
schitz function, then f is differentiable LM -almost everywhere and the dif-
ferential of f is a measurable function.

1Arthur Sard (1909–1980).
2Hans Rademacher (1892–1969).
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Proof. We may assume N = 1. We use induction on M. In case M = 1, the
result follows from the classical theorem stating that an absolutely continuous
function from R to R is differentiable L1-almost everywhere.

We consider the inductive step M > 1. Note that, if M − 1 variables are
held constant, then, as a function of the one remaining variable, f is abso-
lutely continuous. By Fubini’s theorem, we see that all M partial derivatives
of f are defined LM -almost everywhere and are measurable functions. The
goal is to show that these partial derivatives actually represent the differential
at almost every point.

Let us write RM = RM−1 × R and denote points p ∈ RM−1 × R by
p = (x, y), x ∈ RM−1, y ∈ R. We consider a point p0 = (x0, y0) at which the
following two conditions are satisfied:

(1) As a function of the first M − 1 variables, f is differentiable.

(2) All M partial derivatives of f exist and are approximately continuous
(see Definition 4.1.7).

For convenience of notation, we assume that f(p0) = 0, that p0 = (0, 0), and
that all the partial derivatives of f at p0 vanish.

Fix an ε with 1 > ε > 0. By (1), we can choose r0 > 0 so that |x| < r0
implies that |f(x, 0)| ≤ ε|x| holds. By (2), the M -dimensional density at
(0, 0) of {

(x′, y′) :

∣∣∣∣∣
∂f

∂y
(x′, y′)

∣∣∣∣∣ > ε

}

is zero. Thus, by choosing a smaller value for r0 if necessary, we may assume
that, for 0 < r < r0,

LM

{
(x′, y′) :

∣∣∣∣∣
∂f

∂y
(x′, y′)

∣∣∣∣∣ > ε, |x′| < 2r, −2r < y′ < 2r

}
≤ 1

2
ΩM−1 · εMrM

(5.11)
holds.

Now consider (0, 0) 6= (x, y) ∈ RM−1 × R with |x| < r0 and |y| < r0. Set
r = max{ |x|, |y| } If, for every x′ ∈ RM−1 with |x′ − x| < εr, we have

L1

{
(x′, y′) :

∣∣∣∣∣
∂f

∂y
(x′, y′)

∣∣∣∣∣ > ε, −2r < y′ < 2r

}
≥ εr ,
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then we can estimate

LM

{
(x′, y′) :

∣∣∣∣∣
∂f

∂y
(x′, y′)

∣∣∣∣∣ > ε, |x′| < 2r, −2r < y′ < 2r

}

≥ LM

{
(x′, y′) :

∣∣∣∣∣
∂f

∂y
(x′, y′)

∣∣∣∣∣ > ε, |x′ − x| < εr, −2r < y′ < 2r

}

≥ εr · LM−1{x′ ∈ RM−1 : |x′ − x| < r }

≥ ΩM−1 · εMrM ,

contradicting (5.11).
By the last paragraph, there exists x′ ∈ RM−1, with |x′ − x| < εr, such

that

L1

{
(x′, y′) :

∣∣∣∣∣
∂f

∂y
(x′, y′)

∣∣∣∣∣ > ε, −2r < y′ < 2r

}
< εr

holds; select and fix such an x′. We have

|f(x′, y) − f(x′, 0)| =

∣∣∣∣∣

∫ y

0

∂f

∂y
(x′, η) dL1η

∣∣∣∣∣

≤ ε|y| +Mεr

< (M + 1)εr , (5.12)

where we have used that fact that
∣∣∣∂f
∂y

(x′, η)
∣∣∣ ≤M holds for L1-almost all η.

Also, we have

|f(x, y) − f(x′, y)| ≤ M |x− x′| < Mεr , (5.13)

|f(x, 0) − f(x′, 0)| ≤ M |x− x′| < Mεr , (5.14)

|f(x, 0)| ≤ ε|x| < εr. (5.15)

Combining (5.12), (5.13), (5.14), and (5.15), we obtain

|f(x, y)| ≤ (3M + 2)εr ,

from which it follows that Df(0, 0) = 0.
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As a consequence of Rademacher’s theorem and the Whitney extension
theorem3 (see [Fed 69] or [KPk 99]), we have the following approximation
theorem for Lipschitz functions.

Theorem 5.1.12 If f : RN → Rν is Lipschitz and if ε > 0, then there exists
a C1 function g : RN → Rν for which

LN{x : f(x) 6= g(x)} ≤ ε ,

LN{x : Df(x) 6= Dg(x)} ≤ ε .

Proof. It will suffice to prove the result when ν = 1.
Recall that the Whitney extension theorem for C1 functions tells us the

following:

Let A ⊆ RN be closed. Suppose that f : A→ R and v : A→ RN

are continuous. If the limit of

f(y) − f(x) − v(x) · (y − x)

|y − x|

is zero as x, y ∈ A, with x 6= y, approach any point of A, then
there exists a C1 function g : RN → R with g(a) = f(a) and
grad g(a) = v(a) for all a ∈ A.

By Rademacher’s theorem applied to f and Lusin’s theorem (i.e., Theo-
rem 1.3.4) applied to grad f (for LN on RN , Lusin’s theorem is easily seen
to be applicable to sets with infinite measure), there is a closed set B ⊆ RN

with LN (RN \B) < ε/2 such that grad f exists and is continuous on B. We
set v(x) = grad f(x) and

hk(x) = sup

{
f(y) − f(x) − v(x) · (y − x)

|y − x| : y ∈ B, 0 < |y − x| < 1/k

}
,

for x ∈ B, k = 1, 2, . . .. Since f is differentiable on B, hk(x) → 0 for each
x ∈ B. By Egoroff’s theorem (i.e., Theorem 1.3.3), there exists a closed set
A ⊆ B with LN (B \ A) ≤ ε/2 such that hk converges to 0 uniformly on
compact sets. Thus we can apply Whitney’s extension theorem to f and v
on A to obtain the desired function g.

3Hassler Whitney (1907–1989).



5.2. THE COAREA FORMULA 135

Proof of the Area Formula. As usual, it will suffice to consider the case
in which A is bounded. Use Theorem 5.1.12 to replace f by the C1 function
g when A is replaced by a set B with LM (A \B) < ε. Theorem 5.1.9 applies
to g on B.

To complete the proof, observe that, for anyAj ⊆ A, we have HM [f(Aj)] ≤
(Lip f)M LM (Aj). In particular, by decomposing A \B into pairwise disjoint
sets Aj on which f is one-to-one, we obtain

∫

RN
card((A \B) ∩ f−1(y)) dHMy ≤ (Lip f)M ε .

Corollary 5.1.13 If f : RM → RN is a Lipschitz function and M ≤ N, then

∫

A
g(x)JMf(x) dLMx =

∫

RN

∑

x∈A∩f−1(y)

g(x) dHMy (5.16)

holds for each Lebesgue measurable subset A of RM and each non-negative
LM -measurable function g : A→ R.

Proof. Approximate g by simple functions.

5.2 The Coarea Formula

The main result of this section is the following theorem.

Theorem 5.2.1 (Coarea Formula) If f : RM → RN is a Lipschitz func-
tion and M ≥ N, then

∫

A
JNf(x) dLMx =

∫

RN
HM−N (A ∩ f−1(y)) dLNy (5.17)

holds for each Lebesgue measurable subset A of RM .

See Figure 5.2. Here JNf denotes the N -dimensional Jacobian of f which
was defined in the previous section in Definition 5.1.3, and which was seen
by (5.7) to be given by

JNf(a) =
√

det [(Df(a)) · (Df(a))t].
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Figure 5.2: The coarea formula.

In case M = N, the N -dimensional Jacobian agrees with the usual Jacobian
|det(Df)|, and the area and coarea formulas coincide. In case M > N, and
f : RM = RN × RM−N → RN is orthogonal projection onto the first factor,
then the coarea formula simplifies to Fubini’s theorem; thus one can think
of the coarea formula as a generalization of Fubini’s theorem to functions
more complicated than orthogonal projection. The coarea formula was first
proved in [Fed 59].

As in the proof of the area formula, the proof of the coarea formula sep-
arates into three fundamental parts. The first is to understand the situation
for linear maps. This was done in the previous section. The second part is
to extend our understanding to the behavior of maps which are well approx-
imated by linear maps. The third part of the proof brings in the measure
theory that allows us to reduce the behavior of Lipschitz maps to that of
maps that are well approximated by linear maps.

Main Estimates for the Coarea Formula

Lemma 5.2.2 Suppose M > N, U : RN → RM is orthogonal, and 0 < ε <
1/2. If the Lebesgue measurable set A ⊆ RM is such that

(1) Df(a) exists for a ∈ A,

(2) ‖Df(a) − Ut‖ < ε holds for a ∈ A,

(3) |f(y) − f(a) − 〈Df(a), y − a〉| < ε |y − a| holds for y, a ∈ A,

then

(1 − 2ε)M
∫

RN
HM−N (A ∩ f−1(y)) dLNy ≤

∫

A
JMf(a) dLMa

≤
∫

RN
HM−N (A ∩ f−1(y)) dLNy. (5.18)
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Proof. Let V : RM−N → RM be an orthogonal map such that ker (Ut) and
ker (V t) are orthogonal complements. Define F : RM → RN × RM−N by
setting

F (x) = (f(x), V t(x)),

and let Π : RN ×RM−N → RN be projection on the first factor. It is easy to
see that

JMF = JNf.

Subsequently we will show that F |A is one-to-one so that, by the area formula,

LM [F (A)] =
∫

A
JMF dLM =

∫

A
JNf dLM .

Thus, using Fubini’s Theorem, we have
∫

A
JNf dLM = LM [F (A)]

=
∫

RN
HM−N [F (A) ∩ Π−1(z)] dLNz

=
∫

RN
HM−N [F (A ∩ f−1(z))] dLNz .

To complete the proof, we show F |A to be one-to-one and estimate the
Lipschitz constant of F on A ∩ f−1(z) and the Lipschitz constant of F−1 on
F (A ∩ f−1(z)). Suppose a, y ∈ A ∩ f−1(z). Then F (a) = (f(a), V t(a)) =
(z, V t(a)) and F (y) = (f(y), V t(y)) = (z, V t(y)). We should like to compare
|a− y| and |F (a) − F (y)|. But the first components are the same, so

|F (a)− F (y)| = |V t(a) − V t(y)|.

On the one hand, V t is distance decreasing, so

|F (a) − F (y)| ≤ |a− y|.

On the other hand,

|〈Ut, y − a〉| ≤ |〈Df(a), y − a〉| + ‖Df(a) − Ut‖ |y − a|
= |f(y) − f(a) − 〈Df(a), y − a〉| + ‖Df(a) − Ut‖ |y − a|
< 2ε|y − a|,

and
|y − a|2 = |V t(a) − V t(y)|2 + |〈Ut, y − a〉|2,
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so
|V t(a) − V t(y)|2 ≥ |y − a|2 (1 − 4ε2).

Thus we have
√

1 − 4ε2 |y − a| ≤ |F (y)− F (a)| ≤ |y − a|.

Corollary 5.2.3 Suppose M > N, T : RM → RN is of rank N, and 0 < ε <
1/2. If the Lebesgue measurable set A ⊆ RM is such that

(1) Df(a) exists for a ∈ A,

(2) ‖Df(a) − T‖ < ε holds for a ∈ A,

(3) |f(y) − f(a) − 〈Df(a), y − a〉| < ε |y − a| holds for y, a ∈ A,

then

(1 − 2ε)M
∫

RN
HM−N (A ∩ f−1(y)) dLNy ≤

∫

A
JMf(a) dLMa

≤
∫

RN
HM−N (A ∩ f−1(y)) dLNy. (5.19)

Proof. By the polar decomposition (Theorem 5.1.6), there exists a sym-
metric linear map S : RN → RN and an orthogonal map U : RN → RM such
that T = S ◦ Ut. Set g = S−1 ◦ f. Then we apply the lemma to g and U to
obtain

(1 − 2ε)M
∫

RN
HM−N (A ∩ g−1(z)) dLNz ≤

∫

A
JMg(a) dLMa

≤
∫

RN
HM−N (A ∩ g−1(z)) dLNz. (5.20)

Notice that, if y = S(z), then

A ∩ g−1(z) = A ∩ f−1(y),

so, by the change of variables formula in RN applied to the mapping S, we
have∫

RN
HM−N (A ∩ g−1(z))JNS dLNz =

∫

RN
HM−N (A ∩ f−1(y)) dLNy.

Also we have JNS JMg = JMf, so
∫

A
JNg JMg(a) dLMa =

∫

A
JMf(a) dLMa

holds. By multiplying all three terms in (5.20) by JNS, we obtain (5.19).
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5.2.1 Measure Theory of Lipschitz Maps

We need to verify that the integrand on the righthand side of (5.17) is mea-
surable. (The measurability of the integrand on the lefthand side of (5.17) is
given by Rademacher’s Theorem 5.1.11.) First we obtain a useful preliminary
estimate that generalizes a result originally proved in [EH 43].

Lemma 5.2.4 Suppose 0 ≤ N ≤M <∞. There exists a constant C(M,N)
such that the following statement is true: If f : RM → RN is a Lipschitz
function and A ⊆ RM is LM -measurable, then

∫ ∗

RN
HM−N (A ∩ f−1(y)) dLNy ≤ C(M,N) [Lip (f)]N LM (A) (5.21)

holds.

Proof. We may assume that the righthand side of (5.21) is finite.
Fix σ > 0. By the definition of Hausdorff measure, there exists a cover of

A by closed sets S1, S2, . . . , all having diameter less that σ, such that

∑

i

ΩM

(
diam (Si)

2

)M

≤ HM (A) + σ.

For y ∈ RN we observe that

HM−N
σ (A ∩ f−1(y)) ≤

∑

{i:Si∩f−1(y)6=∅}
ΩM−N

(
diam (Si)

2

)M−N

= 2N−M ΩM−N

∑

i

(
diam (Si)

)M−N
χ

f(Si)
(y).

Note also that, if p ∈ Si, then

f(Si) ⊆ B
(
f(p),Lip (f) diam (Si)

)
,

so ∫

RN
χ

f(Si)
dLN ≤ [Lip (f)]N ΩN

(
diam (Si)

)N
.

Thus we have
∫ ∗

RN
HM−N

σ (A ∩ f−1(y))dLNy
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≤ 2N−M ΩM−N

∑

i

(
diam (Si)

)M−N
∫

RN
χ

f(Si)
dLN

≤ 2N−M ΩM−N ΩN [Lip (f)]N
∑

i

(
diam (Si)

)N

≤ 2N ΩM−N ΩN

ΩM

(
HM (A) + σ

)
.

The result follows by letting σ decrease to 0.

Lemma 5.2.5 Suppose f : RM → RN is a Lipschitz function. Then the
mapping

y 7−→ HM−N (A ∩ f−1(y))

is LN -measurable.

Proof. By the previous lemma, we can ignore sets of arbitrarily small
measure, hence we may and shall assume that A is compact.

Observe that, for U ⊆ RM ,

f(A)
⋂ { y : f−1(y) ∩ A ⊆ U } = f(A)

∖
f(A \ U) . (5.22)

Additionally note that, if U ⊆ RM is open, then f(A) and f(A \ U) are
compact, and thus the set in (5.22) is a Borel subset of RN .

Let U denote the family of open subsets of RN that are finite unions of
open balls with rational radii and centers in QN .

We will show that, for t ∈ R, {y : HM−N (A ∩ f−1(y)) ≤ t} is a Borel
subset of RN . For t < 0, we have {y : HM−N (A ∩ f−1(y)) ≤ t} = ∅, so we
may assume that t ≥ 0.

For each i = 1, 2, . . ., let Fi denote the collection of finite subfamilies of
U such that {Ui,1, Ui,2, . . . , Ui,kj } ∈ Fi if and only if

diam (Ui,j) < 1/i, for j = 1, 2, . . . , kj,

ki∑

j=1

ΩM−N

(
diam (Ui,j)

2

)M−N

≤ t+
1

i
.

Since Fi is at most countable, we see that

Bi =
⋃

{Ui,1,...,Ui,ki
}∈Fi

f(A)
∖
f(A \ ∪ki

j=1Ui,j) (5.23)
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is a Borel subset of RN . Finally, we observe that

{ y : HM−N (A ∩ f−1(y)) ≤ t }

=
[
RN \ f(A)

] ⋃ [
f(A)

⋂ { y : HM−N (A ∩ f−1(y)) ≤ t }
]
,

and that f(A)
⋂ { y : HM−N (A∩ f−1(y)) ≤ t } is the intersection of the sets

Bi in (5.23).

5.2.2 Proof of the Coarea Formula

By Theorem 5.1.11 and (5.21), we may assume that Df(a) exists at every
point a ∈ A. We first prove the result under the additional assumption that
JNf(a) > 0 at every point of A. By Lusin’s theorem (i.e., Theorem 1.3.4),
we may assume that Df(a) is the restriction to A of a continuous function.
By Egoroff’s theorem (i.e., Theorem 1.3.3) we may suppose that

|f(y) − f(a) − 〈Df(a), y − a〉|
|y − a|

converges uniformly to 0 as y ∈ A approaches a ∈ A. It is plain that, for any
ε > 0, conditions (1)–(3) of Corollary 5.2.3 are satisfied in any subset of A
that has small enough diameter.

Finally, to complete the proof, we need to consider the case in which
JNf = 0 holds on all of A. In that case, the lefthand side of (5.17) is 0. We
need to show that the righthand side of (5.17) also equals 0. To this end,
consider fε : RM+N → RN defined by

(x, y) 7−→ f(x) + εy.

We can apply what has already been proved to the set

A× [−1, 1]N ⊆ RM × RN .

We have LM+N (A× [−1, 1]N) = 2NLM (A), JNfε ≤ ε [ε+ Lip (f)]N−1, and

∫

A×[−1,1]N
JNfε dLM+N =

∫

RN
HM

[
(A× [−1, 1]N) ∩ f−1

ε (z)
]
dLN z.
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By (5.21) observe that

C(M,N)HM
[
(A× [−1, 1]N) ∩ f−1

ε (z)
]

≥
∫

RN
HM−N

[
(A× [−1, 1]N ) ∩ f−1

ε (z) ∩ Π−1(y)
]
dLNy

=
∫

[−1,1]N
HM−N [A ∩ f−1(z − εy)]dLNy.

Thus

2N LM (A) ε [ε+ Lip (f)]N−1

≥
∫

A×[−1,1]N
JNfε dLM+N

≥ 1

C(M,N)

∫

RN

∫

[−1,1]N
HM−N [A ∩ f−1(z − εy)]dLNy dLN z

=
1

C(M,N)

∫

[−1,1]N

∫

RN
HM−N [A ∩ f−1(z − εy)]dLN z dLNy

=
2N

C(M,N)

∫

RN
HM−N [A ∩ f−1(z)] dLNz

holds, where the last equation holds by translation invariance. Letting ε ↓ 0,
we see that ∫

RN
HM−N [A ∩ f−1(z)] dLNz = 0.

Corollary 5.2.6 If f : RM → RN is a Lipschitz function and M ≥ N, then

∫

A
g(x)JNf(x) dLMx =

∫

RN

∫

A∩f−1(y)
g dHM−N dLNy (5.24)

holds for each Lebesgue measurable subset A of RM and each non-negative
LM -measurable function g : A→ R.

Remark 5.2.7 Observe that, when M = ν and g ≡ 1, the integral with
respect to 0-dimensional Hausdorff measure over A∩ f−1(y) gives the cardi-
nality of A ∩ f−1(y).

Proof. Approximate g by simple functions.
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5.3 The Area and Coarea Formulas for C1

Submanifolds

Definition 5.3.1 By an M-dimensional C1 submanifold of RN we will mean
a set S ⊆ RN for which each point has an open neighborhood V in RN such
that there exists a one-to-one, C1 map φ : U → RN , where U ⊆ RM is open,
with

(1) Dφ of rank M at all points of U ,

(2) φ(U) = V
⋂
S.

Remark 5.3.2 The object defined in Definition 5.3.1 is sometimes called a
regularly imbedded C1 submanifold.

Definition 5.3.3 Suppose S is an M -dimensional C1 submanifold of RN .
Let x be a point of S and let φ be as in Definition 5.3.1.

(1) The range of Dφ(u), u ∈ U , will be called the tangent space to S at
x = φ(u) and will be denoted by TxS.

(2) Now suppose x ∈ S and f : W → Rν , where W contains a neighbor-
hood of x in S. We say f is differentiable relative to S at x if there is
f̃ : W̃ → Rν such that

(a) W̃ is a neighborhood of x in RN ,

(b) f |
S∩W̃

= f̃ |
S∩W̃

,

(c) f̃ is differentiable at x.

In case f is differentiable relative to S at x, we will call the restriction
of Df̃ (x) to TxS the differential of f relative to S at x and we will
denote Df̃ (x)|TxS by DSf(x).

(3) For K ≤ M , we define the K-dimensional Jacobian of f relative to S
at x, denoted JS

K f(x), by setting

JS
K f(x) = sup

{HK [DSf(P )]

HK[P ]
:

P is a K-dimensional parallelepiped contained in TxS
}
. (5.25)
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Remark 5.3.4 In case ν = 1, we define the gradient of f relative to S to be
that vector ∇Sf(x) ∈ TxS for which

〈DSf, v 〉 = ∇Sf(x) · v

holds for all v ∈ TxS. If fact, ∇Sf(x) is simply the orthogonal projection of
grad f̃(x) on TxS, where f̃ is as in (2) of the preceding definition.

Lemma 5.3.5 Suppose S is an M -dimensional C1 submanifold of RN . Sup-
pose the Rν -valued function f is differentiable relative to S at x.

(1) If M ≤ ν, then
JS

M f · HM [P ] = HM [DSf(P )]

holds for any M -dimensional parallelepiped P contained in TxS.

(2) If ν ≤M , then
JS

ν f · Hν [P ] = Hν [DSf(P )]

holds for any ν-dimensional parallelepiped P contained in the orthog-
onal complement of kerDSf in TxS.

Proof.
(1) Choose the orthonormal coordinate system in RN so that TxS is the
span of e1, e2, . . . , eM . With this choice of coordinate system, DSf can be
represented by an ν ×M matrix T .

Consider two M -dimensional parallelepipeds P1 and P2 contained in TxS.
For i = 1, 2, let Vi be the M ×M matrix whose columns are the vectors
that determine Pi. There is a non-singular M ×M matrix A such that V2

equals the matrix product AV1 (recall we assume that our M -dimensional
parallelepipeds are determined by M linearly independent vectors).

Using Proposition 5.1.2, we compute

HM [P1] =
√

det(V t
1 V1) = |det(V1)| ,

HM [P2] =
√
V t

2 V2 =
√
V t

1 A
t V1A = |det(A)| |det(V1)| ,

HM [DSf(P1)] =
√

det(V t
1 T

t T V1) =
√

det(T t T ) |det(V1)| ,

HM [DSf(P2)] =
√

det(V t
2 T

t T V2) ,

=
√

det(V t
1 A

t T t T AV1) =
√

det(T t T ) |det(A)| ||det(V1)|
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and the result follows.
(2) If P is a ν-dimensional parallelepiped and P̃ is its orthogonal projection
on the orthogonal complement of the kernel of DSf , then we have DSf(P ) =
DSf(P̃ ) and Hν(P ) ≥ Hν(P̃ ). Thus the supremum in (5.25) will be realized
by a parallelepiped contained in the orthogonal projection on the orthogonal
complement of the kernel of DSf .

Choosing the orthonormal coordinate system in RN so that the orthogonal
complement of the kernel of DSf is the span of e1, e2, . . . , eν, and arguing
as in the proof of (1), we see that the supremum is realized by any such
parallelepiped.

Lemma 5.3.6 Suppose that M ≤ ν, S is an M -dimensional C1 submanifold
of RN and φ is as above. If the Rν -valued function f is C1 in a neighborhood
of x in S and if x = φ(u), then

JS
M f [φ(u)]JMφ(u) = JM(f ◦ φ)(u) .

Proof. Let P be an M -dimensional parallelepiped contained in RM . By
Definition 5.1.3 and Lemma 5.1.4, we have HM [Dφ(P )] = JMφ(u)HM [P ]
and HM [D(f ◦ φ)(P )] = JM(f ◦ φ)(u)HM [P ]. By Lemma 5.3.5, we have
HM [DS(φ(P ))] = JS

M f HM [Dφ(P )]. Since DS(φ(P )) = D(f ◦ φ)(P ), we
conclude that

JS
M f JMφ(u)HM [P ] = JS

M f HM [Dφ(P )]

= HM [DS(φ(P ))]

= HM [D(f ◦ φ)(P )]

= JM(f ◦ φ)(u)HM [P ] ,

from which the result follows.

We now can prove the following version of the area formula for C1 sub-
manifolds.

Theorem 5.3.7 Suppose M ≤ ν and f : RN → Rν is Lipschitz. If S ⊆ RN

is an M -dimensional C1 submanifold, then
∫

S
g JS

M f dHM =
∫

Rν
g(y) card(S ∩ f−1(y)) dHMy

for every HM -measurable function g.
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Proof. It suffices to consider g ≡ 1 and S = φ(U), where φ : U → RN . By
part (1) of Lemma 5.3.5 and Corollary 5.1.13, we have

∫

S
JS

M f dHM =
∫

U
JS

M f [φ(u)]JMφ(u) dLMu

=
∫

U
JM(f ◦ φ)(u) dLMu

=
∫

Rν
card(U ∩ (f ◦ φ)−1(y)) dHMy

=
∫

Rν
card(S ∩ f−1(y)) dHMy .

Lemma 5.3.8 Suppose that ν < M , S is an M -dimensional C1 submanifold
of RN and φ is as above. If the Rν -valued function f is C1 in a neighborhood
of x in S and if z = f(x), then

Jν (f ◦ φ) · J (f◦φ)−1(z)
M−ν φ = JM φ · JS

ν f . (5.26)

Proof. The two linear functions D(f ◦ φ) and DSf clearly have the same
rank. If that common rank is less than ν, then both sides of (5.26) are zero.
Thus we may assume both functions have rank ν.

Let Π : TxS → TxS be orthogonal projection onto the orthogonal com-
plement of kerDSf . Choose an (M − ν)-dimensional parallelepiped P1 in
kerD(f ◦ φ) and a ν-dimensional parallelepiped P2 in the orthogonal com-
plement of kerD(f ◦ φ). Since Dφ maps kerD(f ◦ φ) onto kerDSf , we have

HM [(Dφ(P1)) × (Π ◦Dφ(P2))] = HM [(Dφ(P1)) × (Dφ(P2))] . (5.27)

Since Π◦Dφ(P2) is a ν-dimensional parallelepiped in the orthogonal comple-
ment of kerDSf and P2 is a ν-dimensional parallelepiped in the orthogonal
complement of kerD(f ◦ φ), Lemma 5.3.5 gives us

JS
ν f · Hν [Π ◦Dφ(P2)] = Hν [DSf(Π ◦Dφ(P2))]

= Hν [DSf ◦Dφ(P2)]

= Hν [D(f ◦ φ)(P2)]

= Jν (f ◦ φ) · Hν [P2] . (5.28)
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We also have

J
(f◦φ)−1(z)
M−ν φ · HM−ν [P1] = HM−ν [Dφ(P1)] . (5.29)

Combining (5.28) and (5.29), using (5.27), and applying Lemma 5.3.5 again,
we obtain

Jν (f ◦ φ) · J (f◦φ)−1(z)
M−ν φ · HM−ν [P1] · Hν [P2]

= JS
ν f · HM−ν [Dφ(P1)] · Hν [Π ◦Dφ(P2)]

= JS
ν f · HM [(Dφ(P1)) × (Π ◦Dφ(P2))]

= JS
ν f · HM [(Dφ(P1)) × (Dφ(P2))]

= JS
ν f · HM [Dφ(P1 × P2)]

= JS
ν f · JM φ · HM [P1 × P2]

= JS
ν f · JM φ · HM−ν [P1] · Hν [P2]

and the result follows.

To end this section, we prove the coarea formula for C1 submanifolds. As
we shall see in the next section, the condition that f be C1 is not essential;
it suffices to assume that f is only Lipschitz.

Theorem 5.3.9 Suppose M ≥ ν and f : RN → Rν is C1. If S ⊆ RN is an
M -dimensional C1 submanifold, then

∫

S
g JS

ν f dHM =
∫

Rν

∫

S∩f−1(y)
g dHM−ν dHνy

for every HM -measurable function g.

Proof. It suffices to consider g ≡ 1 and S = φ(U) where φ : U → RN . By
Lemma 5.3.5 and Theorem 5.3.7, we have

∫

S
JS

ν f dHM =
∫

U
JS

ν f(x)JM φ(u) dLM

=
∫

Rν
Jν (f ◦ φ)J

(f◦φ)−1(z)
M−ν φdHM−ν dHνy
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=
∫

Rν

∫

U∩(f◦φ)−1(y)
J

(f◦φ)−1(z)
M−ν φdHM−ν dHνy

=
∫

Rν

∫

S∩f−1(y)
dHM−ν dHνy .

5.4 Rectifiable Sets

Definition 5.4.1 Let M be an integer with 1 ≤ M ≤ N . A set S ⊆ RN is
said to be countably M-rectifiable if S ⊆ S0

⋃(⋃∞
j=1 Fj(RM)

)
, where

(1) HM (S0) = 0;

(2) Fj : RM → RN are Lipschitz functions, j = 1, 2, . . ..

We will usually use countably M -rectifiable sets in conjunction with the
hypothesis of HM -measurability and the assumption that the intersection
with any compact set has finite Hausdorff measure.

Our terminology follows that of [Sim 83] rather than that of [Fed 69].
The distinction here is that we are allowing the set S0 with HM (S0) = 0, but
that set is excluded in [Fed 69].

It is easy to see that a Lipschitz function f : A → RN can be extended
to a Lipschitz function F : RM → R with Lip (F ) bounded by a constant
multiple4 of Lip (f). Thus condition (2) in Definition 5.4.1 is equivalent to
mandating that

S = S0
⋃



∞⋃

j=1

Fj(Sj)


 ,

where HM (S0) = 0, Sj ⊆ RM , and Fj : Sj → RN is Lipschitz. In practice
this is the way that we think of an M -rectifiable set.

Lemma 5.4.2 The set S is countably M -rectifiable (1 ≤ M) if and only
if S ⊆ ⋃∞

j=0 Tj, where HM (T0) = 0 and where each Tj for j ≥ 1 is an M -
dimensional, embedded C1 submanifold of RN .

4The deeper result that an RN -valued function on a subset of RM can be extended with-
out increasing the Lipschitz constant is Kirszbraun’s theorem (see [Fed 69] or [KPk 99]).
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Proof. The “if” direction of the result is trivial. For the “only if” part,
we use Theorem 5.1.12. Specifically, we select C1 functions h

(j)
1 , h

(j)
2 , . . . such

that, if Fj are Lipschitz functions as in Definition 5.4.1, then

Fj(RM ) ⊆ Ej
⋃
( ∞⋃

`=1

h
(j)
` (RM )

)
, j = 1, 2, . . . ,

where HM (Ej) = 0. Then set

C`j =
{
x ∈ RM : JM h

(j)
` (x) = 0

}
,

where JM h
(j)
` (x) denotes the M -dimensional Jacobian of h

(j)
` at x (see Defi-

nition 5.1.3), and define

T0 =




∞⋃

j=1

Ej


⋃




∞⋃

`,j=1

h
(j)
` (C`j)


 .

Theorem 5.1.1, the area formula, now tells us that HM
(⋃∞

`,j=1 h
(j)
` (C`j)

)
= 0

and hence HM (T0) = 0.

Because the open set RM \C`j consists only of points at which JM h
(j)
` is

nonvanishing, RM \C`j can be written as the union of countably many open

sets U`jk that may be chosen small enough that each T`jk = h
(j)
` (U`jk) is an

M -dimensional, embedded C1 submanifold of RN . Then we have

S ⊆ T0 ∪
∞⋃

`,j,k=1

T`jk ,

as required.

Proposition 5.4.3 If the set S is HM -measurable and countablyM -rectifiable
(M ≥ 1), then S =

⋃∞
j=0 Sj , where

(1) HM (S0) = 0,

(2) Si
⋂
Sj = ∅ if i 6= j,

(3) for j ≥ 1, Sj ⊆ Tj and Tj is an M -dimensional, embedded C1 subman-
ifold of RN .
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Proof. Let the Tj be as in Lemma 5.4.2. Define the Sj inductively by setting
S0 = S

⋂
T0 and Sj+1 = (S

⋂
Tj+1) \

⋃j
i=0 Si.

Definition 5.4.4 Let S ⊆ RN be HM -measurable with HM (S ∩ K) < ∞
for every compact K. We say that an M -dimensional linear subspace W of
RN is the approximate tangent space to S at x ∈ RN if

lim
λ→0+

∫

λ−1(S−x)
f(y) dHM (y) =

∫

W
f(y) dHM (y)

for all compactly supported continuous functions f . Here

y ∈ λ−1(S − x) ⇐⇒ λy + x ∈ S ⇐⇒ y = λ−1(z − x) for some z ∈ S .

Of course, if S is an M -dimensional C1 submanifold of RN , then the
approximate tangent space coincides with the usual tangent space arising
from the smooth structure. When S is not a C1 submanifold, there may
exist various exceptional points x of S for which there is a set W that is not
an M -dimensional linear subspace, but nonetheless ought to be considered a
tangent object for S at x—for example, at a vertex of a simplex. Even so, our
definition will be justified by the fact that, in the case when S is countably
M -rectifiable, the set of such exceptional points x has HM measure zero.

When the approximate tangent space to S at x exists, we will denote it
by TxS. For this convention, the dimension M should always be understood
to be the Hausdorff dimension of S.

Theorem 5.4.5 If S is HM -measurable and countably M -rectifiable and if
HM (S ∩ K) < ∞ holds for every compact K ⊆ RN , then TxS exists for
HM -almost every x ∈ S.

Proof. Write S as in Proposition 5.4.3 and consider j ≥ 1. By Corol-
lary 4.3.10, we have

Θ∗M [HM (S \ Sj), x] = 0

for HM -almost every x ∈ Sj. By Theorem 4.3.5, we have

lim
r↓0

HM [Sj
⋂B(x, r)]

HM [Tj
⋂B(x, r)]

= 1

for HM -almost every x ∈ Sj. Since Tj is an M -dimensional C1 submanifold
of RN , the result follows with TxS = TxTj.
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Definition 5.4.6 Suppose that S is HM -measurable and countablyM -rectifiable
and suppose that HM (S ∩K) < ∞ holds for every compact K ⊆ RN . Let
f : S → Rν. We define DSf and JS

K , K ≤ M , by writing S as in Proposi-
tion 5.4.3 and setting

DSf(x) = DTjf(x) ,

JS
K f(x) = J

Tj

K f(x)

whenever j ≥ 1 and the respective righthand side exists. We call DSf the
approximate differential of f and JS

K f the approximate K-dimensional Ja-
cobian of f . In case ν = 1, we similarly define the approximate gradient of f
∇Sf .

Now that the requisite definitions have been made, the area and coarea
formulas for countably M -rectifiable sets follow readily from the correspond-
ing results for C1 submanifolds.

Theorem 5.4.7 Suppose M ≤ ν and f : RN → Rν is Lipschitz. If S ⊆ RN

is HM -measurable and countably M -rectifiable and if HM (S∩K) <∞ holds
for every compact K ⊆ RN , then JS

M f exists HM -almost everywhere in S
and ∫

S
g JS

M f dHM =
∫

Rν
g(y) card(S ∩ f−1(y)) dHMy

holds, for every HM -measurable function g.

Proof. Write S as in Proposition 5.4.3 and apply Theorem 5.3.7.

Theorem 5.4.8 Suppose M ≥ ν and f : RN → Rν is Lipschitz. If S ⊆ RN

is HM -measurable and countably M -rectifiable and if HM (S∩K) <∞ holds
for every compact K ⊆ RN , then JS

ν f exists HM -almost everywhere in S
and ∫

S
g JS

ν f dHM =
∫

Rν

∫

S∩f−1(y)
g dHM−ν dHνy

holds, for every HM -measurable function g.

Proof. Write S as in Proposition 5.4.3 and, using Theorem 5.1.12 to ap-
proximate the Lipschitz map f by C1 maps, apply Theorem 5.3.7.
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5.5 Poincaré Inequalities

The Poincaré inequalities5 are like a weak version of the Sobolev inequali-
ties6 (see [Zie 89; Section 2.4] for an introduction to Sobolev inequalities).
They are of a priori interest, but they also are adequate for many of our
applications in geometric measure theory.

We shall require a bit of preliminary machinery in order to formulate and
prove the results that follow. In most partial differential equations texts, the
Poincaré inequalities are formulated for smooth testing functions. We must
have such inequalities for functions of bounded variation. So some extra
effort is required.

A function u on a domain U ⊆ RN is said to be of local bounded variation
on U , written u ∈ BVloc(U), if, for each W ⊂⊂ U there is a constant c =
c(W ) <∞ such that

∫

W
u(x) div g(x) dLN (x) ≤ c(W ) · sup |g| (5.30)

holds for all compactly supported, vector-valued, compactly supported func-
tions g = (g1, . . . gN ) with each gj ∈ C∞(W ). For convenience we denote
the space of such g by KW (U,RN). Then we see from (5.30) that the linear
functional

KW (U,RN) 3 g 7−→
∫

W
u(x) div g(x) dLN (x)

is bounded in the supremum norm. Thus the Riesz representation theorem
tells us that there is a Radon measure µ on U and a µ-measurable function
ν = (ν1, . . . , νN), with each |ν| = 1 almost everywhere, such that7

∫

U
u(x) div g(x) dLN (x) =

∫

U
g(x) · ν(x) dµ(x) .

In the language of distribution theory, the weak derivatives Dju of u are
represented by the signed measures νjdµ, j = 1, . . . , N . It is thus convenient
to denote the total variation measure8 µ by |Du|.

5Jules Henri Poincaré (1854–1912).
6Sergei Lvovich Sobolev (1908–1989).
7Of course the usual formulation of the Riesz theorem does not include the vector-

valued function ν. That function is necessitated by the fact that g is vector-valued. The
extension of Riesz’s theorem to the vector-valued case is routine.

8Indeed, if u ∈ W 1,1
loc (U ) then dµ = |Du|dLN and νj =

Dju

|Du|
provided |Du| 6= 0.
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Figure 5.3: The graph of a mollifier.

We will find it useful in our discussions to use Friedrichs mollifiers9 to
smooth our bounded variation functions.

Definition 5.5.1 We call ϕ a mollifier if (see Figure 5.3)

• ϕ ∈ C∞(RN );

• ϕ ≥ 0;

• suppϕ ⊆ B(0, 1);

•
∫

RN
ϕ(x) dx = 1;

• ϕ(x) = ϕ(−x).

For σ > 0 we set ϕσ(x) = σ−Nϕ(x/N). We call {ϕσ}σ>0 a family of mollifiers
or an approximation to the identity.

In case f ∈ L1
loc(RN) and σ > 0, we define

fσ(x) = f ∗ϕσ(x) =
∫

RN
f(z)ϕσ(x−z) dLN (z) =

∫

RN
f(x−z)ϕσ(z) dLN (z) .

(5.31)
Then fσ ∈ C∞ and fσ converges back to f in a variety of senses. In particular,
fσ → f pointwise almost everywhere and fσ → f in the L1

loc topology. In
case f is continuous then fσ converges uniformly on compact sets to f . The
reference [SW 71] contains details of these assertions.

We begin with a version of the Poincaré inequality for smooth functions.
If f is a Lebesgue measurable function and U is a subset of positive Lebesgue

9Kurt Otto Friedrichs (1901–1982).
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measure of the domain of f then we let

fU =
1

LN (U)

∫

U
f(t) dLN (T ) (5.32)

be the average of f over U .

Lemma 5.5.2 Let U be a bounded, convex, open subset of RN . Let f be a
continuously differentiable function on U . Then there is a constant c = c(U)
such that ∫

U
|f − fU | dLN ≤ c ·

∫

U
|Df | dLN .

Proof. We will use the notation |U | = LN (U). We calculate that
∫

U
|f − fU | dLN =

∫

U

∣∣∣∣∣f(x) − 1

|U |

∫

U
f(t) dLN (t)

∣∣∣∣∣ dL
N (x)

=
∫

U

∣∣∣∣∣
1

|U |

∫

U
f(x) − f(t) dLN (t)

∣∣∣∣∣ dL
N (x)

≤ 1

|U |

∫

U

∫

U
|f(x) − f(t)| dLN (x) dLN (t)

=
1

|U |

∫

U

∫

U

∣∣∣∣∣

∫ 1

0

d

ds
f((1 − s)t+ sx) ds

∣∣∣∣∣ dL
N (x) dLN (t)

≤ 1

|U |

∫

U

∫

U

∫ 1

0
|Df((1 − s)t+ sx)| · |x− t| ds dLN (x) dLN (t)

≤ diam (U) · 1

|U |

∫

U

∫

U

∫ 1

0
|Df((1 − s)t+ sx)| ds dLN (x) dLN (t)

= diam (U) · 1

|U |

∫

U

∫

U

∫ 1/2

0
|Df((1 − s)t+ sx)| ds dLN (x) dLN (t)

+ diam (U) · 1

|U |

∫

U

∫

U

∫ 1

1/2
|Df((1 − s)t+ sx)| ds dLN (x) dLN (t)

= diam (U) · 1

|U |

∫

U

∫ 1/2

0

∫

U
|Df((1 − s)t+ sx)| dLN (t) ds dLN (x)

+ diam (U) · 1

|U |

∫

U

∫ 1

1/2

∫

U
|Df((1 − s)t+ sx)| dLN (x) ds dLN (t) .



5.5. POINCARÉ INEQUALITIES 155

For 1/2 ≤ s ≤ 1 we have
∫

U
|Df((1 − s)t+ sx)| dLN (x) =

∫

Û
|Df(x̂)| s−N dLN (x̂)

where
Û = {(1 − s)t+ sx : x ∈ U} .

Observing that Û ⊆ U , we obtain
∫

Û
|Df(x̂)| s−N dLN (x̂) ≤ s−N ‖Df‖L1(U) ≤ 2N ‖Df‖L1(U) .

Similarly, for 0 ≤ s ≤ 1/2 we have
∫

U
|Df((1 − s)t+ sx)| dLN (t) ≤ 2N ‖Df‖L1(U) .

We conclude that
∫

U
|f − fU | dLN ≤ diam(U) · 1

|U | · 2N ‖Df‖L1(U)

∫

U
dLN

= 2N diam(U) ‖Df‖L1(U) .

Remark 5.5.3 Observe that we used the convexity property of U in order
to invoke the fundamental theorem of calculus in line 4 of the calculation.
In fact, with extra effort, a result may be proved on a smoothly bounded
domain. One then instead uses a piecewise linear curve with the fundamental
theorem.

Next we wish to replace the average fU in the statement of the lemma
with a more arbitrary constant.

Lemma 5.5.4 Let β ∈ R and 0 < θ < 1 be constants. Let f and U be as
in Lemma 5.5.2, and let fU be as in (5.32). Assume that

LN {x ∈ U : f(x) ≥ β} ≥ θLN (U)

and
LN {x ∈ U : f(x) ≤ β}| ≥ θLN (U) .

Then there is a constant C = C(θ) such that
∫

U
|f(x) − β| dLN (x) ≤ θ−1(1 + θ) ·

∫

U
|f(x) − fU | dLN (x) .
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Proof. We write

U+ = {x ∈ U : f(x) ≥ β} , U− = {x ∈ U : f(x) ≤ β} .

First we shall prove that
∫

U
|fU − β| dLN ≤ C ·

∫

U
|f(x) − fU | dLN (x) .

We consider two cases:

(1) First we treat the case β > fU . Then we have
∫

U
|fU − β| dLN =

∫

U
(β − fU) dLN

= LN (U) · (β − fU)

≤ LN (U) ·
[(

1

LN (U+)

∫

U+

f(x) dLN (x)

)
− fU

]

= LN (U) ·
(

1

LN (U+)

∫

U+

(f(x) − fU ) dLN (x)

)
.

Now, on the set where f > β we certainly have, since β > fU , that
f > fU . Therefore the last line is (by our hypotheses about θ and β)

≤ C ·
∫

U
|f(x) − fU | dLN (x) .

Thus ∫

U
|fU − β| dLN ≤ C ·

∫

U
|f(x) − fU | dLN (x) .

(2) Now we treat the case β ≤ fU . Then we have
∫

U
|fU − β| dLN =

∫

U
(fU − β) dLN

≤ LN (U) ·
(
fU − 1

LN (U−)

∫

U−
f(x) dLN (x)

)

= LN (U) ·
(

1

LN (U−)

∫

U−
(fU − f(x)) dLN (x)

)
.
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Now clearly f ≤ β ≤ fU on U−. So we may estimate the last line, in
view of our hypotheses about θ and β, by

C ·
∫

U
|fU − f(x)| dLN (x) .

Now we have the simple estimates
∫

U
|f(x) − β| dLN (x) ≤

∫

U
|f(x) − fU | dLN (x) +

∫

U
|fU − β| dLN (x)

≤
∫

U
|f(x) − fU | dLN (x) + C ·

∫

U
|f(x) − fU | dLN (x) .

That is the desired result.

Theorem 5.5.5 Let U be a bounded, convex, open subset of RN . Let β, θ
be as in Lemma 5.5.4. Let f be a continuously differentiable function on U .
Then ∫

U
|f − β| dLN ≤ c ·

∫

U
|Df | dLN .

Proof. Combine the two lemmas.

Theorem 5.5.6 Let U be a bounded, convex, open subset of RN . Let β, θ
be as in Lemma 5.5.4. Let u be a function of bounded variation on U . Then

∫

U
|u− β| dLN ≤ c ·

∫

U
|Du| .

Proof. Use a standard approximation argument to reduce the result to the
preceding theorem.

Our next Poincaré inequality mediates between the support of a function
on RN and the natural domain of support U . Of course the boundary of U
will play a key role in the result.

Theorem 5.5.7 Let U ⊆ RN be a bounded, open, and convex domain. If
u ∈ BVloc(RN ) with spt u ⊆ U , then there is a constant c = c(U) such that

∫

RN
|Du| dLN ≤ c ·

(∫

U
|Du| +

∫

U
|u| dLN

)
.
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a

x

Figure 5.4: The point a representing the middle of the set U .

Proof. For δ > 0 small, set Uδ = {x ∈ U : dist(x, ∂U) > δ}. Let φδ be a
compactly supported C∞ function satisfying

(1) φδ = 1 in Uδ;

(2) φδ = 0 in RN \ Uδ/2;

(3) 0 ≤ φδ ≤ 1 in RN ;

(4) for some point a ∈ U and some c = c(U, a) > 0,

|Dφδ(x)| ≤ −c · (x− a) ·Dφδ(x) for all x ∈ U .

Condition (4) is perhaps unfamiliar, and merits some discussion. The point
a should be thought of as lying in the “middle” of U , and its existence as
mandated in (4) is simply a manifestation of the starlike quality of U (see
Figure 5.4). The effect of the boundary of U will be expressed via the value
of c(U, a) in condition (4).

We now apply the definition of |Dw| with w = φδ · u to obtain
∫

RN
|D(φδ · u)| dLN ≤

∫

RN
|Dφδ| · |u| dLN +

∫

RN
φδ · |Du| . (5.33)

Property (4) of the function φδ tells us that
∫

RN
|Dφδ| · |u| dLN ≤ −c

∫

RN
[(x− a) ·Dφδ] · |u| dLN (x) .

Notice that

−
∫

RN
div [(x− a) · φδ] · |u| dLN = −

∫

RN
N · φδ · |u| + (x− a) ·Dφδ · |u| dLN .
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Here we have used the fact that div (x− a) = N . Thus we see that

∫

RN
−div [(x− a) · φδ] · |u| +Nφδ|u| dLN =

∫

RN
(x− a) ·Dφδ · |u| dLN .

In conclusion,

∫

RN
|Dφδ| · |u| dLN ≤ c ·

∫

RN
(−|u| · div ((x− a)φδ) +N |u|φδ dLN (x) .

This last is majorized by

c
(∫

U
|D|u| | +

∫

RN
|u| dLN

)
≤ c

(∫

U
|Du| dLN +

∫

RN
|u| dLN

)
. (5.34)

Here we have used the definition of |D|u| | and the fact that |D|u| | ≤ |Du|
by a standard approximation argument.

Now it is not difficult to verify that

∫

RN
|Du| dLN ≤ lim inf

δ→0+

∫

RN
|D(φδu)| . (5.35)

The result follows by combining (5.33), (5.34), and (5.35).
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Chapter 6

The Calculus of Differential
Forms and Stokes’s Theorem

6.1 Differential Forms and Exterior Differen-

tiation

Multilinear Functions and m-Covectors
The dual space of RN is very useful in the formulation of line integrals

(see Appendices A.2 and A.3), but to define surface integrals we need to go
beyond the dual space to consider functions defined on ordered m-tuples of
vectors.

Definition 6.1.1 Let (RN )m be the cartesian product of m copies of RN .

(1) A function φ : (RN )m → R is m-linear if it is linear as a function of
each of its m arguments; that is, for each 1 ≤ ` ≤ m, it holds that

φ(u1, . . . , u`−1, αu+ βv, u`+1, . . . , um)

= α φ(u1, . . . , u`−1, u, u`+1, . . . , um)

+ β φ(u1, . . . , u`−1, v, u`+1, . . . , um) ,

where α, β ∈ R and u, v, u1, . . . , u`−1, u`+1, . . . , um ∈ RN . The more
inclusive term multilinear means m-linear for an appropriate m.

(2) A function φ : (RN)m → R is alternating if interchanging two argu-
ments results in a sign change for the value of the function; that is, for

161
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1 ≤ i < ` ≤ m, it holds that

φ(u1, . . . , ui−1, ui, ui+1, . . . , u`−1, u`, u`+1, . . . , um)

= − φ(u1, . . . , ui−1, u`, ui+1, . . . , u`−1, ui, u`+1, . . . , um) ,

where u1, . . . , um ∈ RN .

(3) We denote by
∧m (RN ) the set of m-linear, alternating functions from

(RN )m to R. We endow
∧m (RN) with the usual vector space operations

of addition and scalar multiplication, namely,

(φ+ ψ)(u1, u2, . . . , um) = φ(u1, u2, . . . , um) + ψ(u1, u2, . . . , um)

and
(αφ)(u1, u2, . . . , um) = α · φ(u1, u2, . . . , um) ,

so
∧m (RN ) is itself a vector space. The elements of

∧m (RN) are called
m-covectors of RN .

Remark 6.1.2

(1) In case m = 1, requiring a map to be alternating imposes no restriction;
also, 1-linear is the same as linear. Consequently, we see that

∧1 (RN)
is the dual space of RN ; that is,

∧1 (RN) = (RN )∗.

(2) Recalling that the standard basis for RN is written e1, e2, . . ., eN , we
let e∗

i denote the dual of ei defined by

〈 e∗
i , ej 〉 =

{
1 if j = i,
0 if j 6= i.

Then e∗
1, e∗

2, . . ., e∗
N form the standard dual basis for (RN )∗.

(3) If x1, x2, . . ., xN are the coordinates in RN , then it is traditional use
alternative notation dxi to denote the dual of ei; that is,

dxi = e∗
i , for i = 1, 2, . . . , N .

Example 6.1.3 The archetypical multilinear, alternating function is the de-
terminant. As a function of its columns (or rows), the determinant of an
N -by-N matrix is N -linear and alternating. It is elementary to verify that
every element of

∧N (RN ) is a real multiple of the determinant function.
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The next definition shows how we can extend the use of determinants to
define examples of m-linear, alternating functions when m is strictly smaller
than N .

Definition 6.1.4 Let a1, a2, . . . , am ∈ ∧1 (RN ) be given. Each ai can be
written

ai = ai 1 dx1 + ai2 dx2 + · · · + ai N dxN .

We define a1 ∧ a2 ∧ · · · ∧ am ∈ ∧m(RN ), called the exterior product of
a1, a2, . . . , am, by setting

(a1 ∧ a2 ∧ · · · ∧ am)(u1, u2, . . . , um)

= det







a11 a12 . . . a1N

a21 a22 . . . a2N
...

...
...

am 1 am 2 . . . am N







u11 u12 . . . u1 m

u21 u22 . . . u2 m
...

...
...

uN 1 uN 2 . . . uN m






, (6.1)

where the ui j are the components of the vectors u1, u2, . . . , um ∈ RN ; that is
each uj is given by

uj = u1 j e1 + u2 j e2 + · · · uN j eN .

To see that the function in (6.1) is m-linear and alternating, rewrite it in
the form

(a1 ∧ a2 ∧ · · · ∧ am)(u1, u2, . . . , um)

= det




〈a1, u1〉 〈a1, u2〉 . . . 〈a1, um〉
〈a2, u1〉 〈a2, u2〉 . . . 〈a2, um〉

...
...

...
〈am, u1〉 〈am, u2〉 . . . 〈am, um〉



, (6.2)

where 〈ai, uj〉 is the dual pairing of ai and uj (see Section A.150).
Elements of

∧mRN that can be written in the form a1 ∧ a2 ∧ · · · ∧ am are
called simple m-covectors.

Recall that
∧

m (RN) is the space of m-vectors in RN defined in Sec-
tion 1.4. It is easy to see that any element of

∧m (RN) is well-defined on∧
m (RN) (just consider the equivalence relation in Definition 1.4.1). Thus∧m (RN) can be considered the dual space of

∧
m (RN). Evidently

dxi1 ∧ dxi2 ∧ · · · ∧ dxim , 1 ≤ i1 < i2 < · · · < im ≤ N , (6.3)



164 DIFFERENTIAL FORMS AND STOKES’S THEOREM

is the dual basis to the basis

ei1 ∧ ei2 ∧ · · · ∧ eim , 1 ≤ i1 < i2 < · · · < im ≤ N ,

for
∧

m (RN ).

Differential Forms

Definition 6.1.5 Let W ⊂ RN be open. A differential m-form on W is
a function φ : W → ∧m (RN). We call m the degree of the form. We
say that the differential m-form φ is Ck if, for each set of (constant) vectors
v1, v2, . . . , vm, the real-valued function 〈φ(p), v1∧v2∧. . .∧vm〉 is a Ck function
of p ∈ W .

The differential form can be rewritten in terms of a basis and component
functions as follows: For each m-tuple 1 ≤ i1 < i2 < · · · < im ≤ N , define
the real-valued function

φi1,i2,...,im(p) = 〈φ(p), ei1 ∧ ei2 ∧ · · · ∧ eim〉 .

Then we have

φ =
∑

1≤i1<i2<···<im≤N

φi1 ,i2,...,im dxi1 ∧ dxi2 ∧ · · · ∧ dxim .

The natural role for a differential m-form is to serve as the integrand
in an integral over an m-dimensional surface. This is consistent with and
generalizes integration of a 1-form along a curve.

Definition 6.1.6 Let

(1) the m-dimensional surface S ⊆ RN be parametrized by the function
F : U → RN , where U is an open subset of Rm, that is, F is a one-to-
one Ck, k ≥ 1, function, DF is of rank m, and S = F (U),

(2) W ⊆ RN be open with F (U) ⊆ W , and

(3) φ be a differential m-form on W .

Then the integral of φ over S is defined by

∫

S
φ =

∫

U

〈
φ ◦ F (t),

∂F

∂t1
∧ ∂F

∂t2
∧ · · · ∧ ∂F

∂tm

〉
dLm(t) (6.4)

whenever the righthand side of (6.4) is defined.
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The surface S in Definition 6.1.6 is an oriented surface for which the
orientation is induced by the orientation on Rm and the parametrization F .
The value of the integral is unaffected by a reparametrization as long as the
reparametrization is orientation preserving.

Exterior Differentiation
In Appendix A.3 one can see how the exterior derivative of a function

allows the fundamental theorem of calculus to be applied to the integrals of
1-forms along curves. The exterior derivative of a differential form, which
we discuss next, is the mechanism that allows the fundamental theorem of
calculus to be extended to higher dimensional settings.

Definition 6.1.7 Suppose that U ⊂ RN is open and f : U → R is a Ck

function, k ≥ 1.

(1) The exterior derivative of f is the 1-form df on U defined by setting

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 + · · · +

∂f

∂xN
dxN . (6.5)

Note that (6.5) is equivalent to

〈df(p), v〉 = 〈Df(p), v〉 , (6.6)

for p ∈ U and v ∈ RN .

(2) The exterior derivative of the m-form φ = f dxi1 ∧ dxi2 ∧ . . . ∧ dxim ,
m ≥ 1, is the (m+ 1)-form dφ given by setting

dφ = (df) ∧ dxi1 ∧ dxi2 ∧ . . . ∧ dxim .

(3) The definition of exterior differentiation in (2) is extended by linearity
to all Ck m-forms, m ≥ 1.

The rules analogous to those for ordinary derivatives of sums and products
of functions are given in the next lemma.

Lemma 6.1.8 Let φ and ψ be C1 m-forms and let θ be a C1 `-form. It
holds that

(1) d(φ+ ψ) = (dφ) + (dψ),
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(2) d(φ ∧ θ) = (dφ) ∧ θ + (−1)mφ ∧ (dθ).

Proof.
(1) Equation (1) follows immediately from Definition 6.1.7(3).

(2) Note that in case m = 0, equation (2) reduces to Definition 6.1.7(2) and
the usual product rule. Now suppose that m ≥ 1, φ = f dxi1∧dxi2∧. . .∧dxim ,
and θ = g dxj1 ∧ dxj2 ∧ . . . ∧ dxj`

. Using Definition 6.1.7(2), we compute

d(φ ∧ θ) = d(fg) dxi1 ∧ dxi2 ∧ . . . ∧ dxim ∧ dxj1 ∧ dxj2 ∧ . . . ∧ dxj`

= [(df) g + f (dg)] dxi1 ∧ dxi2 ∧ . . . ∧ dxim ∧ dxj1 ∧ dxj2 ∧ . . . ∧ dxj`

= [(df) ∧ dxi1 ∧ dxi2 ∧ . . . ∧ dxim] ∧ [g dxj1 ∧ dxj2 ∧ . . . ∧ dxj`
]

+ (−1)m[f dxi1 ∧ dxi2 ∧ . . . ∧ dxim] ∧ [(dg) ∧ dxj1 ∧ dxj2 ∧ . . . ∧ dxj`
]

= (dφ) ∧ θ + (−1)mφ ∧ (dθ) .

In contrast to the situation for ordinary derivatives of functions, repeated
exterior differentiations result in a trivial form.

Theorem 6.1.9 If the differential m-form φ : U → ∧m (RN ) is Ck, k ≥ 2,
then d dφ = 0 holds.

Proof. For m = 0, φ is a real-valued function, so we have

d dφ =
∑

j 6=i

∑

i

∂

∂xj

(
∂φ

∂xi

)
dxj ∧ dxi

=
∑

i<j

[
∂

∂xi

(
∂φ

∂xj

)
− ∂

∂xj

(
∂φ

∂xi

)]
dxi ∧ dxj = 0 .

For m ≥ 1 and φ = f dxi1 ∧ dxi2 ∧ . . . ∧ dxim, we have

d dφ =
∑

j 6=i
j /∈{i1,i2,...,im}

∑

i/∈{i1,i2,...,im}

∂

∂xj

(
∂f

∂xi

)
dxi1 ∧ dxi2 ∧ . . . ∧ dxim

=
∑

i<j
i,j /∈{i1,i2,...,im}

[
∂

∂xi

(
∂f

∂xj

)
− ∂

∂xj

(
∂f

∂xi

)]
dxi1 ∧ dxi2 ∧ . . . ∧ dxim

= 0 .
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The result now follows from the linearity of exterior differentiation.

Definition 6.1.10

(1) An m-form φ is said to be closed if dφ = 0.

(2) An m-form φ is said to be exact if there exists an (m− 1)-form ψ such
that dψ = φ.

Remark 6.1.11 Theorem 6.1.9 tells us that every exact form is closed. It is
not the case that every closed form is exact. In fact, the distinction between
closed forms and exact forms underlies the celebrated theorem of Georges de
Rham relating the geometrically defined singular cohomology of a smooth
manifold to the cohomology defined by differential forms (see [DeR 31] or
Theorem 29A in Chapter IV of [Whn 57]).

6.2 Stokes’s Theorem

Motivation
Stokes’s1 theorem expresses the equality of the integral of a differential form
over the boundary of a surface and the integral of the exterior derivative
of the form over the surface itself. The simplest instance of this equality is
found in the part of the fundamental theorem of calculus that assures us that
the difference between the values of a (continuously differentiable) function
at the endpoints of an interval is equal to the integral of the derivative of the
function over that interval—here the interval plays the role of the surface and
the endpoints form the boundary of that surface. In fact, Stokes’s theorem
can be considered the higher-dimensional generalization of the fundamental
theorem of calculus.

Oriented Rectangular Solids in R
In order to state Stokes’s theorem, one needs to define the oriented geo-

metric boundary of an m-dimensional surface. In fact, the general definitions
are designed so that the proof of Stokes’s theorem can reduced to the special
case of a nicely bounded region in RN , indeed, to the even more special case
of a rectangular solid that has its faces parallel to the coordinate hyperplanes.

1George Gabriel Stokes (1819–1903).
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The space RN itself is oriented by the unit N -vector e1∧e2 · · ·∧eN . The
orientation of a Lebesgue measurable subset of RN will be induced by the
orientation of RN as described in the next definition.

Definition 6.2.1 Let U ⊆ RN be LN -measurable, and let ω be a continuous
differential N -form defined on U .

(1) The integral of ω over U is defined by setting
∫

U
ω =

∫

U
〈ω(x), e1 ∧ e2 ∧ · · · ∧ eN 〉 dLN (x) . (6.7)

Note that, on the lefthand side of (6.7), U denotes the oriented set,
while on the righthand side U denotes the set of points. On the lefthand
side of (6.7), U is deemed to have the positive orientation given by the
unit N -vector e1 ∧ e2 ∧ · · · ∧ eN . One must recognize from the context
which meaning of U is being used. In Chapter 7, we will introduce a
notation that allows us to explicitly indicate when U is to be considered
an oriented set.

(2) If U is to be given the opposite, or negative, orientation, the resulting
oriented set will be denoted by −U . We define

∫

−U
ω =

∫

U
−〈ω(x), e1 ∧ e2 ∧ · · · ∧ eN〉 dLN (x) (6.8)

Definition 6.2.1 gives us a broadly applicable definition for an oriented set
of top dimension. The matter is much more difficult for lower dimensional
sets.

A lower dimensional case that is straightforward is that of a singleton set
consisting of the point p ∈ RN . The point itself will be considered to be
positively oriented. A 0-form is simply a function and the “integral” over p
is evaluation at p. Traditionally, evaluation at a point is called a Dirac delta
function,2 so we will use the notation

δp(f) = f(p)

for any real-valued function whose domain includes p.
The next definition will specify a choice of orientation for an (N − 1)-

dimensional rectangular solid in RN that is parallel to a coordinate hyper-
plane.

2Paul Adrien Maurice Dirac (1902–1984).
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Definition 6.2.2 Suppose that N ≥ 2.

(1) An (N − 1)-dimensional rectangular solid, parallel to a coordinate hy-
perplane in RN , is a set of the form

F = [a1, b1] × · · · × [ai−1, bi−1] × {c} × [ai+1, bi+1] × · · · × [aN , bN ] ,

where ai < bi for i = 1, . . . , i− 1, i+ 1, . . . , N .

(2) The (N − 1)-dimensional rectangular solid F ⊆ RN will be oriented by
the (N − 1)-vector

êi =
∧

j 6=i

ej = e1 ∧ · · · ∧ ei−1 ∧ ei+1 ∧ · · · ∧ eN .

(3) Let ω be a continuous (N − 1)-form defined on F . The integral of ω
over F is defined by

∫

F
ω =

∫

F
〈ω(x), êi〉 dHN−1(x) .

Similarly, the integral of ω over −F is defined by
∫

−F
ω =

∫

F
−〈ω, êi〉 dHN−1 .

Note that
∫
−F ω = −

∫
F ω holds.

(4) For a formal linear combination of (N − 1)-dimensional rectangular
solids as described in (1), ∑

α`F` , (6.9)

we define ∫
∑

α`F`

ω =
∑

α`

∫

F`

ω . (6.10)

We can now define the oriented boundary of the rectangular solid in RN

that has its faces parallel to the coordinate hyperplanes.

Definition 6.2.3 Let

R = [a1, b1] × [a2, b2] × · · · × [aN , bN ] ,

where ai < bi, for i = 1, 2, . . . , N .
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(1) If N ≥ 2, then, for i = 1, 2, . . . , N , set

R+
i = [a1, b1] × · · · × [ai−1, bi−1] × {bi} × [ai+1, bi+1] × · · · × [aN , bN ] ,

R−
i = [a1, b1] × · · · × [ai−1, bi−1] × {ai} × [ai+1, bi+1] × · · · × [aN , bN ] .

In case N = 1, set R+
1 = δb1 and R−

1 = δa1.

(2) The oriented boundary of R, denoted by ∂OR to distinguish it from the
topological boundary, is the formal sum

∂OR =





δb1 − δa1 if N ≥ 1 ,

N∑

i=1

(−1)i−1
(
R+

i −R−
i

)
if N ≥ 2 .

Stokes’s Theorem on a Rectangular Solid
We now state and prove the basic form of Stokes’s theorem.

Theorem 6.2.4 Let

R = [a1, b1] × [a2, b2] × · · · × [aN, bN ]

where ai < bi, for i = 1, 2, . . . , N . If φ is a Ck, k ≥ 1, (N − 1)-form on an
open set containing R, then it holds that

∫

R
dφ =

∫

∂OR
φ .

Proof. For N = 1, the result is simply the fundamental theorem of calculus,
so we will suppose that N ≥ 2.

Write

φ =
N∑

i=1

φi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN .

It suffices to prove that
∫

R
d(φi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN )

=
∫

∂OR
(φi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN )

holds for each 1 ≤ i ≤ N.
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Fix an i between 1 and N . We compute

d(φi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN )

= (dφi) dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN

=
N∑

j=1

∂φi

∂xj
dxj ∧ dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN

=
∂φi

∂xi

dxi ∧ dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN

=
∂φi

∂xi
(−1)i−1 dx1 ∧ · · · ∧ dxi−1 ∧ dxi ∧ dxi+1 ∧ · · · ∧ dxN ,

so we have∫

R
d(φi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN)

=
∫

R
(−1)i−1∂φi

∂xi

〈dx1 ∧ dx2 ∧ · · · ∧ dxN , e1 ∧ e2 ∧ · · · eN 〉 dLN

= (−1)i−1
∫

R

∂φi

∂xi
dLN .

By applying Fubini’s theorem to evaluate
∫
R(∂φi/∂xi) dLN , we obtain

∫

R

∂φi

∂xi
dLN

=
∫

[a1,b1]×···×[ai−1,bi−1 ]×[ai+1,bi+1 ]×···×[aN ,bN ]

(∫ bi

ai

∂φi

∂xi
dL1(xi)

)
dLN−1

=
∫

[a1,b1]×···×[ai−1,bi−1 ]×[ai+1,bi+1 ]×···×[aN ,bN ]
φi|xi=bi

dLN−1

−
∫

[a1,b1]×···×[ai−1,bi−1 ]×[ai+1,bi+1 ]×···×[aN ,bN ]
φi|xi=ai

dLN−1

=
∫

R+
i

φi dHN−1 −
∫

R−
i

φi dHN−1 .

We conclude that∫

R
d(φi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN )
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= (−1)i−1

(∫

R+
i

φi dHN−1 −
∫

R−
i

φi dHN−1

)
. (6.11)

On the other hand, we compute
∫

∂OR
φi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN

=
N∑

j=1

(−1)j−1
∫

R+
j

φi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN

−
N∑

j=1

(−1)j−1
∫

R−
j

φi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN

=
N∑

j=1

(−1)j−1
∫

R+
j

φi 〈dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN , êj〉 dHN−1

−
N∑

j=1

(−1)j−1
∫

R−
j

φi 〈dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN , êj〉 dHN−1

= (−1)i−1

(∫

R+
i

φi dHN−1 −
∫

R−
i

φi dHN−1

)
. (6.12)

Since (6.11) and (6.12) agree, we have the result.

The Gauss–Green Theorem
A vector field on an open set U ⊆ RN is a function V : U → RN . The

component functions Vi, i = 1, 2, . . . , N , are defined by setting

Vi(x) = V (x) · ei ,

so we have V =
∑N

i=1 Vi ei. We say V is Ck if the component functions are
Ck. The divergence of V , denoted divV is the real-valued function

divV =
N∑

i=1

∂Vi

∂xi
.

Given an (N − 1)-form φ in RN we can associate with it a vector field V
by the following means: If φ is written

φ =
N∑

i=1

φi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN ,
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then set

V =
N∑

i=1

(−1)i−1 φi ei .

Direct calculation shows that

dφ = (divV ) dx1 ∧ dx2 ∧ · · · ∧ dxN

holds. One can also verify that

∫

∂OR
φ =

∫

∂R
V · n dHN−1

holds, where n is the outward pointing unit vector orthogonal to the topo-
logical boundary ∂R. We call n the outward unit normal vector.

By converting the statement of Theorem 6.2.4 about integrals of forms
into the corresponding statement about vector fields, one obtains the follow-
ing result, called the Gauss–Green theorem3 or the divergence theorem:

Corollary 6.2.5 If V is a C1 vector field on an open set containing R, then

∫

R
divV dLN =

∫

∂R
V · n dHN−1 .

By piecing together rectangular solids and estimating the error at the
boundary, one can prove a more general version of Theorem 6.2.4 or of Corol-
lary 6.2.5. Thus we have the following result.

Theorem 6.2.6 Let A ⊆ RN be a bounded open set with C1 boundary, and
let n(x) denote the outward unit normal to ∂A at x. If V is a C1 vector field
defined on A, then

∫

A
divV dLN =

∫

∂A
V · n dHN−1 .

Theorem 6.2.6 is by no means the most general result available. The
reader should see [Fed 69; 4.5.6] for an optimal version of the Gauss–Green
theorem.

3Johann Carl Friedrich Gauss (1777–1855), George Green (1793–1841).
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The Pullback of a Form

Definition 6.2.7 Suppose that U ⊆ RN is open and F : U → RM is Ck,
k ≥ 1. Fix a point p ∈ U . If the differential m-form φ is defined at F (p), then
the pullback of φ is the m-form, defined at p, denoted by F#φ and evaluated
on v1, v2, . . . , vm by setting

〈F#φ(p), v1 ∧ v2 ∧ . . .∧ vm〉 = 〈φ[F (p)],Dv1F ∧Dv2F ∧ . . .∧DvmF 〉 , (6.13)

where we use the notation

DviF = 〈DF, vi〉 ,

for i = 1, 2, . . . ,m. In case m = 0, (6.13) reduces to F#φ = φ ◦ F .

The next theorem tells us that the operations of pullback and exterior
differentiation commute. This seems like an insignificant observation, but in
fact, it is key to generalizing Stokes’s theorem, Theorem 6.2.4.

Theorem 6.2.8 Suppose that U ⊆ RN is open and F : U → RM is Ck,
k ≥ 2. Fix a point p ∈ U . If the differential m-form φ is defined and Ck,
k ≥ 2, in a neighborhood of F (p), then

dF#φ = F#dφ (6.14)

holds at p.

Proof. First we consider the case m = 0 in which F#φ = φ◦F . Fix v ∈ RN .
Using the chain-rule and (6.6), we compute

〈dF#φ, v〉 = 〈d[φ ◦ F ], v〉 = 〈D[φ ◦ F ], v〉

= 〈Dφ[F (p)], 〈DF, v〉〉 = 〈dφ[F (p)], 〈DF, v〉〉 .

The most efficient argument to deal with the casem ≥ 1 is to first consider
a 1-form φ that can be written as an exterior derivative; that is, φ = dψ for
a 0-form ψ. Then we have

d(F#φ) = d(F#dψ) = d(dF#ψ) = 0 = F#(d dψ) = F#(dφ) .
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Lemma 6.1.8 allows us to see that the set of forms satisfying (6.14) is closed
under addition and exterior multiplication. The general case then follows
by addition and exterior multiplication of 0-forms and exterior derivatives of
0-forms.

In Appendix A.4, the reader can see an alternative argument that is less
elegant, but which reveals the inner workings of interchanging a pullback and
an exterior differentiation.

Stokes’s Theorem
Let R be a rectangular solid in RN . If U is open with R ⊆ U ⊆ RN

and F : U → RM is one-to-one and Ck, k ≥ 1, then the F -image of R is an
N -dimensional Ck surface parametrized by F . We denote this surface by

F#R .

This definition extends to formal sums by setting F#

[∑
α Rα

]
=
∑

α F#Rα.

In Definition 6.1.6, we gave a definition for the integral of a differential
form over a surface. The next lemma gives us another way of looking at that
definition.

Lemma 6.2.9 If ω is a continuous N -form defined in a neighborhood of
F (R), then ∫

F#R
ω =

∫

R
F#ω .

Proof. By Definition 6.1.6, we have

∫

F#R
ω =

∫

R

〈
ω ◦ F (t),

∂F

∂t1
∧ ∂F

∂t2
∧ · · · ∧ ∂F

∂tN

〉
dLN (t) .

Observing that
∂F

∂ti
= 〈DF, ei〉 ,

for i = 1, 2, . . . , N , we see that

∂F

∂t1
∧ ∂F

∂t2
∧ · · · ∧ ∂F

∂tN
= 〈DF, e1〉 ∧ 〈DF, e2〉 ∧ · · · ∧ 〈DF, eN〉

=
〈
F#ω, e1 ∧ e2 ∧ · · · ∧ eN

〉
,
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and the result follows.

The boundary of a smooth surface is usually defined by referring back to
the space of parameters. That is our motivation for the next definition.

Definition 6.2.10 The oriented boundary of F#R will be denoted by ∂
O
F#R

and is defined by

∂
O
F#R =

N∑

i=1

(−1)i−1
(
F#R+

i − F#R−
i

)
= F#∂O

R .

Some explanation of this definition is called for because F#R+
i and F#R−

i

do not quite fit our earlier discussion. Recall that R+
i and R−

i lie in planes
parallel to the coordinate hyperplanes, so F restricted to either R+

i or R−
i

can be thought of as a function on RN−1. Note that both R+
i and R−

i are
oriented in a manner consistent with this interpretation.

We are now in a position to state and prove a general version of Stokes’s
theorem.

Theorem 6.2.11 (Stokes’s Theorem) Let R be a rectangular solid in
RN . Suppose that U is open with R ⊆ U ⊆ RN and that F : U → RM is
one-to-one and Ck, k ≥ 1, with DF of rank N at every point of U . If ω is a
Ck, k ≥ 2, (N − 1)-form defined on F (R), then

∫

F#R
dω =

∫

∂OF#R
ω .

Proof. We compute
∫

F#R
dω =

∫

R
F#(dω) =

∫

R
d(F#ω)

=
∫

∂OR
F#ω =

∫

F#∂OR
ω =

∫

∂OF#R
ω .

Notice that, while the other equalities in the in the proof of the theorem
are true by definition, the second equality requires the interchange of the
pullback and the exterior derivative (Theorem 6.2.8) and the third equality
is the basic version of Stokes’s theorem (Theorem 6.2.4).

As was true for the earlier version of Stokes’s theorem (Theorem 6.2.4)
and for the Gauss–Green theorem (Corollary 6.2.5), a more general version
of Theorem 6.2.11 may be obtained by piecing together patches of surface.
Since the theory of currents gives a still more general expression to Stokes’s
theorem, we will defer further discussion of Stokes’s theorem until we have
introduced the language of currents.



Chapter 7

Introduction to Currents

In the traditional setup (see our Chapter 6), a differential form is a smooth
function that assigns to each point of space a covector. For the purposes of
integration on smooth surfaces, de Rham cohomology,1 and other standard
applications of geometric analysis, differential forms with smooth coefficients
are the perfect device. But, for applications in geometric measure theory
and certain areas of partial differential equations, something more general is
needed. In particular, differential forms in the raw (as just described) are
not convenient for limit processes. Thus was born the theory of currents.
The earliest provenance of currents occurs in [Sch 51] and [deR 55]; but the
theory only came into its own in [FF 60] and later works. See [Fed 69] for a
complete bibliography as of that writing.

Intuitively, a current is a differential form with coefficients which are
distributions. [The rigorous definition of current is a bit more technical; this
intuitive definition will suffice for our introductory remarks.] It will turn out,
for example, that integration over a rectifiable set, with suitable orientation,
can be thought of as a current. However, it cannot be thought of as a
traditional differential form.

The main advantage of the space of currents is that it possesses useful
compactness properties. Just as it is useful to extend the domain of an
elliptic differential operator to L2, with the definition of differentiation taken
in the distribution sense, so that the operator becomes closed, so it is useful
to study the Plateau problem, and questions of minimal surface theory, and
a variety of variational problems, in the context of currents. For it turns

1Georges de Rham (1903–1990)
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out that a collection of currents that is bounded in a rather weak sense
will have a convergent subsequence or sub-net. Frequently, the limit of that
sequence or net will be the solution of the variational problem that we seek.
It generally requires considerable extra effort to verify in practice that that
limiting current can actually be represented by integration over a regular
surface; but it can be done. This has become the standard approach to a
variety of extremal problems in geometric measure theory.

Currents may also be used to construct representation theorems for mea-
sures and other linear operators of geometric analysis, to produce approxi-
mation theorems, to solve partial differential equations, and to prove isoperi-
metric inequalities. They have become a fundamental device of geometric
analysis.

Our purpose in the present chapter is to give a rigorous but very basic
introduction to the theory of currents and to indicate some of their applica-
tions. Our exposition in this chapter owes a debt to [Fed 69], [Sim 83], and
[Whn 57]. For further reading, we recommend [Fed 69], [FF 60], [LY 02], and
[Mat 95]. Some modern treatments of currents may also be found in [Blo 98],
[Kli 91], [Lel 69], [LG 86].

7.1 A Few Words about Distributions

The theory of currents is built on the framework of distributions. We will
quickly cover those portions of distribution theory for which we have imme-
diate use. For the reader familiar with the basic theory of distributions, the
main purpose will be to fix some notation. The reader who wishes to pursue
some background reading should see [Hor 69], [Kra 92b], [Tre 80].

Fix M,N ∈ N. Let U ⊆ RN and let V be an M -dimensional vector
space. By choosing a basis, we can identify V with RM and thus apply all
the usual constructions of calculus. We let E(U, V ) denote the C∞ mappings
of U into V . Now, as is customary in the theory of distributions, we define
a family of seminorms. If i ∈ Z, i ≥ 0, and K ⊆ U is compact then we let,
for φ ∈ E(U, V ),

νi
K(φ) = sup{‖Djφ(x)‖ : 0 ≤ j ≤ i and x ∈ K} .

Here Dj is , of course, the jth differential and ‖Djφ(x)‖ is its operator norm
(see Definition 1.1.3). Equivalently, one could use the seminorms ν̃i

K defined
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by taking the supremum over K of the partial derivatives up to and including
order i of all M component functions.

The family of all the seminorms νi
K induces a locally convex, translation-

invariant Hausdorff topology on E(U, V ). A subbasis for the topology consists
of sets of the form

O(ψ, i,K, r) = {φ ∈ E(U, V ) : νi
K(φ− ψ) < r}

for ψ ∈ E(U, V ) fixed and r > 0. Then E(U, V ) is a topological vector space.
We define E ′(U, V ) to be the set of all continuous, real-valued linear func-

tionals on E(U, V ). We endow E ′(U, V ) with the weak topology generated by
the subbasis consisting of sets of the form

{T ∈ E ′(U, V ) : a < T (φ) < b}

for φ ∈ E(U, V ) and a < b ∈ R. This topology is also referred to as the
weak-∗ topology.

Now, for φ ∈ E(U, V ), recall that supp φ, the support of φ, is defined by

supp φ =

U \
⋃
{W : W is open, φ(x) = 0 whenever x ∈ W } .

For T ∈ E ′(U, V ), we define

supp T =

U \
⋃
{W : W is open, T (φ) = 0 whenever φ ∈ E(U, V ), supp φ ⊆ W} .

This is the support of T . Then each element of E ′(U, V ) is compactly sup-
ported just because, given T ∈ E ′(U, V ), there exist 0 < M < ∞, i ∈ Z+,
and K ⊂⊂ RN such that

|T (φ)| ≤M · νi
K(φ)

holds, for all φ ∈ E(U, V ),2 and this inequality implies supp T ⊆ K. In
conclusion, we see that E ′(U, V ) is the union of its closed subsets

E ′
K(U, V ) ≡ {T ∈ E ′(U, V ) : suppT ⊆ K}

2To see this, note that T−1(−1, 1) must be open in E(U, V ) and consider a neighborhood
basis of 0 ∈ E(U, V ).
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corresponding to all compact subsets K of U . In fact one may see (and this
is important in practice) that all the members of any convergent sequence in
E ′(U, V ) belong to some single set E ′

K(U, V ).
For each compact K ⊆ U we let

DK(U, V ) = {φ ∈ E(U, V ) : supp φ ⊆ K} .

We notice that DK(U, V ) is closed in E(U, V ). Now we define the vector
space

D(U, V ) =
⋃
{DK(U, V ) : K is a compact subset of U} .

We endow D(U, V ) with the largest topology such that the inclusion maps
DK(U, V ) ↪→ D(U, V ) are all continuous. It follows that a subset W of
D(U, V ) is open if and only if W ∩DK(U, V ) belongs to the relative topology
of DK(U, V ) in E(U, V ). Thus the inclusion map D(U, V ) ↪→ E(U, V ) is
continuous. This map is not a homeomorphism unless U = ∅ or M = 0. But
it should be noted that the topologies of E(U, V ) and D(U, V ) induce the
same relative topology on each DK(U, V ).

Now we define the dual space D′(U, V ) to be the vector space of all
continuous, real-valued linear functionals on D(U, V ). We endow D′(U, V )
with the weak topology generated by the sets

{T ∈ D′(U, V ) : a < T (φ) < b}

corresponding to φ ∈ D(U, V ) and a < b ∈ R. Again, this topology is
sometimes referred to as the weak-∗ topology.

Each member of D(U, V ) has compact support. However, the support of
a member of D′(U, V ) need not be compact. For example, if U = V = R and
δp is the Dirac delta mass at p [i.e., the functional defined by δp(φ) = φ(p)]
then

η ≡
∞∑

j=1

2−jδj

is an element of D′(U, V ) which certainly does not have compact support. In
point of fact a real-valued linear functional T on D(U, V ) belongs to D′(U, V )
if and only if, for each compact subset K ⊆ U , there are nonnegative integers
i and M such that

T (φ) ≤M · νi
K(φ) whenever φ ∈ DK(U, V ) .
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An element of D′(U, V ) is called a distribution in U with values in V . Since
D(U, V ) ⊆ E(U, V ), it follows that E ′(U, V ) ⊆ D′(U, V ). We sometimes refer
to the elements of E ′(U, V ) as the compactly supported distributions.

In case U = V = R, we see that any L1 function f defines a distribution
Tf ∈ D′(R,R) by setting

Tf(φ) =
∫ ∞

−∞
f(t)φ(t) dL1(t) ,

for each φ ∈ D(R,R). If f is continuously differentiable, then integration by
parts gives us

Tf ′(φ) =
∫ ∞

−∞
f ′(t)φ(t) dL1(t) = −

∫ ∞

−∞
f(t)φ′(t) dL1(t) = −Tf(φ′) .

This last equation motivates the general definition for differentiation of dis-
tributions.

Definition 7.1.1 For T ∈ D′(U, V ), the partial derivative of T with respect
to the ith variable, 1 ≤ i ≤ N , is the element DxiT of D′(U, V ) defined by
setting

(DxiT )(φ) = −T (∂φ/∂xi) .

A similar definition is applicable to the currents with compact support.

We use the notation DxiT (instead of ∂T/∂xi) for the partial derivative
of the distribution T to avert possible confusion later with the boundary
operator on currents.

The distributions in D′(U,R) are sometimes called generalized functions.
The next result generalizes the fact that if the derivative of a function van-
ishes, then the function is constant.

Proposition 7.1.2 If T ∈ D′(R,R) and DxT = 0, i.e., T (φ′) = 0, for all

φ ∈ D(R,R), then there is c ∈ R such that T = c, i.e., T (φ) = c
∫

R
φdL1, for

all φ ∈ D(R,R).

Proof. Fix ψ ∈ D(R,R) with
∫

R
ψ dL1 6= 0. Given φ ∈ D(R,R), set

f(t) =
∫ t

−∞
[φ(t) + q ψ(τ )] dL1(τ ) where q = −

∫

R
φdL1

/∫

R
ψ dL1 .
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Then f ∈ D(R,R) and f ′ = φ+ q ψ. Thus we have

0 = −DxT (f) = T (f ′) = T (φ) + q T (ψ) ,

and we see that the result holds with

c =
(
T (ψ)

/∫

R
ψ dL1

)
.

Proposition 7.1.2 is the simplest case of a more general result that tells
us that if all the partial derivatives of a distribution on RN vanish, then the
distribution is just a constant. Another form of that theorem in the context
of currents is called the constancy theorem and that result will be particularly
important to us later. We treat it in detail below.

7.2 The Definition of a Current

With notation as in the last section, we define

EM (U) = E
(
U,
∧M RN

)
, EM (U) = E ′

(
U,
∧M RN

)
,

DM (U) = D
(
U,
∧M RN

)
, DM (U) = D′

(
U,
∧M RN

)
.

Thus, in brief, EM (U) is the space of differential forms on U with degree M
and having C∞ coefficients. Also DM (U) is the subspace of EM (U) having
coefficients of compact support in U . The members of DM (U) are called the
M-dimensional currents on U , and the image of EM (U) in DM (U) consists of
all M -dimensional currents with compact support in U . To summarize, we
have DM (U) ⊆ EM (U) and EM (U) ⊆ DM (U).

A simple example of an M -dimensional current on U is provided by con-
sidering an LN -measurable function ξ : U → ∧

M (RN) with the property
that its operator norm |ξ| has finite integral over U , i.e., |ξ| ∈ L1(U). Then
define T ∈ DM (U) by setting

T (φ) =
∫

U
〈φ(x), ξ(x) 〉 dLN (x)

for each φ ∈ DM (U). Certainly this example can be generalized by consid-
ering measures µ different from LN . The function ξ will then need to be µ-

measurable and satisfy
∫

U
|ξ| dµ <∞ or, to generalize further,

∫

K
|ξ| dµ <∞



7.2. THE DEFINITION OF A CURRENT 183

for each compact K ⊆ U . As will become clear, such examples in DM (U) are
particularly useful when the measure µ is concentrated on a set of dimension
M .

Now we define some operations on currents which are dual to those on
differential forms. Those who know some algebraic topology will recognize
some of the classical cohomology operations lurking in the background (see
[BT 82] or [Spa 66]).

Let T ∈ DM (U). If φ ∈ Ek(U) and k ≤M then we define

T φ ∈ DM−k(U)

according to the identity

(T φ)(ψ) ≡ T (φ ∧ ψ) for all ψ ∈ DM−k(U) .

Now let ξ be a p-vector field with C∞ coefficients on U (that is, a smooth
map into

∧
p RN ). We let

T ∧ ξ ∈ DM+p(U)

be specified by the identity

(T ∧ ξ)(ψ) ≡ T (ξ ψ) for all ψ ∈ DM+p(U) ,

where ξ ψ is the interior product characterized by 〈ξ ψ, α〉 = 〈ψ,α∧ ξ〉 for
α ∈ ∧M RN . (This last definition is consistent with [Fed 69; 1.5] despite the
fact that, in the dual pairing 〈·, ·〉, we are placing M -covectors on the left
and M -vectors on the right.)

Since the interior product used above may not be familiar, we will say a
little more about it here. Suppose that

1 ≤ i1 < · · · < ip ≤ N and 1 ≤ j1 < · · · < jM+p ≤ N .

If { i1, . . . , ip } 6⊆ { j1, . . . , jM+p }, then

(ei1 ∧ · · · ∧ eip) (dxj1 ∧ · · · ∧ dxjM+p
) = 0 .

On the other hand, if { i1, . . . , ip } ⊆ { j1, . . . , jM+p }, then we write

{ k1, . . . , kM } = { j1, . . . , jM+p } \ { i1, . . . , ip } ,
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where 1 ≤ k1 < · · · < kM ≤ N . In this case, we have

(ei1 ∧ · · · ∧ eip) (dxj1 ∧ · · · ∧ dxjM+p
) = σ dxk1 ∧ · · · ∧ dxkM

,

where σ ∈ {−1, +1 } is the sign of the permutation

(j1, . . . , jM+p) 7−→ (k1, . . . , kM , i1, . . . , ip) .

In practice, it is often not necessary to require that φ and ξ have C∞

coefficients. It is only necessary to be able to make sense of the expressions
that we use. Thus, in the special case that T is given by an integral, then
we only need require that φ and ξ be measurable and that their norms have
finite integral over every compact set in U . In particular, we may let

T A = T χ
A
∈ EM (U)

for each set A that is measurable with respect to the measure used to define
T .

One of the features that makes currents important is that there is an
associated homology theory. For this we need a boundary operator. If M ≥ 1
and T ∈ DM (U), then we let the boundary of T

∂T ∈ DM−1(U)

be defined by setting
(∂T )(ψ) = T (dψ) (7.1)

whenever ψ ∈ DM−1(U). This definition is motivated by and consistent with
Stokes’s theorem as we will see later. It is also convenient to define ∂T = 0
for T ∈ D0(U).

The reader should keep in mind that, for a current T ∈ DM(U), there is a
significant distinction between the boundary of the current, ∂T ∈ DM−1(U),
defined in (7.1) and a partial derivative of the current, Dx`

T ∈ DM(U),
1 ≤ ` ≤ N . Definition 7.1.1 tells us that, for any C∞ real-valued function
with compact support in U and any choice of 1 ≤ j1 < · · · < jM ≤ N ,

Dx`
T (φ dxj1 ∧ · · · ∧ dxjM

) = −T [ (Dx`
φ) dxj1 ∧ · · · ∧ dxjM

]

holds, where

Dx`
φ =

∂φ

∂x`
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is the ordinary partial derivative of the real-valued function φ.
If we assume that φ, ξ have C∞ coefficients on U , with φ a form of degree

k and ξ a p-vector field, then we have the identities (which the reader may
easily verify for himself):

• ∂(∂T ) = 0 if dim T ≥ 2 ;

• (∂T ) φ = T dφ+ (−1)k∂(T φ) ;

• ∂T = −
N∑

j=1

(DxjT ) dxj if dimT ≥ 1 ;

• T =
∑

1≤j1<···<jM≤N

[
T dxj1 ∧ · · · ∧ dxjM

]
∧ ej1 ∧ · · · ∧ ejM

;

• Dxj(T φ) = (DxjT ) φ+ T (∂φ/∂xj) ;

• Dxj(T ∧ ξ) = (DxjT ) ∧ ξ + T ∧ (∂ξ/∂xj) ;

• (T ∧ ξ) φ = T ∧ (ξ φ) if dimT = 0 and k ≤ p ;

• ∂(T ∧ ξ) = −T ∧ div ξ −
N∑

j=1

(DxjT ) ∧ (ξ dxj) if dimT = 0 ≤ p .

In the above, the partial derivatives ∂φ/∂xj of the form φ and ∂ξ/∂xj of the
vector field ξ are obtained by differentiating the coefficient functions.

Currents Representable by Integration

If U ⊆ RN is an open set and µ is a Radon measure on U (see Defini-
tion 1.2.11), then the functional

ϕ 7−→
∫

U
ϕdµ

is positive (i.e.,
∫

U
ϕdµ ≥ 0 whenever ϕ ≥ 0), R-linear, and continuous on on

the space of compactly supported continuous functions on U . The topology
on the compactly supported continuous functions can be characterized by
by defining ϕ0 to be the limit of the sequence {ϕj} if and only if ϕj → ϕ0

uniformly and, in addition,
⋃

j suppϕj is a compact subset of U .
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Figure 7.1: A current representable by integration.

The Riesz representation theorem tells us that every positive, R-linear,
continuous functional on the space of compactly supported continuous func-
tions arises in this way. Similarly, each R-linear, continuous functional T on
the space of compactly supported continuous functions gives rise to a pair of
mutually singular Radon measures µ1 and µ2 such that

T (ϕ) =
∫

U
ϕdµ1 −

∫

U
ϕdµ2 .

For our purposes, it is more convenient to form the total variation measure
µ = µ1 + µ2, define a Borel function f that equals +1 at µ1-almost every
point and equals −1 at µ2-almost every point, and write

T (ϕ) =
∫

U
f ϕ dµ . (7.2)

(see Figure 7.1).
We would like to know which 0-dimensional currents T ∈ D′(U,R) can be

represented by integrals of Radon measures. Not every 0-dimensional current
can be so written (consider for instance derivatives of the Dirac delta δp).
The characterizing property is that for each open W ⊂⊂ U there exists an
M <∞ such that

|T (φ)| ≤M sup{ |φ(x)| : x ∈ U } (7.3)

holds for all φ ∈ D(U,R). In fact, when (7.3) holds, T extends to all com-
pactly supported continuous functions on U to define an R-linear, continuous
functional.

Now suppose T ∈ DM (U). We define the mass of T on the open set U by

M(T ) = sup
|ω|≤1

ω∈DM (U)

T (ω) .
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If W ⊆ U is an open subset then we have the refined notion of mass given
by

MW (T ) = sup
|ω|≤1,ω∈DM (U)

spt ω⊆W

T (ω) .

Notice that if MW (T ) <∞ for all open W ⊂⊂ U , then, for each sequence
1 ≤ j1 < j2 < · · · < jM ≤ N , the 0-dimensional current

T (dxj1 ∧ dxj2 ∧ · · · ∧ dxjM
)

satisfies the condition (7.3) and thus defines a total variation measure µj1,...,jM

and function fj1 ,...,jM
as in (7.2). Using the identity

T =
∑

1≤j1<···<jM≤N

[
T dxj1 ∧ · · · ∧ dxjM

]
∧ ej1 ∧ · · · ∧ ejM

,

we see that we can add together the total variation measures µj1 ,...,jM
and

functions fj1,...,jM
ej1∧· · ·∧ejM

and normalize the resulting function to obtain

a Radon measure µT on U and a µT -measurable orientation function
−⇀
T with

values in
∧

M (RN ) such that |−⇀T | = 1 µT -almost everywhere and

T (ω) =
∫

U
〈ω(x),

−⇀
T (x) 〉 dµT (x) . (7.4)

The measure µT —which we call the total variation measure associated with
T—is characterized by the identity

µT (W ) = sup
|ω|=1,ω∈DM (U)

spt ω⊆W

T (ω) ,

and this last equals MW (T ) for any open W ⊆ U . We have in particular
that µT (U) = M(T ).

The total variation measure µT will also be denoted by ‖T‖. The alter-
native notation ‖T‖ is the only one used in [Fed 69].

If E is a µT -measurable set and µT (RN \E) = 0, then we have T = T E
and we say that T is carried by E. Certainly T is carried by spt T , but since
sptT is by definition a closed set, T can be carried on a much smaller set
than spt T .

It is worth noting that mass M is lower semicontinuous in the sense that
if Tj → T in U in the topology of weak convergence then

MW (T ) ≤ lim inf
j→∞

MW (Tj) for all open W ⊂ U . (7.5)
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Currents Associated to Oriented Submanifolds

A particularly important type of current representable by integration is that
associated with an oriented submanifold of RN . Suppose that S is a C1

oriented M -dimensional submanifold. By saying that S is oriented we mean
that at each point x ∈ S there is an set of M orthonormal tangent vectors
ξ1(x), ξ2(x), . . . , ξM (x) such that

−⇀
S (x) = ξ1(x) ∧ ξ2(x) ∧ · · · ∧ ξM (x)

defines a continuous function
−⇀
S : S → ∧

M (RN). We define the current
S ∈ DM (RN ) by setting

S (ω) =
∫

S
〈ω,

−⇀
S 〉 dHM .

As a special case of this definition, we can take S to be a Lebesgue measurable
subset of RN and define

S (ω) =
∫

S
〈ω, e1 ∧ e2 ∧ · · · ∧ eN 〉 dLN , (7.6)

for ω ∈ DN (RN ).
In case S is an oriented submanifold with oriented boundary, the classical

Stokes’s theorem tells us that

S (dω) = ∂OS (ω) , (7.7)

where ∂
O
S is the oriented boundary of S (see Definition 6.2.10 and Theo-

rem 6.2.11). By the definition of the boundary of a current we have

S (dω) = ( ∂ S )(ω) . (7.8)

Equations (7.7) and (7.8) show that the definition of the boundary of a
current is consistent with the classical definition of the oriented boundary.

We also observe that

M( S ) = HM (S)

which shows that the mass generalizes the area of a submanifold.

In case M = N − 1, one can identify3
−⇀
S with a unit vector normal to

S. Figure 7.2 uses this identification to illustrate a current associated with
a 2-dimensional submanifold of R3.

3This identification is effected by the Hodge star operator which is discussed in Sec-
tion 7.5.
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Figure 7.2: A current associated with a 2-dimensional submanifold.

7.3 Constructions Using Currents and the Con-

stancy Theorem

We can think of LN as the 0-dimensional current that gives the value
∫

U
φdLN

when applied to φ ∈ D0(RN ). If ξ is an M -vector field with LN -measurable
coefficients, and satisfying

∫

K
‖ξ‖ dLN <∞

for each compact subset K ⊆ RN , then there is a corresponding current
LN ∧ ξ ∈ DM (RN ) given by

(LN ∧ ξ)(ψ) =
∫
〈ψ, ξ 〉 dLN for ψ ∈ DM (RN) .

Recalling the definitions in last section, we see that for φ ∈ Ek(U), with
k ≤M , (LN ∧ ξ) φ ∈ DM−k(U) is given by

[
(LN ∧ ξ) φ

]
(ψ) =

∫
〈φ ∧ ψ, ξ 〉 dLN .

for ψ ∈ DM−k(RN ). We can also write this as (LN∧ξ) φ = LN∧(ξ φ) where
we define the interior product ξ φ by requiring that 〈ψ, ξ φ 〉 = 〈φ∧ψ, ξ 〉.

As we did for the interior product defined in the preceding section, we
can examine the effect of the interior product ξ φ on the basis vectors for
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∧
M (RN) and

∧M−k (RN). Suppose that

1 ≤ i1 < · · · < iM ≤ N and 1 ≤ j1 < · · · < jM−k ≤ N .

If { i1, . . . , iM } 6⊇ { j1, . . . , jM−k }, then

(ei1 ∧ · · · ∧ eiM ) (dxj1 ∧ · · · ∧ dxjM−k
) = 0 .

On the other hand, if { i1, . . . , iM } ⊇ { j1, . . . , jM−k }, then we write

{ `1, . . . , `k } = { i1, . . . , iM } \ { j1, . . . , jM−k } ,

where 1 ≤ `1 < · · · < `k ≤ N . In this case, we have

(ei1 ∧ · · · ∧ eiM ) (dxj1 ∧ · · · ∧ dxjM−k
) = σ dx`1 ∧ · · · ∧ dx`k

,

where σ ∈ {−1, +1 } is the sign of the permutation

(i1, . . . , iM) 7−→ (j1, . . . , jM−k, `1, . . . , `k) .

If it happens that ξ has C1 coefficients, then (using the fact that, when
LN is treated as a current, all its partial derivatives vanish) we have

Dxj (LN ∧ ξ) = LN ∧ (∂ξ/∂xj)

and

∂(LN ∧ ξ) = −
N∑

j=1

[Dxj (LN ∧ ξ) ] dxj = −LN ∧




N∑

j=1

(∂ξ/∂xj) dxj


 .

In case M = 1, so ξ is an ordinary vector field, we see that

N∑

j=1

(∂ξ/∂xj) dxj = div ξ . (7.9)

Letting (7.9) define the divergence of an M-vector field for all 1 ≤ M ≤ N ,
we have

∂(LN ∧ ξ) = −LN ∧ div ξ .

Now we introduce the notation, for ξ a M -vector field on U , given by

DMξ = ξ (dx1 ∧ · · · ∧ dxN ) .



7.3. CONSTRUCTIONS USING CURRENTS 191

Of course DMξ has degree N −M . Also, with each differential form φ of
degree M on U we associate the (N −M)-vector field

DMφ = (e1 ∧ · · · ∧ eN) φ .

If φ ∈ DN−M and ψ ∈ DM , then we see that

(LN ∧ DN−Mφ)(ψ) =
∫
〈ψ, DN−Mφ 〉 dLN

=
∫
〈 dx1 ∧ · · · ∧ dxN , φ ∧ ψ 〉 dLN .

The following commutative diagram helps to clarify the roles of the differ-
ent spaces and their interaction with the various boundary and coboundary
operators:

EN−M (RN)
DN−M

−→ E(RN ,
∧

M RN )
LN∧−→ DM (RN )

(−1)N−Md

y

y div

y −∂

EN−M+1(RN )
DN−M+1

−→ E(RN ,
∧

M−1 RN)
LN∧−→ DM−1(RN)

The special notation

EN = LN ∧ e1 ∧ · · · ∧ eN ∈ DN (RN )

is often used. Of course, this means that, if φ ∈ DN (RN), then

EN (φ) =
∫
〈φ(x), e1 ∧ e2 ∧ · · · ∧ eN 〉 dLN (x) .

We see that

DxjE
N = 0 for each j = 1, . . . , N and ∂EN = 0 .

Comparing with (7.6), we see that, for any Lebesgue measurable set A ⊆ RN ,

EN A = A .

If T ∈ DN (U) and j ∈ {1, . . . , N} then, using the formula

∂T = −
N∑

j=1

(DxjT ) dxj
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and the fact that
∧N+1 RN = 0, we can calculate that

(∂T ) ∧ ej = (−1)NDxjT . (7.10)

Thus the vanishing of the boundary of an N -dimensional current is equivalent
to the vanishing of its partial derivatives. Accordingly we expect that an N -
dimensional current with vanishing boundary should be essentially given by
integration. That intuition is confirmed by the next proposition.

Proposition 7.3.1 (Constancy Theorem) If T ∈ DN (U) with ∂T = 0
and if U is a connected open set, then there is a real number c such that

T = c (EN U) = c U .

In order to prove the constancy theorem, we will need to introduce the
notion of smoothing currents. In what follows, we will use mollifiers in a
standard manner. Mollifiers were introduced in Section 5.5. Recall from
Definition 5.5.1 that ϕ is a mollifier if

• ϕ ∈ C∞(RN );

• ϕ ≥ 0;

• suppϕ ⊆ B(0, 1);

•
∫

RN
ϕ(x) dx = 1;

• ϕ(x) = ϕ(−x).

For σ > 0 we set ϕσ(x) = σ−Nϕ(x/N). Also recall that, in case f ∈ L1
loc(RN)

and σ > 0, equation (5.31) defined

fσ(x) = f ∗ϕσ(x) =
∫

RN
f(z)ϕσ(x−z) dLN (z) =

∫

RN
f(x−z)ϕσ(z) dLN (z) .

Definition 7.3.2 Given a current T ∈ DM(RN ), we define a new current
Tσ ∈ DM (RN ) by

Tσ(ω) = T (ϕσ ∗ ω) . (7.11)

[Note here that we convolve ϕσ with a form by convolving with each of the
coefficient functions.]
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The crucial facts are collected in the next lemma.

Lemma 7.3.3

(1) Tσ converges to T in DM (RN ) as σ ↓ 0,

(2) DxjTσ = (DxjT )σ, for j = 1, 2, . . . , N ,

(3) for each σ > 0, Tσ corresponds to a function in E(RN ,
∧

M RN ).

Proof.
(1) This is immediate from the fact that, for ω ∈ DM (RN ), ϕσ ∗ω converges
to ω in the topology of DM (RN).

(2) Fix j ∈ {1, . . . , N} and ω ∈ DM (RN). We have ϕσ ∗ (∂ω/∂xj) = ∂(ϕσ ∗
ω)/∂xj, so we compute

(DxjTσ)(ω) = −Tσ(∂ω/∂xj) = −T [ϕσ ∗ (∂ω/∂xj)]

= −T [∂(ϕσ ∗ ω)/∂xj] = DxjT (ϕσ ∗ ω) = (DxjT )σ(ω) .

(3) In order to focus on the essential ideas, we will consider just the case
M = N . Let tz : RN → RN denote translation by z ∈ RN , so that

tz(x) = x+ z .

We define the real-valued function Fσ by setting

Fσ(z) = T [ (ϕσ ◦ t−z) dx1 ∧ dx2 ∧ · · · ∧ dxN ] . (7.12)

Another way to write (7.12) is as

Fσ(z) = Tx[ϕσ(x− z) dx1 ∧ dx2 ∧ · · · ∧ dxN ] , (7.13)

where the subscript x on T indicates that we are considering x as the operant
variable for the current, while z is treated as a parameter. It is routine to
verify that Fσ is C∞ using the fact that ϕσ is C∞.

We claim that Tσ corresponds to the function Fσ e1 ∧ e2 ∧ · · · ∧ eN ∈
EN(RN ), that is,

Tσ(ω) =
∫

RN
Fσ · 〈ω, e1 ∧ e2 ∧ · · · ∧ eN 〉 dLN (7.14)
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holds, for each ω ∈ DM (RN ).
To verify the claim, fix ω ∈ DM (RN) and write

ω = g dx1 ∧ dx2 ∧ · · · ∧ dxN ,

where g is scalar-valued and C∞. By definition, the lefthand side of (7.14)
equals

Tx

[ ( ∫

RN
g(z)ϕσ(x− z) dLN (z)

)
dx1 ∧ dx2 ∧ · · · ∧ dxN

]
.

We can approximate
∫

RN
g(z)ϕσ(x− z) dLN (z)

(in the topology of D(RN ,R)) by finite sums

p∑

k=1

g(zk)ϕσ(x− zk)LN (Ak)

where zk ∈ Ak and where the Ak are Borel subsets of the support of g. Thus

Tx

[
p∑

k=1

g(zk)ϕσ(x− zk)LN (Ak) dx1 ∧ dx2 ∧ · · · ∧ dxN

]

will approximate Tσ(ω).
By the linearity of T and using (7.13), we have

Tx

[
p∑

k=1

g(zk)ϕσ(x− zk)LN (Ak) dx1 ∧ dx2 ∧ · · · ∧ dxN

]

=
p∑

k=1

Tx [ϕσ(x− zk) dx1 ∧ dx2 ∧ · · · ∧ dxN ] g(zk)LN (Ak)

=
p∑

k=1

Fσ(zk) · 〈ω(zk), e1 ∧ e2 ∧ · · · ∧ eN 〉 LN (Ak) .

But, as the diameters of the Ak approach 0,

p∑

k=1

Fσ(zk) · 〈ω(zk), e1 ∧ e2 ∧ · · · ∧ eN 〉 LN (Ak)
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approaches ∫

RN
Fσ · 〈ω, e1 ∧ e2 ∧ · · · ∧ eN 〉 dLN ,

verifying the claim.

Smoothing is defined in a general open set U ⊆ RN by introducing func-
tions wj ∈ D(U,R) such that the sets Kj = {x : wj(x) = 1} are increasing
and exhaust U . For T ∈ DM (U), one then considers (T wj)σ—as one may,
since T wj ∈ DM (RN ).

Proposition 7.3.4 If T ∈ DM (U) where U ⊆ RM and if M(T ) < ∞ and
M(∂T ) <∞ hold, then T = U F with F ∈ BV (U).

Proof. Referring to Lemma 7.3.3(3), we observe that Tσ = U Fσ and

the L1-norm of Fσ equals M(Tσ) which is bounded by M(T ). Also,
∫

|DFσ|
equals M(∂Tσ) which is bounded by M(∂T ). By the compactness theorem
for functions of bounded variation (see [KPk 99; Corollary 3.6.14]), we can
select a sequence σi ↓ 0 such that Fσi converges to a BV -function F and
conclude from Lemma 7.3.3(1) that T = U F .

Now we return to the constancy theorem.

Proof of the constancy theorem. For convenience of exposition we sup-
pose that U = RN . By (7.10), the hypothesis ∂T = 0 tells us that all the
partial derivatives of T vanish. Then, for any σ > 0, the partial derivatives of
Tσ must vanish. We know that Tσ corresponds to a function in E(RN ,

∧
N RN )

and that function must be constant since its partial derivatives vanish. Let-
ting σ ↓ 0, we obtain the result.

We end this section with the following variant of the constancy theorem.

Proposition 7.3.5 If T ∈ DM (RN ) with ∂T = 0 and sptT ⊆ V where V is
an M -dimensional plane, then there is a real number c such that

T = c V ,

that is, T = c
(
HM V

)
∧ v1 ∧ v2 ∧ · · · ∧ vM , where v1, v2, . . . , vM is an

orthonormal family of vectors parallel to V .
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Proof. Without loss of generality, we may suppose that

V = { (x1, x2, . . . , xN) : xM+1 = xM+2 = · · · = xN = 0 } .

Fix σ : R → R a compactly supported, C∞ function satisfying σ(t) = t, for
|t| < 1.

Consider 1 ≤ i1 < i2 < · · · < iM ≤ N and suppose that M < iM . Let φ
be an arbitrary compactly supported, real-valued C∞ function. Setting

ω = σ (xiM ) · φ(x) dxi1 ∧ dxi2 ∧ · · · ∧ dxiM−1
,

we see that, on V , dω = φ(x) dxi1 ∧ dxi2 ∧ · · · ∧ dxiM , so that

0 = (∂T )(ω) = T (dω) = T
(
φ(x) dxi1 ∧ dxi2 ∧ · · · ∧ dxiM

)

holds. Thus we have
T dxi1 ∧ · · · ∧ dxiM = 0 .

Using the preceding paragraph, we conclude that

T =
∑

1≤i1<···<iM≤N

[
T dxi1 ∧ · · · ∧ dxiM

]
∧ ei1 ∧ · · · ∧ eiM

=
[
T dx1 ∧ · · · ∧ dxM

]
∧ e1 ∧ · · · ∧ eM .

Thus we can identify T with an element of DN (RN ) and apply the constancy
theorem.

7.4 Further Constructions with Currents

7.4.1 Products of Currents

Next we need the notion of a cartesian product of currents.

Definition 7.4.1 Suppose U1 ⊆ RN1, T1 ∈ DM1(U1) and U2 ⊆ RN2, T2 ∈
DM2(U2). We define T1 × T2 ∈ DM1+M2(U1 ×U2), the cartesian product of T1

and T2 as follows:

(1) We will denote the basis covectors in RN1 by dxα and the basis covectors
in RN2 by dyβ.
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(2) If 1 ≤ α1 < α2 < · · · < αM1 ≤ N1, 1 ≤ β1 < β2 < · · · < βM2 ≤ N2, and
g ∈ D(U1 × U2,R), then set

[T1 × T2](g dxα1 ∧ · · · ∧ dxαM1
∧ dyβ1 ∧ · · · ∧ dyβM2

)

= T1

(
T2[ g(x, y) dyβ1 ∧ · · · ∧ dyβM2

] dxα1 ∧ · · · ∧ dxαM1

)
.

(3) If ω1 ∈ DM ′
1(U1), ω2 ∈ DM ′

2(U2) with M ′
1+M ′

2 = M1+M2 but M ′
1 6= M1

and M ′
2 6= M2, then [T1 × T2](ω1 ∧ ω2) = 0.

(4) Extend T1 × T2 to DM1+M2(U1 × U2) by linearity.

Now it is immediate that

∂(T1 × T2) = (∂T1) × T2 + (−1)M1T1 × ∂T2 . (7.15)

In case either M1 = 0 or M2 = 0 then the last formula is still valid provided
the corresponding terms are interpreted to be zero.

In the special case that T ∈ DM (U) with U ⊆ RN and (0, 1) is the 1-
current in R1 given by integration over the oriented unit interval then (7.15)
becomes

∂( (0, 1) × T ) = (δ1 − δ0) × T − (0, 1) × ∂T

= δ1 × T − δ0 × T − (0, 1) × ∂T .

Of course δp denotes the 0-current that is given by a point mass at p.

7.4.2 The Push-Forward

Now we shall define the notion of the push-forward of a current. Some of the
most important and profound properties of currents will be formulated in
terms of the preservation of certain structures under the push-forward. The
setup is this. We are given open sets U ⊆ RN1 and V ⊆ RN2 and a smooth
mapping f : U → V . If ω ∈ DM (V ) then let f#ω be the standard pullback
of the form ω (see Definition 6.2.7). Now the current T is given on U , and

we must suppose that f
∣∣∣
spt T

is proper: this means that the inverse image

under f of any compact set, intersected with sptT , is compact. We define
the push-forward f#T under f of the current T by (see Figure 7.3)

f#T (ω) = T (ζ · f#ω) ∀ω ∈ DM (V ) , (7.16)
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Figure 7.3: The push-forward of a current.

where ζ is any compactly supported C∞(U) function that equals 1 in a
neighborhood of spt T ∩ spt f#ω. The definition of f#T given in (7.16) is
independent of ζ. Notice that

∂f#T = f#∂T (7.17)

holds for f , T as above. In fact, (7.17) holds because one can interchange
the exterior differentiation and pull-back operations on forms (see Theo-
rem 6.2.8).

If MW (T ) < ∞ for every W ⊆ U then f is representable by integration
and f#T is given explicitly by

f#T (ω) =
∫
〈
−⇀
T , f#ω 〉 dµT

=
∫
〈 〈∧M Df,

−⇀
T (x)〉, ω(f(x)) 〉 dµT (x) .

This formula gives a way to make sense of f#T even when f is only contin-
uously differentiable and proper.

The next result is about vanishing of currents on sets that project to
measure 0 in all coordinate directions. For notation, if α = (i1, . . . , iN) ∈ NN

is a multiindex with 1 ≤ i1 < i2 < · · · < iN ≤ P then we let pα denote the
orthogonal projection of RP onto RN given by

(x1, . . . , xP ) 7−→ (xi1, . . . , xiN ) .

Lemma 7.4.2 Let U ⊆ RN be open as usual. Let E ⊆ U be closed. Assume
that LM (pα(E)) = 0 for each multiindexα = (i1, . . . , iM), 1 ≤ i1 < i2 < · · · <
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IM ≤ N . Then T E = 0 whenever T ∈ DM (U) with MW (T ) and MW (∂T )
finite for every W ⊂⊂ U .

Proof. Let ω ∈ DM (U). We write

ω =
∑

α∈Λ(N,M)

ωαdx
α

with ωα ∈ C∞(U) and compactly supported. Thus

T (ω) =
∑

α

T (ωαdx
α)

=
∑

α

(T ωα) dxα

=
∑

α

(T ωα)p#
α dy .

Here dy ≡ dy1 ∧ · · · dyM in the standard coordinates on RM .
So we have

T (ω) =
∑

α

pα#(T ωα)(dy) . (7.18)

This last makes sense just because sptT ωα ⊆ spt ωα, which is a compact
subset of U .

On the other hand, we know for any τ ∈ DN−1(U) that

∂(T ωα)(τ ) = (T ωα)(dτ )

= T (ωαdτ )

= T (d(ωατ )) − T (dωα ∧ τ )

= ∂T (ωατ ) − T (dωα ∧ τ )

and so
MW (∂(T ωω)) ≤ MW (∂T )|ωα| + MW (T )|dωα| .

From this we conclude that

M(∂pα#(T ωα)) = M(pα#∂(T ωα)) ≤ M(∂(T ωα)) <∞ .

Now we apply Proposition 7.3.4 to see that there is a θα ∈ BV (pα(U))
such that

pα#(T ωα) = pα(U) θα .
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It follows that pα#(T ωα) pα(E) = 0 because LM (pα(E)) = 0. Assuming
without loss of generality that E is closed, we now see that

M(pα#(T ωα)) ≤ M(pα#(T ωα) (RM \ pα(E)))

= M(pα#((T ωα) (RN \ p−1
α pα(E))))

≤ M((T ωα) (RN \ p−1
α pαE)) (7.19)

≤ MW (T (RN \ p−1
α pαE)) · |ωα|

≤ MW (T (RN \ E)) · |ωα| (7.20)

for any open set W such that sptω ⊆ W ⊆ U .
Now we combine (7.18) and (7.20) to obtain

MW (T ) ≤ cMW (T (RN \ E)) .

In particular, we see that

MW (T E) ≤ cMW (T (RN \ E)) . (7.21)

If K is any compact subset of E, then we can choose sets {Wq} such that

• Wq ⊂⊂ U ;

• Wq+1 ⊆ Wq;

• ⋂∞
q=1Wq = K.

By (7.21), with W = Wq, we conclude that M(T K) = 0. Since K was
arbitrary, we see that M(T E) = 0.

7.4.3 The Homotopy Formula

Next we have the homotopy formula for currents. Let f, g : U → V be smooth
mappings, with U ⊆ RN1 and V ⊆ RN2. Let h be a smooth homotopy of
f to g; that is, h : [0, 1] × U → V , h(0, x) = f(x), and h(1, x) = g(x).
If T ∈ DM (U) and if the restriction of h to [0, 1] × sptT is proper, then
h#( (0, 1) × T ) is well defined and

∂h#( (0, 1) × T ) = h#∂( (0, 1) × T )

= h#(δ1 × T − δ0 × T − (0, 1) × ∂T )

= g#T − f#T − h#( (0, 1) × ∂T ) .
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The homotopy formula is then a simple rearrangement of this last equality:

g#T − f#T = ∂h#( (0, 1) × T ) + h#( (0, 1) × ∂T ) . (7.22)

An important instance of the homotopy formula occurs when

h(t, x) = tg(x) + (1 − t)f(x) = f(x) + t(g(x) − f(x)) ;

we call this an affine homotopy of f to g. Then we can obtain that

M[h#( (0, 1) × T ) ] ≤ sup
sptT

|f − g| · sup
x∈sptT

(‖Df(x)‖ + ‖Dg(x)‖)MM(T ) .

(7.23)
In fact this inequality follows immediately once we notice that

h#( (0, 1) × T )(ω)

=
∫ 1

0

∫ 〈
〈∧M+1Dh(t, x), e1 ∧

−⇀
T (x)〉, ω(h(t, x))

〉
dµT (x) dt

nono=
∫ 1

0

∫ 〈
(g(x) − f(x)) ∧ (7.24)

〈t∧M Df(x) + (1 − t)
∧

M Dg(x),
−⇀
T (x)〉, ω(h(t, x))

〉
dµT (x) dt .(7.25)

Figure 7.4 illustrates the homotopy formula. In this figure, T is the 1-
dimensional current associated with the oriented line segment on the left, f
is the identity, and g maps the line segment on the left to the polygon to its
right. The six-sided polygonal region then corresponds to h#( (0, 1) × T )
with h the affine homotopy of f to g.

7.4.4 Applications of the Homotopy Formula

The next lemma shows us how the homotopy formula can be used to define
f#T in case f is only Lipschitz—provided that the restriction of f to the
support of T is proper and both MW (T ), MW (∂T ) are finite for all W ⊂⊂ U .
We will use smoothing of currents as described in Definition 7.3.2.

Lemma 7.4.3 Let T be a current, T ∈ DM (U), and suppose that MW (T ),
MW (∂T ) are finite for eachW ⊂⊂ U . Let f : U → V be a Lipschitz mapping,
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Figure 7.4: The homotopy formula.

and assume that the restriction of f to the support of T is proper. Then we
may define

f#(T ) ≡ lim
σ→0+

fσ#T (ω)

because the limit on the righthand side exists for each ω ∈ DM (V ). We also
may conclude that

spt f#T ⊆ f(spt T ) and MW (f#T ) ≤
(

ess sup
f−1(W )

|Df |
)M

Mf−1(W )(T )

for all W ⊂⊂ V .

Proof. If σ, τ > 0 are small then the homotopy formula gives us that

fσ#T (ω) − fτ#T (ω) = h#( [0, 1) × T )(dω) + h#( (0, 1) × ∂T )(ω) ,

where h is the usual affine homotopy of fτ to fσ. Now (7.23) tells us, for
small σ, τ , that

|fσ#T (ω) − fτ#T (ω)| ≤ c sup
f−1(K)∩ sptT

|fσ − fτ | · ‖f‖Lip .

Here K is a compact subset of V with spt ω ⊆ interior (K). Since fσ → f
uniformly on compact subsets of U , the result clearly follows.

Now we need the notion of a cone over a current T ∈ DM (U). Any
definition that we give should have the property that, in the special case
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that T = S , where S is a submanifold of the sphere SN−1 ⊆ RN , then the
cone over T is just CS , where

CS = {λx : x ∈ S, 0 ≤ λ ≤ 1} .

We define the cone using ideas and terminology that we have introduced thus
far. We let

• T ∈ DM ;

• U be star-shaped with respect to the point 0;

• sptT be compact;

• h : R × RN → RN be defined by h(t, x) = tx.

Then the cone over T , denoted by δ0 ××T , is given by

δ0 ××T = h#( (0, 1) × T ) . (7.26)

It follows that δ0 ××T ∈ DM+1(U) and, by the homotopy formula,

∂(δ0 ××T ) = T − δ0 ××∂T .

Also, if spt T ⊆ {x : |x| = r} holds, then we can estimate

M(δ0 ××T ) ≤ r

M + 1
M(T ) .

This last estimate follows from observing that

h#( (0, 1) × T )(ω)

=
∫ 1

0

∫ 〈
〈∧M+1Dh(t, x), e1 ∧

−⇀
T (x)〉, ω(h(t, x))

〉
dµT (x) dt

=
∫ 1

0

∫
tM 〈x ∧ −⇀

T (x), ω(tx) 〉 dµT (x) dt .

By making the obvious modifications, we can define the cone over T with
vertex p, which we denote by δp ××T . In this case, we have

∂(δp ××T ) = T − δp ××∂T (7.27)

and, if spt T ⊆ {x : |x− p| = r} holds,

M(δp ××T ) ≤ r

M + 1
M(T ) . (7.28)
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7.5 Rectifiable Currents with Integer Multi-

plicity

Now we consider integer-multiplicity currents T ∈ DN (U) which are similar
to, but more general than, the currents associated with smooth surfaces.
These new currents will be based on the notion of a countably M -rectifiable
set that was introduced in Section 5.4.

Definition 7.5.1 Let M be an integer with 1 ≤ M ≤ N . Let T ∈ DM (U)
for U ⊆ RN an open set. We say that T is an integer-multiplicity rectifiable
M-current (or, more succinctly, an integer-multiplicity current) if there are
S, θ, and ξ such that

(1) S is an HM -measurable, countably M -rectifiable subset of U with
HM (S

⋂
K) <∞ for each compact K ⊆ U ;

(2) θ is a locally HM -integrable, nonnegative, integer-valued function;

(3) ξ : S → ∧
M (RN ) is an HM -measurable function such that, for HM -

almost every point x ∈ S, ξ(x) is a simple unit M -vector in TxS;

(4) the current T is given by

T (ω) =
∫

S
〈ω(x), ξ(x) 〉 θ(x) dHM (x)

for ω ∈ DM (U).

For (3), recall that ξ(x) is simple if ξ(x) = τ1 ∧ · · · ∧ τM , where the set {τj}
is an orthonormal basis for TxS.

In the preceding definition, we call θ the multiplicity of T and ξ the
orientation of T . It will be convenient for us to write T = τ (S, θ, ξ). In
terms of the notation for currents representable by integration introduced in
(7.4) we have

−⇀
S = ξ, µS = ‖S‖ = HM (θ χ

S
) .

Figure 7.5 illustrates a current that fails to be integer-multiplicity rectifiable
because the orientation does not lie in the tangent space.
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Figure 7.5: A current that is not integer-multiplicity rectifiable.

Let T ∈ D0(U) for U ⊆ RN an open set. We say that T is an integer-
multiplicity rectifiable 0-current if there are S ⊆ U and θ : S → Z such
that

S
⋂
K is finite if K ⊆ U is compact,

T (ω) =
∑

x∈S∩suppω

θ(x)ω(x) for ω ∈ D0(U). (7.29)

In this case, the multiplicity function of T is the absolute value of θ and the
orientation function of T is the sign of θ, so we may write T = τ (S, |θ|, sgn(θ)).

Some Properties of Integer-Multiplicity Currents

(1) If T1, T2 ∈ DM (U) are integer-multiplicity currents, then so is p1T1 +
p2T2 for any p1, p2 ∈ Z.

(2) If T1 = τ (V1, θ1, ξ1) ∈ DM (U) and T2 = τ (V2, θ2, ξ2) ∈ DN (V ) then
T1 × T2 ∈ DM+N (U × V ) is also integer-multiplicity and

T1 × T2 = τ (V1 × V2, θ1θ2, ξ1 ∧ ξ2) .

(3) If F : U → V is Lipschitz, S ⊆ U , and T = τ (S, θ, ξ) ∈ DM (U), and if
f |sptT is proper, then F#T ∈ DM (V ) is integer-multiplicity and F#T =

τ (F (S), φ, η), where φ ∈ ∧
M RN and η ∈ Z+ are characterized, HM -

almost everywhere in F (S), by

∑

x∈F−1(y)∩S+

θ(x) · 〈∧M DSF (x), ξ(x)〉
|〈∧M DSF (x), ξ(x)〉|

= φ(y) η(y) . (7.30)
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Here S+ is the set of x ∈ S for which TxS and DSF (x) exist and
DSF (x) is of rank M on TxS.

Statements (1) and (2) are immediate. To see statement (3) we reason as
follows: By definition,

F#T (ω) =
∫

V
〈ω(f(x)), 〈∧M DSF (x), ξ(x)〉 〉 θ(x) dHM (x) .

Corollary 5.1.13 of the area formula allows us to rewrite the last equation as

F#T (ω) =
∫

F (S)

〈
ω(y),

∑

x∈F−1(y)∩S+

θ(x) · 〈∧M DSF, ξ(x)〉
|〈∧M DSF, ξ(x)〉|

〉
dHM (y) .

(7.31)
For HM -almost every y the approximate tangent space Ty(F (S)) exists and
TxS and DSF exist for all x ∈ F−1(y) ∩ S+. Hence

〈∧M DSF, ξ(x)〉
|〈∧M DSF, ξ(x)〉| = ±τ1 ∧ · · · ∧ τM , (7.32)

where τ1, . . . , τM is an orthonormal basis for Ty(F (S)). Thus we obtain
(7.30).

Considering a y such that the approximate tangent space Ty(F (S)) exists
and TxS and DSF exist for all x ∈ F−1(y) ∩ S+ and replacing τ1 by −τ1 if
necessary, we may suppose τ1 ∧ · · · ∧ τM = η(y). Then we have

φ(y) =
∑

A1

θ(x) −
∑

A2

θ(x) ,

where A1 is the set of x ∈ F−1(y) ∩ S+ for which

η =
〈∧M DSF (x), ξ(x)〉
|〈∧M DSF (x), ξ(x)〉|

and A2 is the set of x ∈ F−1(y) ∩ S+ for which

−η =
〈∧M DSF (x), ξ(x)〉
|〈∧M DSF (x), ξ(x)〉| .

Thus, for HM -almost every y ∈ F (W ), we have

η(y) =
∑

x∈F−1(y)∩W+

θ(x) − 2
∑

A2

θ(x) ≤
∑

x∈F−1(y)∩W+

θ(x) .
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We also note that, for HM -almost every y ∈ F (W ), η(y) is congruent modulo
2 to

∑
x∈F−1(y)∩W+

θ(x).
One of the main things that we do in this subject is to extract “conver-

gent” subsequences from collections of currents. This is, for instance, how
we prove an existence theorem for the solution of the Plateau problem.4 The
next compactness theorem is an instance of this point of view.

Theorem 7.5.2 (Compactness for Integer-Multiplicity Currents)
Let {Tj} ⊆ DM (U) be a sequence of integer-multiplicity currents such that

sup
j≥1

[
MW (Tj) + MW (∂Tj)

]
<∞ for all W ⊂⊂ U .

Then there is an integer-multiplicity current T ∈ DM (U) and a subsequence
{Tj′} such that Tj′ → T weakly in U .

The compactness theorem was first proved by Federer and Fleming in
[FF 60]. Their proof had the drawback of relying on the structure theory
for sets of finite Hausdorff measure. An alternative proof was developed by
Bruce Solomon (see [Som 84]). Solomon’s proof used facts about multivalued
functions, which led Brian White to give a third proof that avoided both the
structure theory and multivalued functions (see [Whe 89]). Later in this book
we will give a proof of the compactness theorem using metric-space-valued
functions of bounded variation in a manner similar to that in [LY 02].

Remark 7.5.3 It is important to realize that the existence of the subse-
quence {Tj′} and the limit current T in Theorem 7.5.2 is an immediate con-
sequence of the Banach–Alaoglu theorem.5 What is nontrivial is the fact
that T is an integer-multiplicity current. In the codimension 1 case, that is,
when the ambient space has dimension N = M + 1, Theorem 7.5.2 can be
proved using Proposition 7.3.4 and the compactness theorem for functions
of bounded variation. In case M = 0, because of (7.29), Theorem 7.5.2 is a
consequence of the Bolzano–Weierstrass theorem.6

To end this section we will prove a decomposition theorem for integer-
multiplicity currents of codimension 1. The statement of this theorem invokes

4Joseph Antoine Ferdinand Plateau (1801–1883).
5Stefan Banach (1892–1945), Leonidas Alaoglu (1914–1981).
6Bernard Placidus Johann Nepomuk Bolzano (1781–1848), Karl Theodor Wilhelm

Weierstrass (1815–1897).
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the notion of a set of locally finite perimeter. We recall the relevant definitions
here (see [KPk 99; Section 3.7]):

Definition 7.5.4

(1) If A is a Borel set and U ⊆ RN is open, then the perimeter of A in U
is denoted by P (A,U) and is defined by

P (A,U) = sup
{∫

A
div(g) dLN : g ∈ C1(U ; RN ), supp g ⊂⊂ U, |g| ≤ 1

}
.

(2) We say that A is of locally finite perimeter if

P (A,U) <∞

holds for every bounded open set U . Sets of locally finite perimeter are
also called Caccioppoli sets.7

(3) If A is of locally finite perimeter, then there is a positive Radon measure
µ and a µ-measurable RN -valued function σ, with |σ(x)| = 1 for µ-
almost every x, such that the distribution derivative of χ

A
is given by

Dχ
A

= σµ. It is customary to use the notation |Dχ
A
| for the Radon

measure µ and to write nA = −σ, so that

Dχ
A

= −nA |Dχ
A
|

and
P (A,U) =

∫

U
|Dχ

A
| .

We have defined nA to be the negative of σ so that nA will be the
outward unit normal to A.

(4) In case A has locally finite perimeter in U , the reduced boundary of A,
denoted by ∂∗A, is the set of x ∈ U such that

(a) |Dχ
A
|(B(x, r)) > 0 holds for r > 0,

(b) nA(x) = lim
r↓0

∫

B(x,r)
nA d|DχA

|

|Dχ
A
|(B(x, r))

,

7Renato Caccioppoli (1904–1959).
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(c) |nA| = 1.

The structure theorem for sets of finite perimeter tells us that

|Dχ
A
| = HN−1 ∂∗A . (7.33)

Theorem 7.5.5 Let U be an open set in RM+1 and let R be an integer-
multiplicity current in DM+1(U) with MW (∂R) <∞ for all W ⊂⊂ U . Then
T = ∂R is of integer multiplicity, and we can find a decreasing sequence
of (M + 1)-dimensional Lebesgue measurable sets {Uj}∞j=−∞ of locally finite
perimeter in U such that

R =
∞∑

j=1

Uj −
0∑

j=−∞
U \ Uj ,

T =
∞∑

j=−∞
∂ Uj ,

µT =
∞∑

j=−∞
µ

∂ Uj
.

In particular,

MW (T ) =
∞∑

j=−∞
MW (∂ Uj ) for all W ⊂⊂ U .

Remark 7.5.6 Domains with locally finite perimeter correspond to Lebesgue
measurable sets whose boundaries as currents have locally finite mass. Here
we describe that correspondence.

Let ? : D(U,RM+1) → DM (U) be the version of the Hodge star operator8

given by

? g =
M+1∑

j=1

(−1)j−1gj dx
1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxN+1 .

Thus d ? g = (div g) dx1 ∧ · · · ∧ dxM+1. Then, for any (M + 1)-dimensional
Lebesgue measurable set A ⊆ U , we see that

∂ A ( ? g) = A (d ? g) =
∫

U
χ

A
div g dLM+1 .

8William Vallance Douglas Hodge (1903–1975).
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Thus, by definition of |Dχ
A
| and M(T ), we find that for any (M + 1)-

dimensional Lebesgue measurable A ⊆ U ,

(1) A has locally finite perimeter in U if and only if MW (∂ A ) <∞ holds
for all W ⊂⊂ U ,

(2) in case A has locally finite perimeter in U , then

MW (∂ A ) =
∫

W
|Dχ

A
| , for all W ⊂⊂ U ,

−−−⇀
∂ A = ?nA , at |Dχ

A
|-almost every point of U .

Proof of Theorem 7.5.5. Now R must have the form

R = τ (S, θ, ξ) ,

where S is an M +1-dimensional Lebesgue measurable subset of U . We may
suppose that ξ(x) = ±e1 ∧ · · · ∧ eM+1 and θ ∈ Z+ for all x ∈ U and that
θ(x) = 0 holds for x ∈ U \ S.

Set

θ+(x) =

{
θ(x) if ξ(x) = e1 ∧ · · · ∧ eM+1,

0 otherwise,

θ−(x) =

{
θ(x) if ξ(x) = −e1 ∧ · · · ∧ eM+1,

0 otherwise,

θ̃ = θ+ − θ− .

We have
R(ω) =

∫

S
a θ̃ dx ,

where ω = a dx1 ∧ · · · ∧ dxM+1 ∈ DM+1(U) and

MW (R) =
∫

W
|θ̃| dx (7.34)

for all W ⊂⊂ U . Also we have

MW (T ) =
∫

W
|Dθ̃| (7.35)
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for all W ⊂⊂ U , because we can convert between the left- and righthand
sides of (7.35) by using the operation ? . Thus we see that θ̃ ∈ BVloc(U).

Now let

Uj = {x ∈ U : θ+(x) ≥ j} ,

Wj = {x ∈ U : θ−(x) ≥ j} ,

for j = 1, 2, . . ., so that

θ̃ = θ+ − θ− =
∞∑

j=1

χ
Uj

−
∞∑

j=1

χ
Wj
.

Since

Wj = {x : θ̃(x) ≤ −j }

= U \ {x : θ̃(x) > −j } = U \ {x : θ̃(x) ≥ −j + 1 } ,

we can set

Uj = {x ∈ U : θ(x) ≥ −j} ,

for j = 0,−1,−2, . . ., and conclude that

θ̃ =
∞∑

j=1

χ
Uj

−
0∑

j=−∞
χ

U\Uj

and that

R =
∞∑

j=1

Uj −
0∑

j=−∞
U \ Uj

in U .
Since T (ω) = ∂R(ω) = R(dω), ω ∈ DM (U), we have

T = ∂R

=
∞∑

j=1

∂ Uj −
∞∑

j=0

∂ Vj

=
∞∑

j=−∞
∂ Uj . (7.36)
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Hence we have the necessary decomposition of T ; it remains only to prove
that each Uj has locally finite perimeter in U and that the corresponding
measures sum up.

To this end, we will use a smoothing argument. Choose 0 < ε < 1/2 and
let ψj ∈ C1(R), j ∈ Z, satisfy

• ψj(t) = 0 for t ≤ j − 1 + ε;

• ψj(t) = 1 for t ≥ j − ε;

• 0 ≤ ψj ≤ 1;

• sup |ψ′
j| ≤ 1 + 3ε.

Then, because θ̃ is integer-valued, we have χ
Uj

= ψj ◦ θ̃ for all j ∈ Z.

Suppose that a is a non-negative, compactly supported, continuous func-
tion on U and that g = (g1, . . . , gM+1), where each component gj is a com-
pactly supported, continuous function on U . Suppose that |g| ≤ a holds. For
any choices of k, ` ∈ Z with k ≤ `, we have

∫

U
(div g)

(∑`
j=k

χ
Uj

)
dLM+1 =

∫

U
(div g)

(∑`
j=k ψj ◦ θ̃

)
dLM+1

= lim
σ→0+

∫

U
(div g)

(∑`
j=k ψj ◦ θ̃(σ)

)
dLM+1

= − lim
σ→0+

∫

U
g ·
(∑`

j=k [grad θ̃(σ)] [ψ′
j ◦ θ̃(σ)]

)
dLM+1

≤ (1 + 3ε) lim
σ→0+

∫

U
a |grad θ̃(σ)| dLM+1

= (1 + 3ε)
∫

U
a |Dθ̃|

= (1 + 3ε)
∫

U
a dµT .

Here θ̃(σ) are the mollified functions formed in our usual way (see Defini-
tion 5.5.1); we have used the fact that the mollification of a bounded vari-
ation function converges back to that function in a suitable topology (see
[KPk 99; Section 3.6]), and we have also used (7.35).
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By taking k = `, we see that each Uj has locally finite perimeter in U .
If instead we take k = −` and set R` =

∑`
j=1 Uj −∑`

j=0 Vj , we see that
(with g as in Remark 7.5.6) the last display implies that

|R`(d ? g)| ≤ (1 + 3ε)
∫

U
a dµT .

Thus, with T` = ∂R`, we have that
∫

U
a dµT`

≤
∫

U
a dµT

holds for all 1 ≤ ` and all compactly supported 0 ≤ a ∈ C∞(U).
Using (7.33), we also know that

R`(d ? g) =
∑̀

j=−`

∫

U
div g · χ

Uj
dx

=
∑̀

j=−`

∫

∂∗Uj

nj · g dHM .

Here nj is the outward unit normal for Uj and ∂∗Uj is the reduced boundary
for Uj . Since Uj+1 ⊆ Uj, we have nj = nk on ∂∗Uj ∩ ∂∗Uk. Thus the last line
may be rewritten as

T`( ? g) =
∫

U
n · g h` dHM . (7.37)

In (7.37) we have let h` =
∑`

j=−`
χ

∂∗Uj
and let n be defined on

⋃∞
j=−∞ ∂∗Uj

by n = nj on ∂∗Uj.
Since |n| = 1 on

⋃∞
j=−∞ ∂∗Uj , we may thus conclude that
∫
a dµT`

=
∫
ah` dHM

=
∑̀

j=−`

∫

∂∗Uj

a dHM

=
∑̀

j=−`

∫
a dµ

∂ Uj
.

Letting `→ +∞, we can now conclude that

µT ≥
∞∑

j=−∞
µ

∂ Uj
.

The reverse inequality of course follows directly from (7.36). Hence the proof
is complete.
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7.6 Slicing

Our first goal in this section is to define the concept of the “slice” of an
integer-multiplicity current. Roughly speaking, we slice a current by inter-
secting it with the level set of a Lipschitz function. The process is closely
related to the content of the coarea formula. First recall from Theorem 5.4.8
that if S is an HM -measurable, countably M -rectifiable set, then, for HM -
almost every x ∈ S, the approximate tangent plane TxS exists. If, addi-
tionally, f : RM+K → R is Lipschitz, then for HM -almost every x ∈ S, the
approximate gradient ∇Sf(x) : TxS → R also exists.

The following lemma is a special case of Theorem 5.4.8.

Lemma 7.6.1 Let S be an HM -measurable, countablyM -rectifiable set and
let f : RM+K → R be Lipschitz. If we define S+ to be the set of x ∈ S for
which TxS and ∇Sf(x) exist and for which ∇Sf(x) 6= 0, then, for L1-almost
all t ∈ R, the following statements hold:

(1) St = f−1(t) ∩ S+ is countably HM−1-rectifiable.

(2) For HM−1 almost every x ∈ St, the tangent spaces TxS and TxSt both
exist. In fact TxSt is an (M − 1)-dimensional subspace of TxS and

TxS = {y + λ∇Sf(x) : y ∈ TxSt, λ ∈ R} .

Finally, for any nonnegative HM -measurable function g on S we have

(3)
∫ ∞

−∞

(∫

St

g dHM−1
)
dL1(t) =

∫

S
|∇Sf | g dHM .

Now we apply the lemma. We replace g in statement (3) by g ·χ{x:f(x)<t}.

We thus obtain the identity

∫

S∩{x:f(x)<t}
|∇Sf | g dHM =

∫ t

−∞

∫

Su

g dHM−1dL1(u) .

Hence the lefthand side is an absolutely continuous function of t and we may
write

d

dt

∫

S∩{x:f(x)<t}
|∇Sf | g dHM =

∫

St

g dHM−1 for all t ∈ R .
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We let T = τ (S, θ, ξ) be an integer-multiplicity current in U , with U an
open set in RM+K . Let f be a Lipschitz function on U and let

θ+(x) =

{
0 if ∇Sf(x) = 0 ,

θ(x) if ∇Sf(x) 6= 0 .

For almost every t ∈ R with TxS, TxSt existing for Hm−1 almost every
x ∈ St, and such that the identity (3) of Lemma 7.6.1 holds, we define ξt(x)
by

ξt(x) = ξ(x)

(
∇Sf(x)

|∇Sf(x)|

)
(7.38)

and we note that ξt(x) has the following properties

• ξt(x) is simple;

• ξt(x) lies in
∧

M−1 (TxSt) ⊆
∧

M−1 (TxS);

• ξt(x) has unit length for HM−1 almost every x ∈ St.

Continuing to assume that the current T ∈ DM (U) is given by T =
τ (S, θ, ξ), we define the slice of T by the Lipschitz mapping f as follows:

Definition 7.6.2 For almost every t ∈ R, we know that TxS, TxSt exist
and (3) of Lemma 7.6.1 holds for HM−1-almost every x ∈ St. We now define
the integer-multiplicity current 〈T, f, t〉 ∈ DM−1 by

〈T, f, t〉 = τ (St, θt, ξt) ,

where ξt(x) is as in (7.38) and

θt = θ+|St
.

We call 〈T, f, t〉 the slice of the current T by the function f at t. See Fig-
ure 7.6.

The next lemma records some of the main properties of slices.

Lemma 7.6.3 Slices enjoy these features:
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Figure 7.6: Slicing.

(1) For each open W ⊆ U ,
∫ ∞

−∞
MW ( 〈T, f, t〉 ) dL1(t) =

∫

S∩W
|∇Sf | θ dHM

≤
(

ess sup
S∩W

|∇Sf |
)

MW (T ) .

(2) If MW (∂T ) <∞ for all W ⊂⊂ U , then for almost every t ∈ R we have

〈T, f, t〉 = ∂[T {x : f(x) < t} ] − (∂T ) {x : f(x) < t} .

(3) If ∂T is of integer multiplicity in DM−1(U) then, for almost every t ∈ R,
we have

〈∂T, f, t〉 = −∂〈T, f, t〉 .

Proof.
(1) To prove (1), take g = θ+ in formula (3) of Lemma 7.6.1.
(2) Recall that the countable M -rectifiability of S allows us to write

S =
∞⋃

j=0

Sj ,



7.6. SLICING 217

where Si ∩Sj = ∅ when i 6= j, HM (S0) = 0, and each Sj ⊆ Vj, j ≥ 1, with Vj

an embedded, C1 submanifold of RM+K. This decomposition, together with
the definition of ∇S, shows that if h is Lipschitz on RM+K and if hσ are the
mollifications of h (formed in the usual way—see (5.31)) then, as σ → 0,

v · ∇Shσ converges to v · ∇Sh (7.39)

in the weak topology of L2(µT )) for any fixed, bounded HM -measurable
function v with values in RM+K. To verify this assertion, one need only
check that (2) holds with the C1 submanifolds Vj replacing Sj and with
v vanishing on RM+K \ Sj; one approximates v by a smooth function and
exploits the fact that the hσ converge uniformly to h.

Now let ε > 0 and let γ be the unique piecewise linear, continuous function
satisfying

γ(s) =

{
1 if s < t− ε ,
0 if s > t .

Then γ is Lipschitz, and we apply the reasoning of the preceding paragraph
to h = γ ◦ f . Letting ω ∈ DM (U), we have

∂T (hσω) = T (d(hσω))

= T (dhσ ∧ ω) + T (hσdω) .

Now, applying the integral representation (1.5.2.2) to ∂T , we see that

(∂T h)(ω) = lim
σ→0+

T (dhσ ∧ ω) + (T h)(dω) . (7.40)

Since ξ(x) orients TxS, we have

〈 dhσ ∧ ω, ξ(x) 〉 = 〈 (dhσ(x))T ∧ ωT , ξ(x) 〉

= 〈 (dhσ(x))T ∧ ω, ξ(x) 〉 .

Here λT denotes the orthogonal projection of Λq(RM+K) onto Λq(TxS)). We
conclude that

T (dhσ ∧ ω) =
∫

S
〈 (dhσ(x))T ∧ ω, ξ(x) 〉 θ dHM

=
∫

S
〈ω, ξ(x) ∇Shσ(x) 〉 θ dHM .
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Thus we may use (7.39) to write

lim
σ→0+

T (dhσ ∧ ω) =
∫

S
〈ω, ξ(x) ∇Sh(x) 〉 θ dHM . (7.41)

By definition of ∇Sh, and by the chain rule for Lipschitz functions, we have

∇Sh = γ′(f)∇Sf for HM almost every point of S . (7.42)

Here we have used the convention that γ′(f) = 0 when f takes one of the
values t or t− ε for which γ is not differentiable. Notice also that ∇Sh(x) =
∇Sf(x) = 0 for HM almost every point in {x ∈ S : f(x) = c}, c a constant.

Now (7.40), (7.41), and (7.42) tell us that

(∂T h)(ω) = −1

ε

∫

S∩{t−ε<f<t}
〈ω, ξ ∇Sf 〉 θ dHM + (T h)(dω) .

We conclude by letting ε→ 0 and exploiting the remark following the proof
of Lemma 7.6.1 with g = θ 〈ω, ξ ∇Sf/|∇Sf | 〉. In fact, by considering
a countable dense set of ω ∈ DM (U), we can show that the aforementioned
remark is applicable with this choice of g except on a set F of points t having
measure 0, with F independent of ω. That completes the proof of (2).
(3) To prove part (3) of the theorem, we begin by applying part (2) with ∂T
replacing T . Since ∂2 = 0, we find that

〈∂T, f, t〉 = ∂[(∂T ) {f < t}] .

If we instead apply ∂ to the identity in (2) we obtain

∂[ (∂T ) {x : f(x) < t} ] = −∂〈T, f, t〉 .

Therefore part (3) is proved.

The righthand side of the equation in part (2) of Lemma 7.6.3 makes
sense when T and ∂T are representable by integration, without the necessity
of assuming that T is an integer-multiplicity current. Thus we may consider
slicing for an arbitrary current T ∈ DM (U) which, together with its bound-
ary, has locally finite mass in U . So suppose that MW (T ) + MW (∂T ) < ∞
for all W ⊂⊂ U . Initially, we define two types of slices by

〈T, f, t−〉 = ∂[T {x : f(x) < t} ] − (∂T ) {x : f(x) < t} (7.43)
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and

〈T, f, t+〉 = −∂[T {x : f(x) > t} ] + (∂T ) {x : f(x) > t} . (7.44)

For only countably many values of t does it hold that

M[T {x : f(x) = t} ] + M[ (∂T ) {x : f(x) = t} ] > 0 .

For all other values of t, we have

〈T, f, t−〉 − 〈T, f, t+〉 = ∂[T {x : f(x) 6= t} ] − (∂T ) {x : f(x) 6= t} = 0 ,

and we denote the common value of 〈T, f, t+〉 and 〈T, f, t−〉 by 〈T, f, t〉.
The important facts about these slices are that, if f is Lipschitz on U ,

then
spt 〈T, f, t±〉 ⊂ sptT ∩ {x : f(x) = t} (7.45)

and, for all open W ⊂ U ,

MW

(
〈T, f, t+〉

)

≤ ess sup
W

|Df | · lim inf
h→0+

1

h
MW

(
T {t < f < t+ h}

)
, (7.46)

MW

(
〈T, f, t−〉

)

≤ ess sup
W

|Df | · lim inf
h→0+

1

h
MW

(
T {t− h < f < t}

)
. (7.47)

Certainly MW (T {f < t}) is increasing in t; thus the function is differen-
tiable for almost every t ∈ R and

∫ b

a

d

dt
MW (T {f < t}) dL1(t) ≤ MW (T {a < f < b})

for any a < b. Thus (7.47) yields the following bound on the upper integral
of the mass of the slices:

∫ b

a
MW (〈T, f, t±〉) dL1(t) ≤ ess sup

W
|Df | · MW (T {a < f < b}) (7.48)

for every open W ⊂ U .
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Now we prove (7.45), (7.46), and (7.47). First consider the case when f
is C1 and let γ be any smooth, increasing function from R to R+. We have

∂(T γ ◦ f)(ω) − ((∂T ) γ ◦ f)(ω) = (T γ ◦ f)(dω) − ((∂T ) γ ◦ f)(ω)

= T (γ ◦ f dω) − T (d(γ ◦ fω))

= −T (γ′(f)df ∧ ω) . (7.49)

Now let ε > 0 be arbitrary and select γ piecewise linear so that

γ(t) =

{
0 for t < a ,
1 for t > b .

We also suppose that 0 ≤ γ′(t) ≤ [1 + ε]/[b− a] for a < t < b. Then the left
side of (7.49) converges to 〈T, f, a+〉 if we let b decrease to a. Hence (7.45)
now follows because spt γ′ ⊂ [a, b].

Furthermore, the righthand side R of (7.49) is majorized by

|R| ≤ (sup
W

|Df |) ·
(

1 + ε

b− a

)
· MW (T {a < f < b}) · (sup

W
|ω|)

for all ω with support in W . Hence we have (7.46) for f ∈ C1. Equation
(7.47) for f ∈ C1 is proved similarly.

To handle the more general Lipschitz f , we simply examine fσ in place of
f in (7.43), (7.44) and in the preceding argument, and let σ → 0+ to obtain
the conclusion.

We conclude this section with a discussion of slicing a current T ∈ DM by
a Lipschitz function F : RM+K → RL, where 2 ≤ L ≤M . The most straight-
forward approach is to formulate the definition iteratively. For example, if T
is integer-multiplicity, then define

〈T, F, (t1, . . . , tL) 〉 = 〈 〈· · · 〈 〈T, F1, t1 〉, F2, t2 〉, · · ·〉, FL, tL〉 ,

where F1, F2, . . . , FL are the components of F .
Of particular interest to us will be slicing the integer-multiplicity current

T = τ (S, θ, ξ) by the orthogonal projection onto a coordinate M -plane. Let
Π : RM+K → RM map (x1, x2, . . . , xM+k) to (x1, x2, . . . , xM). Proceeding
in a manner similar to Lemma 7.6.1, we define S+ to be the set of x ∈ S
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for which TxS and ∇SΠ(x) exist and for which ∇SΠ(x) 6= 0. Then for
LM -almost every t = (t1, . . . , tM), we have

〈T, Π, t 〉 =
∑

x∈Π−1(t)∩S+

σ(x) θ(x) δx , (7.50)

where σ(x) = sgn(a) when 〈∧M Π, ξ(x) 〉 = a dx1 ∧ · · · ∧ dxM .
The next proposition is then evident from the definition in (7.50).

Proposition 7.6.4 Let Π : RM+K → RM be projection onto the coordinate
plane as above.

(1) If h : RM → RK, A ⊆ RM is LM -measurable, and H : RM → RM+K is
given by H(t) = (t, h(t)), then

〈H# A , Π, t 〉 = δH(t) .

(2) For continuous φ : RM+K → R and ψ : RM → R, if at least one of the
two functions is compactly supported, then

∫
ψ(x)〈T, p, x〉 (φ) dLMx = [T (ψ ◦ Π) dx1 ∧ . . . ∧ dxM ](φ) .

The interested reader will find an extremely thorough treatment of slicing
in a very general context in [Fed 69; Section 4.3].

7.7 The Deformation Theorem

One of the cornerstones of geometric measure theory, and more particularly of
the theory of currents, is the deformation theorem. There are both scaled and
unscaled versions of this result. The scaled version of the result is obtained
by applying homotheties to the unscaled version, so we will concentrate on
the unscaled version. First we need some notation that will be particular to
this treatment:

• 1 ≤ M,K ∈ Z (we will be considering M -dimensional currents in
RM+K);

• C = [0, 1] × [0, 1] × · · · × [0, 1] (the standard unit cube in RM+K);

• ZM+K = {z = (z1, z2, . . . , zM+K) : zj ∈ Z} (the integer lattice);
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• for j = 0, 1, . . . ,M + K, we will use Lj to denote the collection of all
the j-dimensional faces occurring in the cubes

tz(C) = [z1, z1 + 1] × [z2, z2 + 1] × · · · × [zM+K, zM+K + 1]

as z = (z1, z2, . . . , zM+K) ∈ ZM+K ranges over the integer lattice.

Each M -dimensional face F ∈ LM corresponds (once we make a choice
of orientation) to an integer-multiplicity current F . For currents having
finite mass and having boundaries of finite mass, the deformation theorem
tells us how such a current can be approximated by a linear combination of
the F , F ∈ LM . The name “deformation theorem” arises from the proof
of the theorem. The precise statement is as follows:

Theorem 7.7.1 (Deformation Theorem, Unscaled Version) Suppose
that T is an M -dimensional current in RM+K with

M(T ) + M(∂T ) <∞ .

Then we may write
T − P = ∂R + S ,

where P ∈ DM (RM+K), R ∈ DM+1(RM+K), and S ∈ DM (RM+K) satisfy

P =
∑

F∈LM

pF F , where pF ∈ R, for F ∈ LM , (7.51)

M(P ) ≤ cM(T ) , M(∂P ) ≤ cM(∂T ) , (7.52)

M(R) ≤ cM(T ) , M(S) ≤ cM(∂T ) . (7.53)

The constant c depends on M and K. Further,

sptP ∪ sptR ⊂
{
x : dist(x, sptT ) < 2

√
M +K

}
,

spt ∂P ∪ spt S ⊂
{
x : dist(x, spt ∂T ) < 2

√
M +K

}
.

Moreover, if T is an integer-multiplicity current, then P and R can be
chosen to be integer-multiplicity currents. Also, in this case, the numbers pF

in (7.51) are integers. If in addition ∂T is of integer multiplicity, then S can
be chosen to be of integer multiplicity. [We shall see later that, in case T is
of integer-multiplicity and M(∂T ) <∞, then ∂T is automatically of integer
multiplicity.]
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Figure 7.7: The deformation theorem.

See Figure 7.7.
A few remarks about the unscaled deformation theorem are now in order.

First, since ∂S = ∂T − ∂P and M(∂P ) ≤ cM(∂T ), it is an immediate
corollary that M(∂S) ≤ cM(∂T ). Also, the inequalities M(∂P ) ≤ cM(∂T )
and M(S) ≤ cM(∂T ) yield immediately that when ∂T = 0 then ∂P = 0
and S = 0.

For the record now, we shall also state the scaled version of the deforma-
tion theorem. In the statement, we will use the notation ηt : RM+K → RM+K

for the homothety defined by

ηt(x) = tx .

Theorem 7.7.2 (Deformation Theorem, Scaled Version) Fix ρ > 0.
Suppose that T is an M -dimensional current in RM+K with

M(T ) + M(∂T ) <∞ .

Then we may write
T − P = ∂R+ S ,

where P ∈ DM (RM +K), R ∈ DM+1(RM+K), and S ∈ DM (RM+K). We have

P =
∑

F∈LM

pF ηρ # F , (7.54)
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where pF ∈ R, for F ∈ LM , and

M(P ) ≤ cM(T ) , M(∂P ) ≤ cM(∂T ) , (7.55)

M(R) ≤ c ρM(T ) , M(S) ≤ c ρM(∂T ) . (7.56)

The constant c depends only on M and K. Further,

sptP ∪ sptR ⊂
{
x : dist(x, sptT ) < 2

√
M +Kρ

}
,

spt ∂P ∪ spt S ⊂
{
x : dist(x, spt ∂T ) < 2

√
M +Kρ

}
.

In the case that T is of integer multiplicity then so are P and R. If ∂T
is of integer multiplicity then so is S.

The scaled deformation theorem is an immediate consequence of applying
the unscaled theorem to η1/ρ#T and then applying ηρ # to the P , R, and S
so obtained. The two factors of ρ in (7.56) occur because the dimension of
R is 1 more than the dimension of T and the dimension of S is 1 more than
the dimension of ∂T . Thus it will suffice to prove the unscaled deformation
theorem.

The essence of the proof of the unscaled theorem consists in pushing-
forward by a retraction to deform the current T onto theM -skeleton LM . The
first step in our presentation of the proof will therefore be the construction
of the retraction. For this construction, we introduce additional notation.

• For j = 0, 1, . . . ,M +K, set

Lj =
⋃

F∈Lj

F ,

so that Lj is the j-skeleton of the cubical decomposition

⋃

z∈ZM+K

(z + C)

of RM+K;

• for j = 0, 1, . . . ,M +K, set

L̃j = (1
2
, 1

2
, . . . , 1

2
) + Lj .
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Clearly we have

RM+K = LM+K ⊇ LM+K−1 ⊇ LM+K−2 ⊇ · · · ⊇ L0 ,

and similar containments hold for the L̃j.
Observe that

L̃0 ∩ LM+K−1 = ∅,
L̃1 ∩ LM+K−2 = ∅,

...

L̃K−1 ∩ LM = ∅ ;

these equations hold because a point in LM+K−j−1 must have j + 1 integral
coordinate values, whereas a point in L̃j must have M + K − j coordinate
values that are multiples of 1/2. Similarly we see that, for any face F ∈
LM+K−j , the center of F is the point of intersection of F and L̃j. Thus the
nearest point retraction ξj : LM+K−j \ LM+K−j−1 → L̃j is well-defined. We

define the retraction ψj : LM+K−j \ L̃j → LM+K−j−1 by requiring that

• ψj(x) = x, if x ∈ LM+K−j−1;

• the line segment connecting ψj(x) and ξj(x) contains x, if x ∈ LM+K−j\
[ L̃j

⋃
LM+K−j−1 ].

In effect ψj radially projects the points in F ∈ LM+K−j from the center of
F onto the relative boundary of F , so of course ψj cannot be defined at the
center of F and still be continuous.

We define
ψ : RM+K \ L̃K−1 → LM

by
ψ = ψK−1 ◦ ψK−2 ◦ · · · ◦ ψ0 .

Figure 7.8 illustrates the mapping ψ (for M = 1 and K = 2) by showing
how ψ0 maps a curve in the unit cube onto the faces of the cube by radially
projecting from the center of the cube. Then ψ1 maps that projected curve
onto the edges of the cube by radially projecting from the centers of the faces.

It is crucial to estimate the norm of the differential of ψ. Because ψ is
the composition of radial projections, one can bound |Dψ| from below by

1 ≤ |Dψ| .
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Figure 7.8: The mapping ψ.

One also expects to be able to bound |Dψ| from above by a constant di-
vided by the minimum distance to any of the centers of projection. We will
prove such an upper bound, but in fact our proof will be more analytic than
geometric. We will need the next elementary lemma.

Lemma 7.7.3 If 0 ≤ a0 ≤ a1 ≤ · · · ≤ aj+1 < 1/2, then

j∏

i=0

(1 + 2ai − 2ai+1)
−1 ≤ 1

1 − 2aj+1
.

Proof. We argue by induction. The result is obvious if j = 0 and easily
verified if j = 1.

Now assuming that the result holds for j, we see that

j+1∏

i=0

(1 + 2ai − 2ai+1)
−1 ≤ (1 − 2aj+1)

−1 (1 + 2aj+1 − 2aj+2)−1

≤ 1

1 − 2aj+2

,

where the first inequality follows from the induction hypothesis and the sec-
ond inequality follows from the case j = 1.

Lemma 7.7.4 There is a constant c = c = c(M,K) such that

|Dψ(x)| ≤ c

ρ

holds for LM+K-almost every x ∈ RM+K \ L̃K−1, where ρ = dist(x, L̃K−1).
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Proof. First note that if θ is the composition of reflections through planes
of the form ej · x = k/2, k ∈ Z, translations of the form tz, z ∈ ZM+K, and
permutations of coordinates, then θ◦ψ◦θ−1 = ψ. Thus it suffices to consider
points x = (x1, x2, . . . , xM+K) of the form

0 < x1 < x2 < · · · < xM+K < 1/2 .

Since no coordinate of x equals 1/2, we have x /∈ L̃M+K. One computes
ψ0(x) by finding the smallest value of t ∈ R for which

(1 − t) (1
2
, 1

2
, . . . , 1

2
) + t (x1, x2, . . . , xM+K)

has a coordinate equal to 0. In fact, that smallest value of t is 1/(1 − 2x1)
and we see that

ψ0(x) =
1

1 − 2x1

(0, x2 − x1, . . . , xM+K − x1) .

Proceeding in this way, we see that

ψ1 ◦ ψ0(x) =
1

1 − 2x1

1

1 − 2(x2 − x1)
(0, 0, x3 − x2, . . . , xM+K − x2)

and, ultimately, that

ψ(x) = ψK−1 ◦ ψK−2 ◦ · · · ◦ ψ0(x)

= (1 − 2x1)
−1

K−1∏

j=1

[ 1 − 2(xj+1 − xj) ]−1 (7.57)

(0, 0, . . . , 0, xK+1 − xK, . . . , xM+K − xK)

=
K−1∏

j=0

(1 + 2xj − 2xj+1)−1

(0, 0, . . . , 0, xK+1 − xK, . . . , xM+K − xK) ∈ LM ,

where x0 = 0.
By computing the partial derivatives of

(xI − xK)
K−1∏

j=0

(1 + 2xj − 2xj+1)
−1 , for 1 +K ≤ I ≤M +K,
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and using the estimate in Lemma 7.7.3, we see that each

∣∣∣∣∣
∂(eI · ψ)

∂xJ

∣∣∣∣∣

can be bounded by a constant multiple of (1− 2xM+K)−1. Since the point of
L̃K−1 nearest to x is (x1, x2, . . . , xK−1,

1
2
, 1

2
, . . . , 1

2
), we have

ρ = 2−1




M+K∑

j=K

(1 − 2xj)
2




1/2

≥ 2−1 (1 − 2xM+K) ,

so the desired bound holds.

7.8 Proof of the Unscaled Deformation The-

orem

We divide the proof into four steps.
Step 1. We claim that

∫

C̃
|Dψ(x)|M dLM+Kx <∞ ,

where C̃ = [−1
2
, 1

2
] × [−1

2
, 1

2
] × · · · × [−1

2
, 1

2
].

Using the estimate in Lemma 7.7.4, we see that it will suffice to bound∫

C̃
(ρ̃)−M dLM+K , where ρ̃ is the distance from a point in RM+K to the union

of the (K−1)-dimensional coordinate planes. Since the distance from a point
to the union of the (K − 1)-dimensional coordinate planes is the minimum
of the distances to each of the individual (K − 1)-dimensional coordinate
planes, if we write x = (x′, x′′) ∈ RM+K where x′ ∈ RM+1 and x′′ ∈ RK−1,

then it will suffice to bound
∫

C̃
|x′|−M dLM+Kx. We may also replace C̃ by

the larger set B1 ×B2, where

B1 = {x′ ∈ RM+1 : |x′| ≤ 2−1(M + 1)1/2} ,

B2 = {x′′ ∈ RK−1 : |x′′| ≤ 2−1(K − 1)1/2} .
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We have
∫

C̃
|x′|−M dLM+Kx ≤

∫

B1

∫

B2

|x′|−M dLM+1x′ dLK−1x′′

= LK−1(B2) ·
∫ 2−1(M+1)1/2

0

∫

RM+1∩{ξ:|ξ|=r}
r−M dHMξ dL1r

= LK−1(B2) · HM
(
RM+1 ∩ {ξ : |ξ| = 1}

)
· 2−1(M + 1)1/2 <∞ .

Step 2.There exists a point a ∈ C̃ such that

∫
|Dψ(x)|M d‖ta #T‖x ≤ cM(T ) ,

∫
|Dψ(x)|M d‖ta#∂T‖x ≤ cM(∂T )

hold, where c depends only on M and K. (Recall that ‖W‖ denotes the total
variation measure of the current W .)

Set
c = 4

∫

C̃
|Dψ(x)|M dLM+Kx .

By the symmetry in the construction of ψ we have

∫

C̃
|Dψ(x+ a)|M dLM+Ka =

∫

C̃
|Dψ(a)|M dLM+Ka = c/4 .

By Fubini’s theorem, we have

(c/4)M(T ) =
∫ ∫

C̃
|Dψ(x+ a)|M dLM+Ka d‖T‖x

=
∫

C̃

∫
|Dψ(x+ a)|M d‖T‖x dLM+Ka .

Set

G1 =
{
a ∈ C̃ :

∫
|Dψ(x+ a)|M d‖T‖x ≤ cM(T )

}
,

B1 = C̃ \G1 =
{
a ∈ C̃ :

∫
|Dψ(x+ a)|M d‖T‖x > cM(T )

}
.
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We have
∫

C̃

∫
|Dψ(x+ a)|M d‖T‖x dLM+Ka ≥ cM(T )LM+K(B1)

so, if LM+K(B1) ≥ 1/3 held, then we would have (c/4)M(T ) ≥ (c/3)M(T ).
That is a contradiction. Thus we have LM+K(B1) < 1/3 and LM+K(G1) ≥
2/3.

A similar argument shows that

G2 =
{
a ∈ C̃ :

∫
|Dψ(x+ a)|M d‖∂T‖x ≤ cM(∂T )

}

satisfies LM+K(G2) ≥ 2/3.
We have

LM+K(G1
⋂
G2) = LM+K(G1) + LM+K(G2) − LM+K(G1

⋃
G2)

≥ LM+K(G1) + LM+K(G2) − LM+K(C̃) ≥ 1/3 .

Thus there exists a ∈ G1
⋂
G2. Finally, we observe that

∫
|Dψ(x)|M d‖ta #T‖x =

∫
|Dψ(x+ a)|M d‖T‖x

and ∫
|Dψ(x)|M d‖∂ta #T‖x =

∫
|Dψ(x+ a)|M d‖∂T‖x

hold.

Step 3. Now we fix an a ∈ C̃ as in Step 2 above and write T̃ = ta #T .
Applying the homotopy formula (see (7.22) in Subsection 7.4.3), we have

T = T̃ + ∂h#( (0, 1) × T ) + h#( (0, 1) × ∂T ) , (7.58)

where h is the affine homotopy

h(t, x) = t x+ (1 − t)ψ(x)

between the identity map and ta. We have the estimates

M[h#( (0, 1) × T ) ] ≤ |a|M(T ) ,

M[h#( (0, 1) × ∂T ) ] ≤ |a|M(∂T ) .



7.8. PROOF OF THE UNSCALED DEFORMATION THEOREM 231

We also have

T̃ = ψ# T̃ + ∂k#( (0, 1) × T̃ ) + k#( (0, 1) × ∂T̃ ) , (7.59)

where k is the affine homotopy

k(t, x) = t x+ (1 − t)ψ(x)

between the identity map and ψ. We also note the estimates

M[ k#( (0, 1) × T̃ ) ] ≤ 2−1 (M +K)1/2
∫

|Dψ(x)|M d‖T̃‖x

≤ 2−1 (M +K)1/2 cM(T ) ,

M[ k#( (0, 1) × ∂T̃ ) ] ≤ 2−1 (M +K)1/2
∫

|Dψ(x)|M−1 d‖∂T̃‖x

≤ 2−1 (M +K)1/2
∫

|Dψ(x)|M d‖∂T̃‖x

≤ 2−1 (M +K)1/2 cM(∂T ) ,

M
(
ψ# T̃

)
≤

∫
|Dψ(x)|M d‖T̃‖x ≤ cM(T ) ,

M
(
ψ# ∂T̃

)
≤

∫
|Dψ(x)|M−1 d‖∂T̃‖x

≤
∫

|Dψ(x)|M d‖∂T̃‖x ≤ cM(∂T ) .

Combining (7.58) and (7.59), we have

T − ψ#T̃ = ∂
[
h#( (0, 1) × T ) + k#( (0, 1) × T̃ )

]

+ h#( (0, 1) × ∂T ) + k#( (0, 1) × ∂T̃ ) .

We set

R = h#( (0, 1) × T ) + k#( (0, 1) × T̃ )

and

S1 = h#( (0, 1) × ∂T ) + k#( (0, 1) × ∂T̃ ) .
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Note that R is integer-valued if T is and S1 is integer-valued if ∂T is. Also
we have

sptR ⊂
{
x : dist(x, sptT ) < 2

√
M +K

}
,

sptS1 ⊂
{
x : dist(x, spt ∂T ) < 2

√
M +K

}
.

Step 4. While ψ#T̃ is supported in LM , it need not have the form
∑

F∈LM

pF F

required by (7.51). Following Simon, we will now show how ψ#T̃ can be used
to construct P as in (7.51).

Write Q = ψ#T̃ . We have

sptQ ⊂ LM . (7.60)

Let F be one of the faces in LM (that is to say, F ∈ LM ) and let F̊ be the
interior of F . Suppose that F ⊂ RM ×{0} ⊂ RM+K and let p be orthogonal
projection onto RM × {0}. The construction of ψ tells us that p ◦ ψ = ψ in
a neighborhood of any point y ∈ F̊ . Thus we have that

p#(Q F̊ ) = Q F̊ .

Identifying RM ×{0} with RM and applying Proposition 7.3.4, we obtain
a function of bounded variation θF such that

M(Q F̊ ) =
∫

F̊
|θF | dLMx (7.61)

and
M((∂Q) F̊ ) =

∫

F̊
|DθF | (7.62)

hold and such that

(Q F̊ )(ω) =
∫

F̊
〈ω(x), e1 ∧ e2 ∧ · · · ∧ en 〉 θF (x) dLMx (7.63)

holds for all ω ∈ DM (RM).
In addition, by (7.63),

(Q F̊ − β F )(ω) =
∫

F̊
(θF − β) 〈ω(x), e1 ∧ · · · ∧ eM 〉 dLMx .
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Thus, we have

M(Q F̊ − β F ) =
∫

F̊
|θF − β| dLMx (7.64)

M(∂(Q F̊ − β F )) =
∫

RM
|D(χ

F̊
(θF − β))| . (7.65)

Now let us take β = βF such that

min
{
LM{x ∈ F̊ : θF ≥ β}, LM{x ∈ F̊ : θF (x) ≤ β}

}
≥ 1

2
.

Note that we can do this because LM (F̊ ) = 1. Also we may take βF ∈ Z
whenever θF is integer-valued.

We have now, by Theorem 5.5.6, Theorem 5.5.7, (7.61), (7.62), (7.64),
and (7.65), that

M(Q F̊ − β F ) ≤ c
∫

F̊
|DθF | = cM(∂Q F̊ ) (7.66)

M(∂(Q F̊ − β F )) ≤ c
∫

F̊
|DθF | = cM(∂Q F̊ ) . (7.67)

It is also the case that
Q ∂F = 0 . (7.68)

Now, summing over F ∈ LM and using (7.66), (7.67), and (7.68), with
P =

∑
F∈LM

βF F , we see that

M(Q− P ) ≤ cM(∂Q) (7.69)

M(∂Q− ∂P ) ≤ cM(∂Q) . (7.70)

Actually our choice of βF tells us that

|βF | ≤ 2
∫

F̊
|θF | dLMx .

Thus, again using (7.64), and since M(P ) =
∑

F |βF |,
M(P ) ≤ cM(Q) . (7.71)

We also know, from (7.70) above (and the triangle inequality), that

M(∂P ) ≤ cM(∂Q) . (7.72)

Finally, we write
T − P = ∂R+ S , (7.73)

where S = S1 + (Q− P ), and the deformation theorem follows.
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7.9 Applications of the Deformation Theo-

rem

There are some immediate applications of the deformation theorem that am-
ply illustrate the power of the theorem. These are:

• The isoperimetric theorem;

• The weak polyhedral approximation theorem;

• The boundary rectifiability theorem.

Theorem 7.9.1 (Isoperimetric Inequality) Let M ≥ 2. Suppose that
T ∈ DM−1(RM+K) is of integer multiplicity. Assume that spt T is compact
and that ∂T = 0. Then there is a compactly supported, integer-multiplicity
current R ∈ DM (RM+K) such that ∂R = T and

[M(R) ](M−1)/M ≤ cM(T ) .

Here the constant c depends on M and K.

The theorem deserves some commentary. In its most classical formula-
tion, the current T is a current of integration on a simple, closed curve γ
in R2. Of course the mass of T is then its length. The current R is then a
2-dimensional current (i.e., a region in the plane) whose boundary is T . And
the conclusion of the theorem is then that the square root of the area of R
is majorized by a constant times the mass of T . We know, both intuitively
and because of the classical isoperimetric theorem, that the extremal curve
T—that is, the curve that encloses the largest area for a given perimeter (see
Figure 7.9)—is the circle. Let us say that that extermal curve is a circle of
radius r. Its mass is 2πr. The region inside this curve is a disc of radius
r, and its mass is πr2. In this situation the asserted inequality is obvious
with constant c = 1/[ 2

√
π ]. A similar discussion of course applies in higher-

dimensional Euclidean space, with “circle” and “disc” replaced by “sphere”
and “ball”.

Proof of the Theorem: The case T = 0 is trivial, so let us assume that
T 6= 0. Let P,R, S be integer-multiplicity currents as in Theorem 7.7.2, the
scaled version of the deformation theorem, applied with M replaced by M−1
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Figure 7.9: The isoperimetric inequality.

and K replaced by K + 1. For the moment, ρ > 0 is arbitrary; observe also
that S = 0 because ∂T = 0.

Clearly, because

M( ηρ# F ) = HM−1[ η(F ) ] = ρM−1

for all F ∈ FM−1, we know that

M(P ) = N(ρ) ρM−1

for some nonnegative integer N(ρ). Theorem 7.7.2 tells us that M(P ) ≤
cM(T ). If we take

ρ = [ 2 cM(T ) ]1/(M−1) , (7.74)

then we have

N(ρ) 2 cM(T ) = N(ρ) ρM−1 = M(P ) ≤ cM(T ) ,

so 2N(ρ) ≤ 1, implying that N(ρ) = 0.
Choosing ρ as in (7.74), we have P = 0. Theorem 7.7.1 now tells us that

T = ∂R for the compactly supported, integer-multiplicity current R and we
have

M(R) ≤ c ρM(T ) = 21/(M−1) cM/(M−1) [M(T ) ]M/(M−1) .

Theorem 7.9.2 (Weak Polyhedral Approximation Theorem) Let
T ∈ DM (U) be any integer-multiplicity current with MW (∂T ) < ∞ for
all W ⊂⊂ U . Then there is a sequence {PK} of currents of the form

PK =
∑

F∈FM

p
(K)
F ηρ# F , (7.75)
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for p
(K)
F ∈ Z and ρK ↓ 0 with PK converging weakly to T (so ∂PK also

converges weakly to ∂T ) in U .

Proof. First consider the case U = RM+K and M(T ) < ∞, M(∂T ) < ∞.
Now we just use the deformation theorem directly: For any sequence ρK ↓ 0,
Theorem 7.7.1, the scaled version of the deformation theorem, applied with
ρ = ρK, yields PK as in (7.75) such that

T − PK = ∂RK + SK

for some RK, SK such that

M(RK) ≤ c ρK M(T ) → 0

M(SK) ≤ c ρK M(∂T ) → 0

and

M(PK) ≤ cM(T ) and M(∂PK) ≤ cM(∂T ) .

Clearly the last three lines give PK(ω) → TK(ω) for all ω ∈ DM (RM+K).
Also ∂PK = 0 if ∂T = 0. Hence the theorem is established if U = RM+K and
T , ∂T are of finite mass.

For the general case, let us take any Lipschitz function φ on RM+K such
that φ > 0 in U and φ = 0 on RM+K \ U . We further assume that {x =
φ(x) > λ} ⊂⊂ U for all λ > 0. For L1-almost every λ > 0, Lemma 7.6.3
implies that Tλ ≡ T {x : φ(x) > λ} is such that M(∂Tλ) < ∞. Since
spt Tλ ⊂⊂ U , we can use the above argument to approximate Tλ for any such
λ. Then, for a suitable sequence λj ↓ 0, the required approximation is an
immediate consequence.

Theorem 7.9.3 (Boundary Rectifiability Theorem) Let T be an integer-
multiplicity current in DM such that MW (∂T ) < ∞ for all W ⊂⊂ U . Then
∂T , which is an element of DM−1(U), is an integer multiplicity current.

Proof. This is a direct consequence of the last theorem and of the com-
pactness theorem, Theorem 7.5.2, applied to integer-multiplicity currents of
dimension M − 1.
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Remark 7.9.4 The compactness theorem is not proved until Section 8.1.6.
We will see there that the proof of the compactness theorem for integer-
multiplicity currents of dimension M uses the boundary rectifiability theo-
rem for currents of dimension M − 1. So logically the compactness theorem
and boundary rectifiability theorem are proved together in an induction that
begins with the compactness theorem for integer-multiplicity currents of di-
mension 0.
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Chapter 8

Currents and the Calculus of
Variations

8.1 Proof of the Compactness Theorem

First let us recall the statement of the compactness theorem, Theorem 7.5.2:

The Compactness Theorem for Integer-Multiplicity Currents
Let {Tj} ⊆ DM (U) be a sequence of integer-multiplicity currents such that

sup
j≥1

[
MW (Tj) + MW (∂Tj)

]
<∞ for all W ⊂⊂ U .

Then there is an integer-multiplicity current T ∈ DM (U) and a subsequence
{Tj′} such that Tj′ → T weakly in U .

Logically the compactness theorem and boundary rectifiability theorem
are proved in tandem by induction on M , the dimension of the currents. The
induction begins with the straightforward proof of the compactness theorem
in the case M = 0. That proof is given in the next subsection.

The induction step is then in two parts. First it is shown that the bound-
ary rectifiability theorem is valid. Note that the boundary rectifiability the-
orem is vacuous when M = 0. In Section 7.9, we showed that, when M ≥ 1,
the boundary rectifiability theorem is an easy consequence of the compact-
ness theorem for currents of dimension M − 1.

The second part of the induction step is to prove the compactness theorem
for dimension M assuming the boundary rectifiability theorem for dimension

239
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M and the compactness theorem for dimension M − 1. The strategy for
this part of the proof is to use slicing to convert a sequence of weakly conver-
gent M -dimensional integer-multiplicity currents into a sequence of functions
which take their values in the space of 0-dimensional integer-multiplicity cur-
rents. These functions are of bounded variation in an appropriate sense. We
then analyze the behavior of the graphs of such functions of bounded varia-
tion to understand the structure of the limit M -dimensional current.

To carry out this program we must study the 0-dimensional integer-
multiplicity currents in some detail and we must define and investigate the
appropriate space of functions of bounded variation.

8.1.1 Integer-Multiplicity 0-Currents

Notation 8.1.1

(1) We will let R0(RM+K) denote the space of finite mass, integer-multiplicity
0-currents in RM+K.

(2) By (7.29), a nonzero current T in R0(RM+K) can be written

T =
α∑

j=1

cj δpj , (8.1)

where α is a positive integer, pj ∈ RM+K, for each 1 ≤ j ≤ α, pi 6= pj ,
for 1 ≤ i 6= j ≤ α, δpj is the Dirac mass at pj , and cj ∈ Z \ {0}, for
each 1 ≤ j ≤ α.

Proof of the Compactness Theorem for Integer-Multiplicity Cur-
rents of Dimension 0. Suppose that there is a Tj ∈ R0(RM+K), j =
1, 2, . . . , and that

L = sup
j≥1

M(Tj) <∞ .

By the Banach-Alaoglu theorem there is T ∈ D0(RM+k) such that a subse-
quence of the Tj converges weakly to T . For simplicity, we will not change
notation. Instead we will suppose that the original sequence Tj converges
weakly to T . What we must prove is that T ∈ R0(RM+K).

Consider 0 < m <∞ chosen large enough that T B(0,m) 6= 0. We can
write each Tj B(0,m) ∈ R0(RM+K) as

Tj B(0,m) =
L∑

i=1

c
(j)
i δ

p
(j)
i
,
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where
c
(j)
i ∈ Z , −L ≤ c

(j)
i ≤ L , p

(j)
i ∈ B(0,m) .

We now allow c
(j)
i = 0 because it may well be the case that M[Tj B(0,m) ] <

L holds.
By the Bolzano-Weierstrass theorem, we can pass to a subsequence—but

again we will not change notation—so that, for j = 1, 2, . . . , L, c
(j)
i → ci ∈ Z

and p
(j)
i → pi ∈ B(0,m) as j → ∞.

If φ ∈ D0(RM+K) with supp φ ⊆ B(0,m), then we have

Tj(φ) = Tj B(0,m)(φ) →
L∑

i=1

ci φ(pi)

and we have Tj(φ) → T (φ) because Tj converges weakly to T . Thus we can
write

T B(0,m) =
α∑

i=1

ci δpi ,

where by renaming we can suppose that α ≤ L is a positive integer, pi ∈
B(0,m) for each 1 ≤ i ≤ α, ph 6= pi for 1 ≤ h 6= i ≤ α, and ci ∈ Z \ {0} for
each 1 ≤ i ≤ α. Since M(T ) ≤ L <∞, we see that in fact we can choose m
large enough that T = T B(0,m).

Notation 8.1.2

(1) Equation (8.1) tells us that, for φ ∈ D0(RM+K),

T (φ) =
α∑

j=1

cj φ(pj) . (8.2)

We extend the domain of T by defining T (φ) to equal the righthand
side of (8.2) whenever it is defined.

(2) We will use the metric d0 on R0(RM+K) defined by

d0(T1, T2)

= sup{ (T1 − T2)(φ) : φ is Lipschitz, ‖φ‖∞ ≤ 1, ‖dφ‖∞ ≤ 1 } .

(3) We let FM+K denote the space of nonempty finite subsets of RM+K

metrized by the Hausdorff distance. The Hausdorff distance is defined
in Section 1.5. The Hausdorff distance between A and B is denoted by
HD(A,B).
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(4) Define
% : R0(RM+K) → R

by
%(T ) = inf{ |p− q| : p, q ∈ spt (T ), p 6= q } .

Note that if either T = 0 or card[ spt (T ) ] = 1, then %(T ) = +∞.

Lemma 8.1.3 If Tj ∈ R0(RM+K) and Tj → T ∈ R0(RM+K) weakly as
j → ∞, then

card[ spt (T ) ] ≤ lim inf
j→∞

card[ spt (Tj) ] .

If additionally

card[ spt (T ) ] = card[ spt (Tj) ], j = 1, 2, . . . ,

then
%(T ) = lim

j→∞
%(Tj) .

Proof. For each p ∈ spt (T ) we can find φp ∈ D0(RM+K) for which φp(p) =
1, φp(x) < 1 for x 6= p, and φp(q) = 0 for q ∈ spt (T ) with q 6= p. The
existence of such a function φp implies that p is a limit point of any set of
the form

⋃
i≥I spt [Tji ], and the result follows.

The proof of the next lemma is elementary, but we treat it in detail
because the result is so essential to proving the compactness theorem.

Lemma 8.1.4 If T, T̃ ∈ R0(RM+K) satisfy 0 < M(T ) = M(T̃ ), then it
holds that

min
{

1, (1/3) %(T ), HD [ spt (T ), spt (T̃ ) ]
}
≤ d0(T, T̃ ) .

Proof. Write T =
∑α

j=1 cj δpj as in (8.1), and write T̃ =
∑

q∈spt (T̃ )
γq δq. Set

r = min
{

1, (1/3) %(T )
}
.

We may assume that d0(T, T̃ ) < r.
Because M(T ) = M(T̃ ) holds, we have

α∑

j=1

|cj| =
∑

q∈spt (T̃)

|γq| . (8.3)
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For j = 1, 2, . . . , α, define φj by setting

φj(x) =





sgn(cj) · [ r − |x− pj | ] if |x− pj | < r,

0 if |x− pj | ≥ r.

Since |φj| ≤ rT ≤ 1 and |dφj| ≤ 1 hold, we have (T − T̃ )(φj) ≤ d0(T, T̃ ).
If there were 1 ≤ j ≤ α for which spt (T̃ )

⋂
B(pj, r) = ∅ held, then we

would have

d0(T, T̃ ) ≥ (T − T̃ )(φj) = T (φj) = r |cj| ≥ r ,

contradicting the assumption that d0(T, T̃ ) < r holds. We conclude that

spt (T̃ )
⋂

B(pj , r) 6= ∅ , for j = 1, 2, . . . , α. (8.4)

Now define φ =
∑α

j=1 φj. Since the φj have disjoint supports, we see that
|φ| ≤ rT ≤ 1 and |dφ| ≤ 1 hold. Setting

Aj = spt (T̃ )
⋂

B(pj , r) , B = spt (T̃ ) \ ⋃α
j=1Aj

and using (8.3), we have

d0(T, T̃ ) ≥ (T − T̃ )(φ) = T (φ) − T̃ (φ)

= r
α∑

j=1

|cj| −
α∑

j=1

∑

q∈Aj

sgn(cj) [ r − |q − pj | ] γq

= r
∑

q∈spt (T̃)

|γq| −
α∑

j=1

∑

q∈Aj

sgn(cj) [ r − |q − pj | ] γq

=
∑

q∈B

r |γq| +
α∑

j=1

∑

q∈Aj

(
r |γq| − sgn(cj) [ r − |q − pj | ] γq

)
. (8.5)

Note that every summand in (8.5) is nonnegative.
If there existed q ∈ B, then we would have

d0(T, T̃ ) ≥ r |γq| ≥ r ,

contradicting the assumption that d0(T, T̃ ) < r holds. We conclude that

spt (T̃ ) ⊆ ⋃α
j=1B(pj , r) . (8.6)
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Now we consider q∗ ∈ spt (T̃ ) and 1 ≤ j∗ ≤ α such that q∗ ∈ Aj∗. Looking
only at the summand in (8.5) that corresponds to j∗ and q∗, we see that

d0(T, T̃ ) ≥ r |γq∗| − sgn(cj∗) [ r − |q∗ − pj∗ | ] γq∗ (8.7)

holds.
In assessing the significance of (8.7) there are two cases to be considered

according to the sign of cj∗γq∗.
Case 1: In case sgn(cj∗ γq∗) = −1 holds, we have

sgn(cj∗) γq∗ = sgn(cj∗) sgn(γq∗) |γq∗ | = sgn(cj∗ γq∗) |γq∗ | = −|γq∗| .

The fact that sgn(cj∗) γq∗ = −|γq∗| holds implies

d0(T, T̃ ) ≥ r |γq| − sgn(cj) [ r − |q − pj | ] γq

= (r + r − |q∗ − pj∗ |) |γq∗| ≥ r ,

and this last inequality contradicts the assumption that d0(T, T̃ ) < r.
Case 2: Because of the contradiction obtained in the last paragraph, we see
that sgn(cj∗ γq∗) = +1 must hold. Consequently we have sgn(cj∗) γq∗ = |γq∗|,
which implies

d0(T, T̃ ) ≥ (r − r + |q − pj∗ |) |γq∗| ≥ |q∗ − pj∗ | .

By (8.6), for q∗ ∈ spt (T̃ ), there exists j∗ such that q∗ ∈ Aj∗. Similarly,
by (8.4), for 1 ≤ j∗ ≤ α, there exists q∗ ∈ spt (T̃ ) such that q∗ ∈ Aj∗. Thus
we conclude that d0(T, T̃ ) ≥ HD [ spt (T ), spt (T̃ ) ].

Theorem 8.1.5

(1) If A ⊆ RM and f : A→ FM+K is a Lipschitz function, then
⋃

x∈A

f(x) (8.8)

is a countably M -rectifiable subset of RM+K.

(2) If A ⊆ RM and g : A→ R0(RM+K) is a Lipschitz function, then
⋃

x∈A

spt [ g(x) ] (8.9)

is a countably M -rectifiable subset of RM+K.
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Proof.
(1) Let m be a Lipschitz bound for f . Then 1 will be a Lipschitz bound
for f(x/m). Thus, without loss of generality, we may suppose that 1 is a
Lipschitz bound for f .

In this proof, we will need to consider open balls in both RM and in
RM+K. Accordingly, we will use the notation BM(x, r) for the open ball in
RM and BM+K(x, r) for the open ball in RM+K.

For ` = 1, 2, . . ., set A` = {x ∈ A : card[ f(x) ] = ` }. Note that⋃
x∈A1

f(x) is the image of the Lipschitz function u : A1 → RM+K defined by
requiring f(x) = {u(x)}.

Now consider ` ≥ 2 and x ∈ A`. Write f(x) = { p1, p2, . . . , p` } and set
r(x) = mini 6=j |pi − pj |.

If z ∈ A`
⋂BM(x, r(x)/4), and then for each i = 1, 2, . . . , ` there is a

unique q ∈ f(z)
⋂

BM+K(pi, r(x)/4) and we define ui(z) = q.
The functions u1, u2, . . . , u` are Lipschitz because, for

z1, z2 ∈ A`
⋂BM (x, r(x)/4) ,

we have

HD [ f(z1), f(z2) ] = max{ |ui(z1) − ui(z2)| : i = 1, 2, . . . , ` } .

Since

⋃

z∈A`∩BM (x,r(x)/4)

f(z) =
⋃̀

i=1

{
ui(z) : z ∈ A`

⋂BM(x, r(x)/4)
}
,

we see that
⋃

z∈A`∩BM (x,r(x)/4)f(z) is a countably M -rectifiable subset of
RM+K.

As a subspace of a second countable space, A` is second countable, so it
has the Lindelöf1 property; that is, every open cover has a countable subcover.
Thus there is a countable cover of A` by sets of the form A`

⋂BM (x, r(x)/4),
x ∈ A`. We conclude that

⋃
z∈A`

f(z) is a countably M -rectifiable subset of
RM+K and hence

⋃∞
`=1

⋃
z∈A`

f(z) is also countably M -rectifiable.
(2) Without loss of generality, suppose that 1 is a Lipschitz bound for g. For
i and j positive integers, set

Ai,j = {x ∈ A : M[ g(x) ] = j and 2−i < rg(x) } ,
1Ernst Leonard Lindelöf (1870–1946).
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where
rg(x) = min

{
1, (1/3) ρ[ g(x) ]

}
.

Fix x ∈ Ai,j. For z1, z2 ∈ Ai,j
⋂B(x, 2−i−1), we have

M[ g(z1) ] = M[ g(z2) ] = j and d0[ g(z1), g(z2) ] < 2−i < rg(z1) .

So, by Lemma 8.1.4, HD [ spt (g(z1)), spt (g(z2)) ] ≤ d0[ g(z1), g(z2) ] holds.
Thus,

f : Ai,j
⋂

B(x, 2−i−1) → FM+K

defined by f(z) = spt [ g(z) ] is Lipschitz. By part (1) we conclude that

⋃

z∈Ai,j∩B(x,2−i−1)

spt [ g(z) ] (8.10)

is a countably M -rectifiable subset of RM+K. As in the proof of (1), we
observe that Ai,j has the Lindelöf property, and so the result follows.

8.1.2 A Rectifiability Criterion for Currents

The next theorem provides a criterion for guaranteeing that a current is an
integer-multiplicity rectifiable current. Later we shall use this criterion to
complete the proof of the compactness theorem.

Theorem 8.1.6 (Rectifiability Criterion) If T ∈ DM (RM+K) satisfies
the following conditions:

(1) M(T ) + M(∂T ) <∞,

(2) ‖T‖ = HM θ, where θ is integer-valued and nonnegative,

(3) {x : θ(x) > 0 } is a countably M -rectifiable set,

then T is an integer-multiplicity rectifiable current.

Proof. Set S = {x : θ(x) > 0 }. We need to show that, for HM -almost

every point in S,
−⇀
T (x) = v1 ∧ · · · ∧ vM , where v1, . . . , vM is an orthonormal

system parallel to TxS.
Of course, HM -almost every point x of S is a Lebesgue point of θ and is a

point where
−⇀
T (x) and TxS exist. Also, by Theorem 4.3.7, Θ∗M(‖∂T‖, x) <
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∞ holds for HM -almost every x ∈ S. Hence ΘM−1(‖∂T‖, x) also holds for
HM -almost every x ∈ S. Let us consider such a point and, for convenience
of notation, suppose that x = 0. Consider a sequence ri ↓ 0. Passing to
a subsequence if necessary, but without changing notation, we may suppose
that ηri #T and ηri #∂T converge weakly to R and ∂R, respectively. Here

ηr : RM+K → RM+K is given by ηr(z) = r−1 z. Then we have
−⇀
R (0) =

−⇀
T (0),

∂R = 0, and sptR ⊆ T0S. By Proposition 7.3.5 (a variant of the constancy

theorem), we have
−⇀
R (x) = v1∧· · ·∧vM , where v1, . . . , vM is an orthonormal

system parallel to T0S.

8.1.3 MBV Functions

In this subsection, we introduce a class of metric-space-valued functions of
bounded variation. The notion of metric-space-valued functions of bounded
variation was introduced in [Amb 90] and applied to currents in [AK 00].

Definition 8.1.7

(1) A function u : RM → R0(RM+K) can be written

u(y) =
∞∑

i=1

ci(y) δpi(y) , (8.11)

where only finitely many ci(y) are nonzero, for any y ∈ RM .

(2) If u is as in (8.11) and and φ : RM+K → R, then we define u�φ : RM →
R by setting

(u � φ)(y) =
∞∑

i=1

ci(y)φ
[
pi(y)

]
, (8.12)

for y ∈ RM ; thus the value of (u � φ)(y) is the result of applying the
0-current u(y) to the function φ. We use the notation � in analogy with
the notation ◦ for composition.

(3) A Borel function u : RM → R0(RM+K) is a metric-space-valued func-
tion of bounded variation if, for every bounded Lipschitz function
φ : RM+K → R, the function u�φ is locally BV in the traditional sense
(see for instance [KPk 99; Section 3.6]). We will abbreviate saying “u
is a metric-space-valued function of bounded variation” to simply “u is
MBV.”
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(4) If u : RM → R0(RM+K) is in MBV, then we denote the total variation
measure of u by Vu and define it by

(Vu)(A) = sup
{ ∫

A
|D(u � φ)| : φ : RM+K → R, |φ| ≤ 1, |dφ| ≤ 1

}

= sup
{∫

(u � φ) divg dLM : supp g ⊆ A, |g| ≤ 1, |φ| ≤ 1, |dφ| ≤ 1
}

for A ⊆ RM open.

For us the most important example of an MBV function will be provided
by slicing a current. That is the content of the next proposition.

Proposition 8.1.8 Let Π : RM+K → RM be projection on the first factor. If
T ∈ DM (RM+K) is an integer-multiplicity current with M(T )+M(∂T ) <∞,
then u : RM → R0(RM+K) defined by

u(x) = 〈T,Π, x〉

is MBV and
Vu(A) ≤M

[
‖∂T‖(A) + ‖T‖(A)

]

holds, for each open set A ⊆ RM .

Proof. Fix an open set A ⊆ RM , a compactly supported function g ∈
C1(RM ,RM) with |g| ≤ 1 and supp g ⊆ A, and a function φ : RM+K → R
with |φ| ≤ 1 and |dφ| ≤ 1.

Pick i with 1 ≤ i ≤M and set

ψ = gi , ψxi =
∂ψ

∂xi
, dx̂ı = dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxM .

Using Proposition 7.6.4(2), we estimate
∣∣∣∣
∫
ψxi 〈T,Π, x〉 (φ) dLM (x)

∣∣∣∣

=
∣∣∣ (T (ψxi ◦ Π) dx1 ∧ · · · ∧ dxM ) (φ)

∣∣∣

=
∣∣∣T (φ (ψxi ◦ Π) dx1 ∧ · · · ∧ dxM )

∣∣∣

=
∣∣∣T [φ d(ψ ◦ Π) ∧ dx̂ı ]

∣∣∣
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=
∣∣∣ (∂T ) [φ (ψ ◦ Π) dx̂ı ] − T [(ψ ◦ Π) dφ ∧ dx̂ı ]

∣∣∣

≤ ‖∂T‖(A) + ‖T‖(A) ,

so ∣∣∣∣
∫
〈T,Π, x〉φdiv(g) dLn(x)

∣∣∣∣ ≤M [ ‖∂T‖(A) + ‖T‖(A) ] .

In fact, we have the following result more general than Proposition 8.1.8.

Theorem 8.1.9 Let Π : RM+K → RM be projection on the first factor and
fix 0 < L < ∞. If, for ` = 1, 2, . . ., we have that T` ∈ DM (RM+K) is an
integer-multiplicity current with M(T`)+M(∂T`) ≤ L and if T` → T weakly,
then, for LM -almost every x ∈ RM , it holds that 〈T,Π, x〉 is an integer-
multiplicity current. Furthermore, the function u : RM → R0(RM+K) defined
by

u(x) = 〈T,Π, x〉
is MBV, and

Vu(A) ≤M L

holds for each open set A ⊆ RM .

Proof. Since 〈T`,Π, x〉 → 〈T,Π, x〉 weakly for LM -almost every x ∈ RM ,
we see that 〈T,Π, x〉 is an integer-multiplicity current by the compactness
theorem for 0-dimensional currents. Then, using the same notation as in the
proof of Proposition 8.1.8, we estimate

∣∣∣∣
∫
ψxi 〈T,Π, x〉 (φ) dLM (x)

∣∣∣∣

=
∣∣∣ (T (ψxi ◦ Π) dx1 ∧ · · · ∧ dxM ) (φ)

∣∣∣

=
∣∣∣T (φ (ψxi ◦ Π) dx1 ∧ · · · ∧ dxM )

∣∣∣

=
∣∣∣T [φd(ψ ◦ Π) ∧ dx̂ı ]

∣∣∣

=
∣∣∣ lim

`→∞
T` [φd(ψ ◦ Π) ∧ dx̂ı ]

∣∣∣

= lim
`→∞

∣∣∣ (∂T`) [φ (ψ ◦ Π) dx̂ı ] − T` [ (ψ ◦ Π) dφ ∧ dx̂ı ]
∣∣∣

≤ lim
`→∞

[
‖∂T`‖(A) + ‖T`‖(A)

]
,
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and the result follows.

Definition 8.1.10 For a measure µ on RM , we define the maximal function
for µ, denoted Mµ, by

Mµ(x) = sup
r>0

1

ΩMrM
µ
[
B(x, r)

]
.

Lemma 8.1.11 If v is a real-valued BV function and 0 is a Lebesgue point
for f , then it holds that

1

ΩMrM

∫

B(0,r)

|v(x) − v(0)|
|x| dLMx

≤
∫ 1

0

1

ΩM (tr)M

∫

B(0,tr)
|Dv(x)| dLMx dL1t ≤ M|Dv|(0) .

Proof. For a C1 function v : RM → R, we have

|v(x) − v(0)| =

∣∣∣∣∣

∫ 1

0

d

dt
v(tx) dL1t

∣∣∣∣∣

=
∣∣∣∣
∫ 1

0
〈Dv(tx) , x 〉 dL1t

∣∣∣∣ ≤
∫ 1

0
|Dv(tx)| |x| dL1t .

So

1

ΩMrM

∫

B(0,r)

|v(x) − v(0)|
|x| dLMx ≤

∫

B(0,r)

∫ 1

0

1

ΩMrM
|Dv(tx)| dL1t dLMx

=
∫ 1

0

∫

B(0,r)

1

ΩMrM
|Dv(tx)| dLMx dL1t

=
∫ 1

0

1

ΩM(tr)M

∫

B(0,tr)
|Dv(x)| dLMx dL1t .

The result follows by smoothing (see [KPk 99; Theorem 3.6.12]).

Theorem 8.1.12 If v : RM → R is a BV function and y and z are Lebesgue
points for v, then

|v(y) − v(z)| ≤
[
M|Dv|(y) + M|Dv|(z)

]
|y − z| .
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Proof. Suppose that y 6= z. Let p be the midpoint of the segment connecting
y and z and set r = |y − z|.

For x ∈ B(p, r/2) we have

|v(y) − v(z)|
|y − z|

≤ |v(y) − v(x)|
|y − z|

+
|v(x) − v(z)|

|y − z|
,

|x− y| ≤ |x− p| + |p− y| ≤ r/2 + r/2 = |y − z| ,

|x− z| ≤ |x− p| + |p− z| ≤ r/2 + r/2 = |y − z| ,

so

|v(y) − v(z)|
|y − z| ≤ |v(y)− v(x)|

|y − z| +
|v(x) − v(z)|

|y − z|

≤ |v(y)− v(x)|
|y − x| +

|v(x) − v(z)|
|x− z| .

As a result,

|v(y) − v(z)|
|y − z| =

1

ΩMrM

∫

B(p,r/2)

|v(y) − v(z)|
|y − z| dLM

≤ 1

ΩMrM

∫

B(p,r/2)

|v(y) − v(x)|
|y − x| dLM

+
1

ΩMrM

∫

B(p,r/2)

|v(x) − v(z)|
|x− z| dLM

≤ 1

ΩMrM

∫

B(y,r)

|v(y)− v(x)|
|y − x| dLM

+
1

ΩMrM

∫

B(z,r)

|v(x)− v(z)|
|x− z| dLM

≤ M|Dv|(y) + M|Dv|(z) .

Corollary 8.1.13 If u : RM → R0(RM+K) is an MBV function, then there
is a set E with LM (E) = 0 such that, for y, z ∈ RM \ E, it holds that

d0[u(y), u(z) ] ≤
[
MVu(y) + MVu(z)

]
|y − z| .
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Proof. Let φi, i = 1, 2, . . ., be a dense set in D0(RM ) and let Ei be the set
of non-Lebesgue points for u � φi. Then we set E =

⋃∞
i=1Ei and the result

follows from Theorem 8.1.12.

The preceding corollary tells us that an MBV function u is Lipschitz
on any set where the maximal function for Vu is bounded. As we saw in
Chapter 4, we can use covering theorem methods to show that maximal
functions are well behaved. We do so in the next lemma.

Lemma 8.1.14 For each λ > 0, it holds that

LM{x : Mµ(x) > λ} ≤ BM

λ
µ(RM ) ,

where BM is the constant from the Besicovitch covering theorem.

Proof. Set
L = {x : Mµ(x) > λ} .

For each x ∈ L, choose a ball B(x, rx) so that

1

ΩMrM
µ[ B(x, rx) ] > λ .

Since L ⊆ ⋃
x∈L B(x, rx) , we can apply the Besicovitch covering theorem to

find families F1, F2, . . . , FBM
of pairwise disjoint balls B(x, rx), x ∈ L, such

that L ⊆ ⋃BM
i=1

⋃
B∈Fi

B. Then we have

LM (L) ≤ LM
(⋃BM

i=1

⋃
B∈Fi

B
)

≤
BM∑

i=1

∑

B∈Fi

2−M ΩM diam (B)

<
1

λ

BM∑

i=1

∑

B∈Fi

µ(B) ≤ BM

λ
µ(RM ) .

Theorem 8.1.15 If u : RM → R0(RM+K) is an MBV function, then there
is a set E with LM(E) = 0 such that

⋃

x∈RM\E

spt [u(x) ]

is a countably M -rectifiable subset of RM+K.

Proof. We apply Lemma 8.1.14 to write RM as the union of sets Ai on which
the maximal function for Vu is bounded. By Corollary 8.1.13, there is a set
Ei ⊆ Ai of measure zero such that u is Lipschitz on Ai \Ei. So we can apply
Theorem 8.1.5 to see that

⋃
x∈Ai\Ei

spt [u(x) ] is countably M -rectifiable.
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8.1.4 The Slicing Lemma

Lemma 8.1.16 Suppose that f : U → R is Lipschitz.
If Ti converges weakly to T and

sup
(
MW (Ti) + MW (∂Ti)

)
<∞

for every W ⊂⊂ U , then, for L1-almost every r, there is a subsequence ij
such that

〈Tij , f, r〉 converges weakly to 〈T, f, r〉 (8.13)

and
sup

(
MW [ 〈Tij , f, r〉 ] + MW [ ∂〈Tij , f, r〉 ]

)
<∞

holds for W ⊂⊂ U .
If additionally W0 ⊂⊂ U is such that

lim
i→∞

(
MW0(Ti) + MW0(∂Ti)

)
= 0 ,

then the subsequence can be chosen so that

lim
i→∞

(
MW0 [ 〈Tij , f, r〉 ] + MW0 [ ∂〈Tij , f, r〉 ]

)
= 0 .

Proof. Passing to a subsequence for which ‖Tij‖+ ‖∂Tij‖ converges weakly
to a Radon measure µ, we see that (8.13) holds, except possibly for the at
most countably many r for which µ{x : f(x) = r} has positive measure.

The remaining conclusions follow by passing to additional subsequences
and using (7.48) and the fact that ∂〈Ti, f, r 〉 = 〈 ∂Ti, f, r 〉.

8.1.5 The Density Lemma

Lemma 8.1.17 Suppose that T ∈ DM (U). For B(x, r) ⊆ U , set

λ(x, r) = inf{M(S) : ∂S = ∂[T B(x, r) ], S ∈ DM (U)} .

(1) If MW (T ) + MW (∂T ) <∞ holds for every W ⊂⊂ U , then

lim
r↓0

λ(x, r)

‖T‖ ( B(x, r) )
= 1 (8.14)

holds for ‖T‖-almost every x ∈ U .
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(2) If

(a) ∂T = 0,

(b) ∂[T B(x, r) ] is integer-multiplicity for every x ∈ U and almost
every 0 < r,

(c) MW (T ) + MW (∂T ) <∞ holds for every W ⊂⊂ U ,

then there exists 0 < δ such that

ΘM∗ (‖T‖, x) > δ

holds for ‖T‖-almost every x ∈ U .

Proof.
(1) We argue by contradiction. Since λ(x, r) ≤ ‖T‖ ( B(x, r) ) is true by
definition, we suppose that there is an ε > 0 and E ⊆ U with ‖T‖(E) > 0
such that for each x ∈ E there exist arbitrarily small r > 0 such that

λ(x, r) < (1 − ε) ‖T‖ ( B(x, r) ) .

We may assume that E ⊆ W for an open W ⊂⊂ U .
Consider ρ > 0. Cover ‖T‖-almost all of E by disjoint ballsBi = B(xi, ri),

where xi ∈ E and ri < ρ. For each i, let Si ∈ DM (U) satisfy

∂Si = [T B(xi, ri) ], M(Si) < (1 − ε)M[T B(xi, ri) ] .

Set
Tρ = T −

∑

i

T Bi +
∑

i

Si .

For any ω ∈ DM (U), we have

(T − Tρ)(ω) =
∑

i

(T Bi − Si)(ω)

=
∑

i

[ ∂( δxi ××(T Bi − Si) ) ](ω)

=
∑

i

( δxi ××(T Bi − Si) )(dω)

≤
∑

i

M( δxi ××(T Bi − Si) ) · sup |dω|
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≤ ρ
∑

i

M(T Bi − Si) · sup |dω|

≤ 2ρ
∑

i

M(T Bi) · sup |dω|

≤ 2ρM(T ) · sup |dω| .

Thus we see that Tρ converges weakly to T as ρ decreases to zero. By the
lower semicontinuity of mass, we have

MW (T ) ≤ lim inf
ρ↓0

MW (Tρ) .

On the other hand, we have

MW (Tρ) ≤ MW

(
T −

∑

i

T Bi

)
+
∑

i

MW (Si)

≤ MW

(
T −

∑

i

T Bi

)
+ (1 − ε)

∑

i

MW (T Bi)

≤ MW (T ) − ε
∑

i

MW (T Bi)

≤ MW (T ) − ε‖T‖(E) ,

a contradiction.

(2) Let x be a point at which (8.14) holds. Set f(r) = M(T B(x, r) ). For
sufficiently small r we have

f(r) < 2λ(x, r) . (8.15)

To be specific, let us suppose that (8.15) holds for 0 < r < R.
For L1-almost every r, we have

M[ ∂(T B(x, r) ) ] ≤ f ′(r) .

Applying the isoperimetric inequality, we have

λ(x, r)(M−1)/M ≤ c0 f
′(r) ,

where c0 is a constant depending only on the dimensions M and K. So, by
(8.15), we have

[f(r)](M−1)/M ≤ c1 f
′(r) (0 < r < R) ,
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where c1 is another constant. Thus we have

d

dr

[
f(r)

]1/M
= (1/M) f ′(r)

[
f(r)

](1−M)/M
≥ 1/c1 .

Since f is a non-decreasing function, we have

[
f(ρ)

]1/M
≥
∫ ρ

0

d

dr

[
f(r)

]1/M
dr ≥

∫ ρ

0
1/c1 dr = ρ/c1 .

We conclude that f(r) ≥ (r/c1)
M holds for 0 < r < R.

8.1.6 Completion of the Proof of the Compactness The-
orem

Now that we have all the requisite tools at hand, we can complete the proof
of the compactness theorem. Recall that by hypothesis we have a sequence
{Tj} ⊆ DM (U) of integer-multiplicity currents such that

sup
j≥1

[
MW (Tj) + MW (∂Tj)

]
<∞ for all W ⊂⊂ U .

By applying the Banach–Alaoglu theorem and passing to a subsequence if
necessary, but without changing notation, we may assume that there is a
current T ∈ DM (U) such that Tj → T weakly in U . Our task is to show that
T is an integer-multiplicity rectifiable current.

By the slicing lemma applied with f(x) = |x− a| (a ∈ U), we see that it
suffices to consider the case in which U = RM+K and all the Tj are supported
in a fixed compact set.

By the boundary rectifiability theorem, each ∂Tj is integer-multiplicity.
By the compactness theorem for currents of dimension M − 1, ∂T is integer-
multiplicity (since ∂Tj converges weakly to ∂T ). We know then that δ0××(∂Tj)
and δ0 ××(∂T ) are integer-multiplicity. By subtracting those currents from
Tj and T , we may suppose that ∂Tj = 0, for all j (and, of course, ∂T = 0).

By Lemma 8.1.17, we know that ‖T‖ = HM θ, where θ is real-valued
and nonnegative. In fact, θ is bounded below by a positive number, so we
see that

A = {x ∈ RM+K : θ(x) > 0}

has finite HM measure.



8.2. THE FLAT METRIC 257

Consider α a multiindex with

1 ≤ α1 < α2 < · · · < αM ≤M +K . (8.16)

Let Πα : RM+K → RM be the orthogonal projection mapping

x ∈ RM+K 7−→
M∑

i=1

(eαi · x) ei .

By Theorem 8.1.9, we see that 〈T,Πα, x〉 is an MBV function of x with total
variation measure bounded by ML. By Theorem 8.1.15, we see that there is
a set Eα ⊆ RM with LM (Eα) = 0 such that

Sα =
⋃

x∈RM\Eα

spt [ 〈T,Πα, x〉 ]

is a countably M -rectifiable subset of RM+K. Also set

Bα = A
⋂

Π−1
α (Eα) .

We have A ⊆ Sα
⋃
Bα.

Letting I denote the set of all the multiindices as in (8.16), we see that

A ⊆
⋂

α∈I

[
Sα
⋃
Bα

]
⊆ S

⋃
B ,

where
S =

⋃

α∈I

Sα , B =
⋂

α∈I

Bα .

By Lemma 7.4.2, T B = 0, so T = T S.
We may suppose that A ⊆ S. By Theorem 8.1.9 we know that, for each

α ∈ I and for LM -almost every x ∈ RM , 〈T,Πα, x〉 is integer-valued. So we
conclude that θ is in fact integer-valued.

Finally, Theorem 8.1.6 tells us that T is an integer-multiplicity rectifiable
current.

8.2 The Flat Metric

Here we introduce a new topology given by the so-called flat metric. Our main
result is that, for a sequence of integer-multiplicity currents {Tj} ⊂ DM (U)
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with supj≥1[MW (Tj)+MW (∂Tj) ] <∞, for all W ⊂⊂ U , this new topology is
equivalent to that given by weak convergence. There is some confusion in the
literature because readers assume that the word “flat” has some geometric
connotation of a lack of curvature. In point of fact the use of this word is
an allusion to Hassler Whitney’s use of the musical notation [ to denote the
metric.

Let U denote an arbitrary open set in RM+K. Set

I(U) = {T ∈ DM (U) : T is integer-multiplicity, MW (∂T ) <∞ if W ⊂⊂ U} .

Also set, for any L > 0 and W ⊂⊂ U ,

IL,W (U) = {T ∈ I : sptT ⊂W, M(T ) + M(∂T ) ≤ L} .

When the open set U is clear from context, as it usually is, we will simply
write I and IL,W for I(U) and IL,W (U), respectively.

On I we define a family of pseudometrics {dW}W⊂⊂U by

dW (T1, T2) = inf
{
MW (S) + MW (R) : T1 − T2 = ∂R+ S,

R ∈ DM+1(U), S ∈ DM (U) are of integer multiplicity
}
.

It is worth explicitly noting that if ω ∈ DM (U) with spt ω ⊂W , then

| (T1 − T2)(ω) | ≤ dW (T1, T2) · max
{

sup
x∈W

|ω(x)|, sup
x∈W

|dω(x)|
}
. (8.17)

In what follows we shall assume that I is equipped with the topology
given by the family {dW }W⊂⊂U of pseudometrics. This topology is the flat
metric topology for I. Obviously there is a countable topological base of
neighborhoods at each point, and Tj → T in this topology if and only if
dW (Tj, T ) → 0 for all W ⊂⊂ U .

Theorem 8.2.1 Let T , {Tj} in DM (U) be integer-multiplicity currents with
supj≥1{MW (Tj) + MW (∂Tj) } < ∞ for all W ⊂⊂ U . Then Tj converges
weakly to T if and only if

dW (Tj, T ) → 0 for each W ⊂⊂ U . (8.18)
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Remark 8.2.2 The statement of this last theorem in no way invokes the
compactness theorem (Theorem 7.5.2), but we must note that if we combine
the result with the compactness theorem then we can see that, for any family
of positive (finite) constants {c(W )}W⊂⊂U , the set

{T ∈ I : MW (T ) + MW (∂T ) ≤ c(W ) for all W ⊂⊂ U }

is sequentially compact when equipped with the flat metric topology.

Proof of the Theorem: First observe that, if (8.18) holds, then (8.17)
implies that Tj converges weakly to T .

In proving the converse, that weak convergence implies flat metric conver-
gence, the main point is demonstrating the appropriate total boundedness
property. More particularly, we shall show that, for any given ε > 0 and
W ⊂⊂ W̃ ⊂⊂ U , we can find a number N = N(ε,W, W̃ , L) and integer-
multiplicity currents P1, P2, . . . PN ∈ DM (U) such that

IL,W ⊂
N⋃

j=1

{S ∈ I : d
W̃

(S, Pj) < ε } ; (8.19)

that is, each element of IL,W is within ε of one of the currents P1, P2, . . . PN ,
as measured by the pseudometric d

W̃
. This fact follows immediately from

the deformation theorem. To wit, for any ρ > 0, Theorem 7.7.2 shows that
for T ∈ IL,W we can find integer-multiplicity currents P,R, S so that

(1) T − P = ∂R+ S;

(2) P =
∑

F∈LM

pF ηρ# F , pF ∈ Z;

(3) sptP ⊂ {x : dist(x, sptT ) < 2
√
M +K ρ};

(4) M(P ) =
∑

F∈LM (ρ)

|pF | ρM and M(P ) ≤ cM(T ) ≤ cL;

(5) sptR
⋃

spt S ⊂ {x : dist(x, sptT ) < 2
√
M +K ρ}

and M(R) + M(S) ≤ c ρM(T ) ≤ c ρL.

It follows that, for ρ small enough to ensure 2
√
M +K < dist(W,∂W̃ ), the

estimates (1) and (5) imply that

d
W̃

(T, P ) ≤ c ρL .
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Since there are only finitely many currents P as in (2), (3), (4), they may
be indexed P1, . . . , PN as in (8.19), where the number N depends only on L,
W , M , K, and ρ.

Next we choose an increasing family of sets Wi ⊂⊂ U so that the bound-
aries of the Wi cut the Tj in a controlled way. Specifically, we notice that
by (1) and (2) of Lemma 7.6.3 and Sard’s theorem (i.e., Corollary 5.1.10),
we can find a subsequence {Tj′} ⊂ {Tj} and a sequence {Wi} with Wi ⊂
⊂ Wi+1 ⊂⊂ U and ∪∞

i=1Wi = U so that supj′≥1 M[ ∂(Tj′ Wi) ] < ∞ for all
i. It follows that we may henceforth assume without loss of generality that
W ⊂⊂ U and

spt Tj ⊂ W for all j .

Now we take any W̃ such that W ⊂⊂ W̃ ⊂⊂ U . We apply (8.19) with
ε = 2−r, r = 1, 2, . . ., so that we may extract a subsequence {Tjr}∞r=1 from
{Tj} so that

d
W̃

(Tjr+1 , Tjr) < 2−r

and so
Tjr+1 − Tjr = ∂Rr + Sr . (8.20)

Here Rr, Sr are integer-multiplicity,

sptRr
⋃

spt Sr ⊂ W̃ ,

and
M(Rr) + M(Sr) ≤ 2−r .

Thus, by the compactness theorem, Theorem 7.5.2, we can define integer-
multiplicity currents R(`), S(`) via series

R(`) =
∞∑

r=`

Rr

and

S(`) =
∞∑

r=`

Sr ,

which converge in the mass topology. It follows then that

M[R(`) ] + M[S(`) ] ≤ 2−`+1

and, from (8.20),
T − Tj`

= ∂R(`) + S(`) .
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Hence we have a subsequence {Tj`
} of {Tj} such that d

W̃
(T, Tj`

) → 0.
Since we can in this manner extract a subsequence converging relative to d

W̃

from any given subsequence of {Tj}, then we have d
W̃

(T, Tj) → 0. Since this

process can be repeated with W = Wi, W̃ = Wi+1 for all i, the desired result
follows.

8.3 Existence of Currents Minimizing Varia-

tional Integrals

8.3.1 Minimizing Mass

One of the problems that motivated the development of the theory of integer-
multiplicity currents is the problem of finding an area-minimizing surface
having a prescribed boundary. The study of area-minimizing surfaces is
quite old, dating back to Euler’s discovery of the area-minimizing property of
the catenoid in the 1740s and to Lagrange’s discovery of the minimal surface
equation in the 1760s. But, despite the many advances since the time of Euler
and Lagrange, many interesting questions and avenues of research remain.

In the context of integer-multiplicity currents, it is appropriate to investi-
gate the problem of minimizing the mass of the current, as the mass accounts
for both the area of the corresponding surface and the multiplicity attached
to the surface. The next definition applies in very general situations to make
precise the notion of a current being mass-minimizing in comparison with
currents having the same boundary.

Definition 8.3.1 Suppose that U ⊆ RN and T ∈ DM (RN) is an integer-
multiplicity current. For a subset B ⊆ U , we say that T is mass-minimizing
in B if

MW [T ] ≤ MW [S] (8.21)

holds, whenever S is an integer-multiplicity current and

W ⊂⊂ U ,

∂S = ∂T ,

spt [S − T ] is a compact subset of B ∩W .
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Remark 8.3.2 In case B = RN , we say simply that T is mass-minimizing.
If, additionally, T has compact support, then Definition 8.3.1 reduces to the
requirement that

M[T ] ≤ M[S]

hold whenever ∂S = ∂T .

If R is a non-trivial M − 1 dimensional current that is the boundary of
some integer-multiplicity current, then it makes sense to ask whether there
exists a mass-minimizing integer-multiplicity current with R as its boundary.
The next theorem tells us that, indeed, such a mass-minimizing current does
exist.

Theorem 8.3.3 Suppose that 1 ≤M ≤ N . If R ∈ DM−1(RN ) has compact
support and if there exists an integer-multiplicity current Q ∈ DM(RN ) with
R = ∂Q, then there exists a mass-minimizing integer-multiplicity current T
with ∂T = R.

Proof. Let {Ti}∞i=1 be a sequence of integer-multiplicity currents with ∂Ti =
R, for i = 1, 2, . . ., and with

lim
i→∞

M[Ti] = inf{M[S] : ∂S = R, S is integer-multiplicity} .

Set M = dist(sptR, 0) and let f : RN → B(0, M) be the nearest-point
retraction. Because the boundary operator and the push-forward operator
commute, we have

∂(f#Ti) = f#(∂Ti) = f#R = R

for i = 1, 2, . . .. Noting that Lip (f) = 1, we conclude that

M[f#Ti] ≤ M[Ti]

holds, for i = 1, 2, . . .. Thus, by replacing Ti with f#Ti if need be, we may
suppose that spt Ti ⊆ B(0, M) holds for i = 1, 2, . . ..

Now consider the sequence of integer-multiplicity currents {Si}∞i=1 defined
by setting Si = Ti − Q, for each i = 1, 2, . . .. Noting that ∂Si = 0 for each
i, we see that the sequence {Si}∞i=1 satisfies the conditions of the compact-
ness theorem (Theorem 7.5.2). We conclude that there exist a subsequence
{Sik}∞k=1 of {Si}∞i=1 and an integer-multiplicity current S∗ such that Sik → S∗

as k → ∞. We conclude also that ∂S∗ = 0.
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Setting T = S∗ + Q, we see that Tik = Sik + Q → S∗ + Q = T as
k → ∞ and that ∂T = ∂(S∗ + Q) = ∂S∗ + ∂Q = ∂Q = R. By the lower-
semicontinuity of the mass, we have

M[T ] = inf{ M[S] : ∂S = R, S is integer-multiplicity } .

8.3.2 Other Integrands and Integrals

Minimizing the mass of a current is only one of many possible variational
problems that can be considered in the space of integer-multiplicity currents.
To introduce more general problems, we first define an appropriate class of
integrands.

Definition 8.3.4 Let U ⊆ RN be open, and suppose that 1 ≤M ≤ N .

(1) By an M-dimensional parametric integrand on U we mean a continuous
function F : U ×∧

M (RN) → R satisfying the homogeneity condition

F (x, rω) = r F (x, ω) , for r ≥ 0, x ∈ U, ω ∈ ∧
M (RN ) .

The integrand is positive if

F (x, ω) > 0

holds whenever ω 6= 0. We will limit our attention to positive inte-
grands (see Remark 8.3.5).

(2) If F is an M -dimensional parametric integrand on U and T = τ (V, θ, ξ)
is an M -dimensional integer-multiplicity current supported in U , then
the integral of F over T , denoted

∫
T F , is defined by setting

∫

T
F =

∫

V
F (x, θ(x) ξ(x)) dHMx =

∫

U
F (x,

−⇀
T (x)) d‖T‖x .

(3) We say that the parametric integrand F is a constant coefficient inte-
grand if F (x1, ω) = F (x2, ω) holds for x1, x2 ∈ U and ω ∈ ∧M (Rn). If
F is a constant coefficient integrand, then it is no loss of generality in
assuming that U = RN .
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(4) Given any x0 ∈ U , we define the constant coefficient parametric inte-
grand Fx0 by setting

Fx0(x, ω) = F (x0, ω) , for x ∈ RN , ω ∈ ∧M (RN) .

Remark 8.3.5 The limitation to considering a positive integrand is conve-
nient when one seeks a current that minimizes the integral of the integrand,
because one automatically knows that zero is a lower bound for the possible
values of the integral.

Example 8.3.6

(1) The M-dimensional area integrand is the constant coefficient paramet-
ric integrand A given by

A(x, ω) = |ω| , for x ∈ U, ω ∈ ∧M (RN ) .

We see that ∫

T
A = M[T ] .

(2) Let F be an (N − 1)-dimensional parametric integrand on RN . If W is
a bounded open subset of RN and T is the (N−1)-dimensional integer-
multiplicity current associated with the graph of a function g : W → R,
then

∫

T
F =

∫

W
F
[

(x, g(x)), eN +
∑N−1

i=1 Dig(x) e ı̂

]
dLN−1x .

Comparing with [Mor 66; p. 2] for instance, we see that integrating the
parametric integrand F over a surface defined by the graph of a func-
tion g gives the same result as evaluating the classical non-parametric
functional ∫

W
F [x, g(x),Dg(x)] dLN−1x

over the region W , where the integrand F is given by

F [x, z, p] = F
[
(x, z), eN +

∑N−1
i=1 pi e ı̂

]
, (8.22)

for x ∈ RN−1, z ∈ R, and p = (p1, p2, . . . , pN−1) ∈ RN−1.

A similar comparison can be made in higher codimensions, but the
notation becomes increasingly unwieldy.
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The notion of minimizing a parametric integrand is defined analogously to
Definition 8.3.1, but with the appropriate inequality replacing (8.21). More
precisely, we have the following definition.

Definition 8.3.7 Let F : U × ∧
M (RN ) → R be an M -dimensional para-

metric integrand on U . Suppose that T ∈ DM (RN ) is an integer-multiplicity
current. For a subset B ⊆ U , we say that T is F -minimizing in B if

∫

T W
F ≤

∫

S W
F (8.23)

holds, whenever S is an integer-multiplicity current and

W ⊂⊂ U ,

∂S = ∂T ,

spt [S − T ] is a compact subset of B ∩W .

The existence of mass minimizing currents was guaranteed by Theo-
rem 8.3.3. The proof of that theorem, as given above, is an instance of
the “direct method” in the calculus of variations. In the direct method, a
minimizing sequence is chosen (always possible as long as the infimum of the
values of the functional is finite), a convergent subsequence is extracted (a
compactness theorem is needed—in our case Theorem 7.5.2), and a lower-
semicontinuity result is applied (lower-semicontinuity is immediate for the
mass functional). Thus the question naturally arises as to whether or not
the integral of a parametric integrand is lower-semicontinuous.

Definition 8.3.8 Let F : U ×∧M (RN ) → R be an M -dimensional positive
parametric integrand on U . We say that F is semielliptic if, for each x0 ∈ U ,
the integer-multiplicity current associated with any oriented M -dimensional
plane is Fx0-minimizing.

Remark 8.3.9 What Definition 8.3.8 tells us is that F is semielliptic if and
only if, for every x0 ∈ U , the conditions

(1) v1, v2, . . . , vM ∈ RN are linearly independent,

(2) V is a bounded, relatively open subset of span {v1, v2, . . . , vM} ,

(3) ξ = v1 ∧ v2 ∧ · · · ∧ vM/|v1 ∧ v2 ∧ · · · ∧ vM | ,
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(4) T = τ (V, 1, ξ) ,

(5) R is a compactly supported integer-multiplicity current,

(6) ∂R = ∂T ,

imply ∫

T
Fx0 ≤

∫

R
Fx0 . (8.24)

The hypothesis of semiellipticity for the integrand F is sufficient to guar-
antee the lower-semicontinuity of the integral of F as a functional on integer-
multiplicity currents.

Theorem 8.3.10 Suppose that 1 ≤M ≤ N . Let F : U ×∧M (RN) → R be
an M -dimensional positive parametric integrand on U . If F is semielliptic,
then the functional T 7−→

∫
T F is lower-semicontinuous. That is, if K ⊂ U

is compact, Ti → T in the flat metric, and spt Ti ⊆ K for i = 1, 2, . . ., then
it holds that ∫

T
F ≤ lim inf

i→∞

∫

Ti

F .

The heuristic of the proof is that, for ‖T‖-almost every x0, T can be approx-
imated by an M -dimensional plane and F can be approximated by Fx0. The
details can be found in [Fed 69; 5.1.5].

Corollary 8.3.11 Suppose that 1 ≤ M ≤ N . Let F : U × ∧
M (RN) → R

be an M -dimensional semielliptic positive parametric integrand. Let K be
a compact subset of U . If R ∈ DM−1(RN ) and if there exists an integer-
multiplicity current Q ∈ DM (RN) with R = ∂Q and with sptQ ⊆ K, then
there exists an integer-multiplicity current T with ∂T = R and with sptT ⊆
K that is F -minimizing in K.

Proof. Proceeding as in the proof of Theorem 8.3.3, we let {Ti}∞i=1 be a
sequence of integer-multiplicity currents with ∂Ti = R and with sptTi ⊆ K,
for i = 1, 2, . . ., chosen so that

lim
i→∞

∫

Ti

F

= inf{
∫

S
F : ∂S = R, sptS ⊆ K, S is integer-multiplicity } .
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By the compactness theorem, we can extract a convergent subsequence, and
then the result follows from Theorem 8.3.10.

As far as being convenient for guaranteeing lower-semicontinuity, the
condition of semiellipticity is hardly satisfactory, since it may well be dif-
ficult to verify that currents associated with M -dimensional planes are Fx0-
minimizing. A more practical condition is that each Fx0 be convex.

Definition 8.3.12 Let F : U × ∧
M (RN ) → R be an M -dimensional para-

metric integrand on U . We say that F is convex if, for each x0 ∈ U , Fx0 is a
convex function on

∧
M (RN), that is, if

F
(
x0, λω1 + (1 − λ)ω2

)
≤ λF (x0, ω1) + (1 − λ)F (x0, ω2)

holds for ω1, ω2 ∈
∧

M (RN ) and 0 ≤ λ ≤ 1.

Theorem 8.3.13 If the M -dimensional parametric integrand F is convex,
then it is semielliptic.

Proof. Let F be convex and fix x0 ∈ U . Suppose that the conditions of
Remark 8.3.9(1)–(6) hold.

First we claim that
∫ −⇀
T d‖T‖ =

∫ −⇀
R d‖R‖ . (8.25)

Both sides of (8.25) are elements of
∧

M (RN ). Now suppose that (8.25) is
false. We may let ω ∈ ∧M (RN ) be such that

〈∫ −⇀
T d‖T‖ −

∫ −⇀
R d‖R‖, ω

〉
6= 0 .

But, choosing W ∈ DM+1(RN) such that ∂W = T −R, as we may because
∂(T − R) = 0, and thinking of ω as a differential form having a constant
value (so that dω = 0 holds), we see that

0 = W [dω] = (∂W )[ω] =
∫
〈
−⇀
T , ω〉 d‖T‖ −

∫
〈
−⇀
R , ω〉 d‖R‖

=
〈∫ −⇀

T d‖T‖ −
∫ −⇀
R d‖R‖, ω

〉
,
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a contradiction.

Now, by the homogeneity of Fx0, the fact that
−⇀
T is constant, equa-

tion (8.25), and by using Jensen’s inequality, we obtain

∫

T
Fx0 =

∫
F
(
x0,

−⇀
T
)
d‖T‖ = F

(
x0,

−⇀
T
)

‖T‖[RN]

= F
(
x0,

−⇀
T ‖T‖[RN ]

)
= F

(
x0,

∫ −⇀
T d‖T‖

)

= F
(
x0,

∫ −⇀
R d‖R‖

)
≤
∫
F
(
x0,

−⇀
R
)
d‖R‖ =

∫

R
Fx0 .

Finally, we illustrate the subtle difference between the notion of a convex
parametric integrand and the notion of convexity of integrands in the non-
parametric setting.

Example 8.3.14 The 2-dimensional parametric area integrand on R4 is con-
vex, but the integrand that gives the 2-dimensional area of the graph of a
function g over a region in R2 is not a convex function of Dg. In fact, if
g = (g1, g2) is a function of (x1, x2), then the area of the graph of g is found
by integrating

F(p1,1, p1,2, p2,1, p2,2) =

√√√√1 +
2∑

i,j=1

p2
i,j + (p1,1 p2,2 − p1,2 p2,1)

2
, (8.26)

where we set

pi,j =
∂gi

∂xj
.

We see that the function in (8.26) is not convex by comparing

F(T, T, 0, 0) + F(0, 0,−T, T )

2
=

√
1 + 2T 2 (8.27)

and

F
(

1
2
T, 1

2
T,−1

2
T, 1

2
T
)

=
√

1 + T 2 + 1
4
T 4 , (8.28)

and noting that, for large |T |, the value in (8.28) is larger value than the
value in (8.27).
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8.4 Density Estimates for Minimizing Cur-

rents

One gains information about a current that minimizes a variational integral
by using comparison surfaces. A comparison surface can be any surface
having the same boundary as the minimizer. To be useful a comparison
surface should be one that you construct in such a way that the variational
integral on the comparison surface can be estimated. Since the variational
integral for the minimizer must be less than or equal to the integral for
the comparison surface, some information can thereby be gleaned from the
estimate for the variational integral on the comparison surface. The next
lemma illustrates this idea.

Lemma 8.4.1 If T ∈ DM (RN ) is a mass-minimizing, integer-multiplicity
current, p ∈ sptT , and B(p, r) ∩ spt ∂T = ∅, where 0 < r, then

M[T B(p, r) ] ≤ r

M
M[ ∂(T B(p, r)) ] . (8.29)

Proof. The comparison surface C that we use is the cone over ∂(T B(p, r))
with vertex p—see Figure 8.1. That is, we set

C = δp ××∂(T B(p, r))

using the cone construction in in (7.26) with 0 replaced by p and M replaced
by M − 1. Then by (7.27) we have

∂C = ∂(T B(p, r)) (8.30)

and by (7.28) we have

M[C] ≤ r

M
M[ ∂(T B(p, r)) ] . (8.31)

By (8.30), we have

∂
(
T + C − T B(p, r)

)
= ∂T ,

so, because T is mass-minimizing, we have

M[T ] ≤ M[T + C − T B(p, r) ]
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Figure 8.1: The conical comparison surface.

and we conclude that

M[T B(p, r) ] ≤ M[C] ≤ r

M
M[ ∂(T B(p, r)) ]

holds.

The upper bound (8.29) for the mass of a mass-minimizer inside a ball is
interesting, but the reader may have noticed the absence of a bound for the
quantity on the right-hand side of (8.29). The next lemma, which follows
readily from Lemma 7.6.3, provides that missing bound.

Lemma 8.4.2 If T ∈ DM (RN) is an integer-multiplicity current, p ∈ sptT ,
and B(p,R)∩ spt ∂T = ∅, where 0 < R, then, for L1-almost every 0 < r < R,
it holds that

M[ ∂(T B(p, r) ] ≤ d

dr
M[T B(p, r) ] . (8.32)

The remarkable fact is that by combining Lemma 8.4.1 and Lemma 8.4.2,
we can obtain the lower bound on the density of a mass-minimizing current
given in the next theorem.
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Theorem 8.4.3 If T ∈ DM (RN) is a mass-minimizing integer-multiplicity
current, p ∈ sptT , and B(p,R) ∩ spt ∂T = ∅, where 0 < R, then

ΩM rM ≤ M[T B(p, r) ] (8.33)

holds, for 0 < r < R.

Proof. Define φ : (0, R) → R by setting

φ(r) = M[T B(p, r) ] .

Then φ is a non-decreasing function and (8.29) and (8.32) tell us that

φ(r) ≤ r

M
φ′(r)

holds, for L1-almost every 0 < r < R.
Now choose 0 < r0 < r < R. Since

log rM − log rM
0 =

∫ r

r0

M

ρ
dρ ≤

∫ r

r0

(
log ◦φ

)′
(ρ) dL1ρ

≤
(

log ◦φ
)
(r) −

(
log ◦φ

)
(r0) ,

we conclude that

M[T B(p, r0) ]

rM
0

≤ M[T B(p, r) ]

rM
. (8.34)

Fixing 0 < r < R and letting r0 ↓ 0 in (8.34), we see that

Θ∗
M (‖T‖, p) ΩM rM ≤ M[T B(p, r) ] (8.35)

holds. Replacing p in (8.35) by a nearby q ∈ spt T for which 1 ≤ ΘM(‖T‖, q)
is true, we obtain

ΩM (r − |p− q|)M ≤ M[T B(p, r − |p − q|) ] . (8.36)

Finally, letting q → p in (8.36), we obtain (8.33).

The inequality (8.34) expresses the monotonicity of the density of an
M -dimensional area-minimizing surface. In fact, the monotonicity property
holds very generally for surfaces that are extremal with respect to the area
integrand (see for instance [All 72; 5.1(1)]). Allard has also shown in [All 74]
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that the methods used to prove monotonicity for surfaces that are extremal
for the area integrand will not extend to more general integrands.

The preceding paragraph notwithstanding, a lower bound on density does
hold for surfaces that minimize more general variational integrals. In the
general case, the comparison surface used is not the cone, but rather the
surface guaranteed by the isoperimetric inequality.

Lemma 8.4.4 Fix λ > 1. Let F be an M -dimensional parametric integrand
on RN satisfying the bounds

λ|ω| ≤ F (x, ω) ≤ λ−1|ω| , (8.37)

for x ∈ RN and ω ∈ ∧M (RN).

If T ∈ DM (RN) is an F -minimizing integer-multiplicity current, p ∈
spt T , and B(p, r) ∩ spt ∂T = ∅, where 0 < r, then

M[T B(p, r) ] ≤ λ−2 CM,N

(
M[ ∂(T B(p, r) ]

)M/(M−1)
. (8.38)

HereCM,N is the constant in the isoperimetric inequality for (M−1)-dimensional
boundaries and M -dimensional surfaces in RN .

Proof. By the isoperimetric inequality, there is an integer-multiplicity cur-
rent Q with ∂Q = ∂(T B(p, r) and

M[Q] ≤ CM,N

(
M[ ∂(T B(p, r) ]

)M/(M−1)
.

Using (8.37), we obtain

M[T B(p, r) ] ≤ λ−1
∫

T B(p,r)
F

≤ λ−1
∫

Q
F

≤ λ−2 M[Q] ≤ λ−2 CM,N

(
M[ ∂(T B(p, r) ]

)M/(M−1)
.

By combining Lemma 8.4.2 and Lemma 8.4.4, we obtain the next theo-
rem.
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Theorem 8.4.5 Fix λ > 1. Let F be an M -dimensional parametric inte-
grand on RN satisfying the bounds

λ|ω| ≤ F (x, ω) ≤ λ−1|ω| ,

for x ∈ RN and ω ∈ ∧M (RN).
If T ∈ DM (RN) is an F -minimizing integer-multiplicity current, p ∈

sptT , and B(p,R) ∩ spt ∂T = ∅, where 0 < R, then

M−M λ2(M−1)C
(1−M)
M,N rM ≤ M[T B(p, r) ] (8.39)

holds, for 0 < r < R.

Proof. As in the proof of Theorem 8.4.3, we define φ : (0, R) → R by setting

φ(r) = M[T B(p, r) ] .

Then φ is a non-decreasing function and (8.38) and (8.32) tell us that

φ(r) ≤ λ−2 CM,N [φ′(r)]
M/(M−1)

or, equivalently,

λ2(M−1)/M C
(1−M)/M
M,N ≤

[
φ(r)

](1−M)/M
φ′(r) = M

d

dr

[
φ(r)

]1/M

holds, for L1-almost every 0 < r < R.
Now fix 0 < r < R. Since we have

M−1 λ2(M−1)/M C
(1−M)/M
M,N r =

∫ r

0
M−1 λ2(M−1)/M C

(1−M)/M
M,N dρ

≤
∫ r

0
M−1 d

dρ

[
φ(ρ)

]1/M
dρ

≤
[
φ(r)

]1/M
,

(8.39) follows.

Theorem 8.4.5 applies to an integer-multiplicity current that minimizes
an elliptic integrand. The theorem gives us a lower bound on the mass of
the minimizing current T in any ball that is centered in the support of T
and that does not intersect the support of ∂T . Remarkable as Theorem 8.4.5
is, Theorem 8.4.3, which applies to mass-minimizing currents, gives an even
larger, and in fact optimal, lower bound for the mass in a ball.
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Chapter 9

Regularity of Mass-Minimizing
Currents

In the last chapter we proved the existence of solutions to certain variational
problems in the context of integer-multiplicity rectifiable currents. In this
chapter, we address the question of whether such solutions are in fact smooth
surfaces. Such a question is quite natural: Indeed, Hilbert’s 19th problem
asked, [Hil 02], “Are the solutions of regular problems in the calculus of
variations always necessarily analytic?”

While Hilbert proposed his famous problems in 1900, the earliest precur-
sors of currents as a tool for solving variational problems are the generalized
curves of Laurence Chisholm Young (1905–2000) [You 37]. So, of course,
Hilbert could not have been been referring to variational problems in the
context of integer-multiplicity currents.

Sets of finite perimeter are essentially equivalent to codimension one
integer-multiplicity rectifiable currents. It was Ennio de Giorgi (1928–1996)
[DGi 61a], [DGi 61b], who first proved the existence and almost-everywhere
regularity of area-minimizing sets of finite perimeter. Subsequently, Ernst
Robert Reifenberg (1928–1964) [Rei 64a], [Rei 64b], proved the almost-every-
where regularity of area-minimizing surfaces in higher codimensions.

Later work of W. Fleming [Fle 62], E. De Giorgi [DGi 65], Frederick Justin
Almgren, Jr. (1933–1997) [Alm 66], J. Simons [Sim 68], E. Bombieri, E. De
Giorgi, and E. Giusti [BDG 69], and H. Federer [Fed 70], led to the definitive
result which states that, in RN , an (N − 1)-dimensional mass-minimizing
integer-multiplicity current is a smooth, embedded manifold in its interior,
except for a singular set of Hausdorff dimension at most N − 8.

275
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The extension of the regularity theory to general elliptic integrands was
made by Almgren [Alm 68]. His result is that an integer-multiplicity current
that minimizes the integral of an elliptic integrand is regular on an open
dense set. Later work of Almgren, R. Schoen, and L. Simon [SSA 77] gave a
stronger result in codimension one.

In our exposition, we will limit the scope of what we prove in favor of
including more detail. Specifically, we will limit our attention to the area
integrand and to codimension one surfaces. An advantage of this approach
is that we can include a complete derivation of the needed a priori estimates.
Our exposition is based on the direct argument of R. Schoen and L. Simon
[SS 82].

9.1 Preliminaries

Notation 9.1.1

(1) We let M be a positive integer, M ≥ 2.

(2) We identify RM+1 with RM × R and let p be the projection onto RM

and q be the projection onto R.

(3) We let BM (y, ρ) denote the open ball in RM of radius ρ, centered at y.

The closed ball of radius ρ, centered at y, will be denoted BM
(y, ρ).

(4) The cylinder BM (y, ρ) × R will be denoted by C(y, ρ) and its closure
by C(y, ρ).

(5) Recall that e1, e2, . . . , eM+1 is the standard basis for RM+1 and dx1,
dx2, . . . , dxM+1 is the dual basis in

∧1 (RM+1).

(6) As basis elements for
∧

M (RM+1) we will use

e
1̂
, e

2̂
, . . . , e

M̂+1
, (9.1)

where
e ı̂ = e1 ∧ e2 ∧ · · · ∧ ei−1 ∧ ei+1 ∧ · · · ∧ eM+1 .

Since the M -dimensional subspace associated with e
M̂+1

will play a
special role in what follows, we will also use the notation

eM = e
M̂+1

= e1 ∧ e2 ∧ · · · ∧ eM .
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(7) We will identify
∧M (RM+1) and and the dual space of

∧
M (RM+1) using

the standard isomorphism. Thus we will write 〈φ, η 〉 and φ(η) inter-

changeably when η ∈ ∧M (RM+1) and φ ∈ ∧M (RM+1) '
[∧

M (RM+1)
]′

.
A thorough discussion of these topics in multilinear algebra can be
found in [Fed 69; Chapter 1].

(8) We set

dx ı̂ = dx1 ∧ dx2 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxM+1 , (9.2)

for i = 1, 2, . . . ,M + 1. We will also use the notation

dxM = dx
M̂+1

= dx1 ∧ dx2 ∧ · · · ∧ dxM . (9.3)

Definition 9.1.2

(1) According to the definition given in Example 8.3.6(1)), theM -dimensional
area integrand on RM+1 is a function on on RM+1 ×∧M (RM+1), but a
function which is in fact independent of the first component of the ar-
gument. For simplicity of notation, we will consider the M -dimensional
area integrand to be a function on only

∧
M (RM+1), so that

A :
∧

M (RM+1) → R

is given by

A(ξ) = |ξ|

for ξ ∈ ∧M (RM+1).

(2) The M -dimensional area functional A is defined by setting

A(S) =
∫
A(

−⇀
S (x)) d‖S‖x

whenever S is an M -dimensional current representable by integration.
We also have A(S) = M(S) = ‖S‖(RM+1). Of course, the area in-
tegrand is so-called because, when S is the current associated with
a classical M -dimensional surface, then A(S) equals the area of that
surface.
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Next we will calculate the first and second derivatives of the area inte-
grand and note some important identities.

Using the basis (9.1), we find that, if ξ =
∑M

i=1 ξie ı̂, then

A(ξ) =
√
ξ2
1 + ξ2

2 + · · · + ξ2
M+1 ; (9.4)

so the derivative of the area integrand,DA, is represented by the 0-by-(M+1)
matrix

DA(ξ) =
(
ξ1/|ξ|, ξ2/|ξ|, · · · ξM+1/|ξ|

)
. (9.5)

That is,
〈DA(ξ), η 〉 = (ξ · η)/|ξ| (9.6)

holds for ξ, η ∈ ∧M (RM+1) or, equivalently, we have

DA(ξ) = |ξ|−1
M+1∑

i=1

ξi dx ı̂ . (9.7)

In particular, we have
DA(e ı̂) = dx ı̂ . (9.8)

We see that the second derivative of the area integrand, D2A, is repre-
sented by the Hessian matrix

D2A(ξ) = |ξ|−1




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1




− |ξ|−3




ξ2
1 ξ1ξ2 . . . ξ1ξM+1

ξ2ξ1 ξ2
2 . . . ξ2ξM+1

...
...

. . .
...

ξM+1ξ1 ξM+1ξ2 . . . ξ2
M+1



. (9.9)

Equivalently, for the partial derivatives ∂2A/∂ξi∂ξj = DijA, we have

Di jA(ξ) = |ξ|−3 (|ξ|2 δi j − ξi ξj) , (9.10)

where δi j is the Kronecker delta.
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Using (9.10), we can compute the Euclidean norm of D2A as follows:

|D2A(ξ)|2 =
M+1∑

i,j=1

[Di jA(ξ)]2

= |ξ|−6
M+1∑

i,j=1

[
|ξ|2 δi j − ξi ξj

]2

= |ξ|−6
M+1∑

i,j=1

[
|ξ|4 δi j − 2 |ξ|2 ξi ξj δi j + ξ2

i ξ
2
j

]

= |ξ|−6
[
(M + 1) |ξ|4 − 2 |ξ|4 + |ξ|4

]

= M |ξ|−2 .

So we have
|D2A| =

√
M/|ξ| . (9.11)

We note that

1

2
|ξ − η|2 = A(η) − 〈DA(ξ), η 〉, for |ξ| = |η| = 1 . (9.12)

Equation (9.12) follows because

1

2
|ξ − η|2 =

1

2

(
|ξ|2 − 2ξ · η + |η|2

)

= 1 − ξ · η

= |η| − (ξ · η)/|ξ|

= A(η) − 〈DA(ξ), η 〉 ,

where the last equality follows from (9.6).

Equation (9.12) will play an important role in the regularity theory, but
it is the inequality

1

2
|ξ − η|2 ≤ A(η) − 〈DA(ξ), η 〉, for |ξ| = |η| = 1 (9.13)
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Figure 9.1: The excess.

that is essential. Any inequality of the form (9.13) (but 1
2

may replaced by
another positive constant) is called a Weierstrass condition. Ellipticity of an
integrand is equivalent to the integrand satisfying a Weierstrass condition
(see [Fed 75; Section 3]).

Definition 9.1.3 We say the M -dimensional integer-multiplicity current T
is mass-minimizing if

A(T ) ≤ A(S) (9.14)

holds whenever S ∈ DM (RM+1) is integer-multiplicity with ∂S = ∂T .

When a current is projected into a plane, the mass of the projection is
less than the mass of the original current. The difference between the two
masses is the “excess” (see Figure 9.1). The fundamental quantity used in
the regularity theory is the “cylindrical excess” which is the excess of the
part of a current in a cylinder, normalized to account for the radius of the
cylinder. We give the precise definition next.
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Definition 9.1.4 For an integer-multiplicity T ∈ DM(RM+1), y ∈ RM , and
ρ > 0, the cylindrical excess E(T, y, ρ) is defined by

E(T, y, ρ) =
1

2
ρ−M

∫

C(y,ρ)
|
−⇀
T − eM |2 d‖T‖ , (9.15)

where we recall that

T = ‖T‖ ∧
−⇀
T .

The next lemma shows the connection between equation (9.15) that de-
fines the excess and the more heuristic description of the excess that we gave
earlier.

Lemma 9.1.5 Suppose that T ∈ DM (RM+1) is integer-multiplicity, y ∈ RM ,
and ρ > 0. If

p#(T C(y, ρ)) = `EM BM (y, ρ) ,

and spt ∂T ⊆ RM+1 \ C(y, ρ), then it holds that

E(T, y, ρ) = ρ−M (‖T‖(C(y, ρ)) − ‖p#T‖(BM(y, ρ)))

= ρ−M (‖T‖(C(y, ρ)) − `ΩM ρM) .
(9.16)

Proof. Since |
−⇀
T | = |eM | = 1, we have

|
−⇀
T − eM |2 = |

−⇀
T |2 − 2

(−⇀
T · eM

)

= 2 − 2
(−⇀
T · eM

)
.

So we have

1

2

∫

C(y,ρ)
|
−⇀
T − eM |2 d‖T‖ =

∫

C(y,ρ)
1 −

(−⇀
T · eM

)
d‖T‖

= ‖T‖(C(y, ρ)) − ‖p#T‖(BM(y, ρ))

= ‖T‖(C(y, ρ)) − `ΩM ρM .

We now give two corollaries of the lemma. The first is an immediate
consequence of the proof of Lemma 9.1.5 and the second shows us the effect
of an isometry on the excess.
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Corollary 9.1.6 Suppose that T ∈ DM (RM+1) is integer-multiplicity, y ∈
RM , and ρ > 0. If

p#(T C(y, ρ)) = `EM BM (y, ρ) ,

and spt ∂T ⊆ RM+1 \ C(y, ρ) then, for any LM -measurable B ⊆ BM(y, ρ), it
holds that

‖T‖(B × R) ≤ 1

2

∫

B×R
|
−⇀
T − eM |2 d‖T‖ + `LM (B) . (9.17)

Proof. The corollary is an immediate consequence of the proof of Lemma 9.1.5.

Corollary 9.1.7 Suppose that T ∈ DM(RM+1) is integer-multiplicity, ρ > 0,

p#(T C(0, ρ)) = `EM BM (0, ρ) ,

and spt ∂T ⊆ RM+1 \ C(0, ρ).
If 1 < λ <∞, j : RM+1 → RM+1 is an isometry, 0 < ρ′ < ρ, and

spt j#T C(0, ρ′) ⊆ j
(

sptT C(0, ρ)
)
,

then

E( j#T, 0, ρ′ ) ≤ λ (ρ/ρ′)M E(T, 0, ρ )

+
λ

2(λ − 1)
· (ρ/ρ′)M · ` · ‖j − IRM+1‖2M · E(T, 0, ρ )

+
λ `ΩM

2(λ − 1)
· (ρ/ρ′)M · ‖j − IRM+1‖2M .

Proof. Using

∣∣∣
∧

Mj
(−⇀
T
)
− eM

∣∣∣ ≤
∣∣∣
∧

Mj
(−⇀
T
)
− ∧

M j
(
eM
) ∣∣∣+

∣∣∣
∧

Mj
(
eM
)
− eM

∣∣∣

and

( |α| + |β| )2 ≤ λα2 +
λ

λ− 1
β2 ,
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we obtain

E( j#T, 0, ρ′ ) ≤ 1

2
(ρ′)−M

∫

C(0,ρ)

∣∣∣
∧

M j
(−⇀
T
)
− eM

∣∣∣
2
d‖T‖

≤ λ

2
(ρ′)−M

∫

C(0,ρ)

∣∣∣
∧

Mj
(−⇀
T
)
− ∧

M j
(
eM
) ∣∣∣

2
d‖T‖

+
λ

2(λ− 1)
(ρ′)−M

∫

C(0,ρ)

∣∣∣
∧

M j
(
eM
)
− eM

∣∣∣
2
d‖T‖

=
λ

2
(ρ′)−M

∫

C(0,ρ)

∣∣∣
−⇀
T − eM

∣∣∣
2
d‖T‖

+
λ

2(λ− 1)
(ρ′)−M

∫

C(0,ρ)

∣∣∣
∧

M j
(
eM
)
− eM

∣∣∣
2
d‖T‖

≤ λ

2
(ρ′)−M

∫

C(0,ρ)

∣∣∣
−⇀
T − eM

∣∣∣
2
d‖T‖

+
λ

2(λ− 1)
(ρ′)−M‖ j − IRM+1 ‖2M ‖T‖C(0, ρ) ,

and the result follows from Lemma 9.1.5.

Notation 9.1.8 Certain hypotheses will occur frequently in what follows,
so we collect them here for easy reference:

(H1) spt ∂T ⊆ RM+1 \ C(y, ρ),

(H2) p#[T C(y, ρ)] = EM BM(y, ρ),

(H3) ΩM rM ≤ ‖T‖{X ∈ RM+1 : |X − Y | < r} holds, whenever Y ∈ sptT

and {X ∈ RM+1 : |X − Y | < r} ∩ spt ∂T = ∅,

(H4) E(T, y, ρ) < ε,

(H5) T is mass-minimizing.

Here ρ and ε are positive and y ∈ RM .
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Note that the constancy theorem, Proposition 7.3.1, implies that if spt T ⊆
RM+1 \ C(y, ρ) then, because ∂p#T = p#∂T , we have

p#(T C(y, ρ)) = `EM BM (y, ρ) , (9.18)

where ` is an integer. So in (H2) we are making the simplifying assumption
that ` = 1.

Note that (H5) allows us to apply Theorem 8.4.3 to obtain (H3), so (H3)
is a consequence of (H5).

9.2 The Height Bound and Lipschitz Approx-

imation

We begin this section with the height bound lemma. The proof we give is
simplified by using hypothesis (H3). While the height bound lemma remains
true for currents minimizing the integral of an integrand other than area, the
proof is more difficult because the lower bound on mass that they satisfy (see
Theorem 8.4.5) is weaker than that in (H3).

Lemma 9.2.1 (Height bound) For each σ with 0 < σ < 1, there are
ε0 = ε0(M,σ) and c1 = c1(M,σ) so that the hypotheses (H1–H4), with
ε = ε0 in (H4), imply

sup
{
|q (X1) − q (X2)| : X1,X2 ∈ spt T ∩ C(y, σρ)

}

≤ c1 ρ
(
E(T, y, ρ)

) 1
2M .

Proof. By using a translation and homothety if need be, we may assume
that y = 0 and ρ = 1. We write

E = E(T, 0, 1) .

Set

r0 = 1
2
(1 − σ) (9.19)

and

ε0 = 2−M ΩM (1 − σ)M . (9.20)



9.2. THE HEIGHT BOUND AND LIPSCHITZ APPROXIMATION 285

X1)(p X2)(p

r r
s

Figure 9.2: The projections of the balls.

First we consider points whose projections onto BM (0, 1) are separated
by a distance less than 2 r0. So suppose that X1,X2 ∈ sptT ∩ C(0, σ) are
such that

1
2

∣∣∣p (X1) − p (X2)
∣∣∣ < r0 .

We set

r = 1
2

∣∣∣p (X1) − p (X2)
∣∣∣ , h = 1

2

∣∣∣q (X1) − q (X2)
∣∣∣ .

Then we have ∣∣∣X1 −X2

∣∣∣ = 2
√
r2 + h2 .

We set

s = min{
√
r2 + h2 − r , r0 } .

Then we have

B(X1, r + s)
⋂B(X2, r + s) = ∅ , (9.21)

and

B(X1, r + s)
⋃

B(X2, r + s) ⊆ C(0, 1) .

Setting

x∗ = 1
2

(p (X1) + p (X2)) ,

so that

|p (X1) − x∗| = |p (X2) − x∗| = r ,

we see that (see Figure 9.2)

BM (x∗, s) ⊆ p (B(X1, r + s))
⋂

p (B(X2, r + s))
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and thus that

LM
[
p (B(X1, r + s))

⋂
p (B(X2, r + s))

]
≥ ΩM sM .

By (H3) we have

‖T‖B(X1, r + s) + ‖T‖B(X2, r + s) ≥ 2 ΩM (r + s)M

= LM
[
p (B(X1, r + s))

]
+ LM

[
p (B(X2, r + s))

]
.

Thus we have

E ≥ ‖T‖
[
B(X1, r + s)

⋃B(X2, r + s)
]

− LM
[
p (B(X1, r + s))

⋃
p (B(X2, r + s))

]

≥ LM
[
p (B(X1, r + s))

]
+ LM

[
p (B(X2, r + s))

]

− LM
[
p (B(X1, r + s))

⋃
p (B(X2, r + s))

]

= LM
[
p (B(X1, r + s))

⋂
p (B(X2, r + s))

]
≥ ΩM sM .

We now consider two possibilities:

Case 1: s = r0,

Case 2: s =
√
r2 + h2 − r < r0.

In Case 1, by the definition of r0, i.e., (9.19), the definition of ε0, i.e., (9.20),
and by (H4), we have

E ≥ ΩM sM = ΩM rM
0 = 2−M ΩM (1 − σ)M = ε0 > E ,

a contradiction. Thus we may assume that Case 2 holds.
In Case 2, we note that

h ≤
√
r2 + h2

≤ (
√
r2 + h2 − r) + r0

≤ 2 r0 .
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Then it follows that

E ≥ ΩM sM

= ΩM (
√
r2 + h2 − r)M

= ΩM

(
(r2 + h2) − r2

√
r2 + h2 + r

)M

≥ ΩM


 h2

√
r2
0 + 4r2

0 + r0




M

≥ ΩM 2−M (1 − σ)−M h2M ,

where to obtain the last inequality we have used the definition of r0, i.e.,
(9.19), and, for simplicity, we have replaced

√
5 + 1 by the larger number 4.

We have shown that any two points in sptT ∩ C(0, σ) whose projections
onto BM (0, 1) are separated by a distance less than 2 r0 will have their pro-
jections by q separated by less than

21/2 Ω
−1/(2M)
M (1 − σ)1/2E1/(2M) .

But any two points x1 and x2 in BM (0, σ) are separated by a distance less
than 2σ, so if the two points are separated by more than 2 r0 = (1 − σ),
then we can form a sequence of points z1 = x1, z2, . . . , zM = x2 so that
|zi+1 − zi| ≤ (1 − σ) = 2r0. We can take L to be the smallest integer
exceeding 2σ/(1 − σ). Thus we have

L ≤ 1 +
2σ

1 − σ
=

1 + σ

1 − σ
<

2

1 − σ
.

Hence we may set

c1(M,σ) = L · 21/2 Ω
−1/(2M)
M (1 − σ)1/2

≤ 23/2 Ω
−1/(2M)
M (1 − σ)−1/2 .

Lemma 9.2.2 (Lipschitz approximation) Let γ with 0 < γ ≤ 1 be
given. There exist constants c2, c3, and c4 such that the following holds:
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If the hypotheses (H1–H4) are satisfied with ε = ε0(M, 2/3) in (H4),
where ε0(M, 2/3) is as in Lemma 9.2.1, then there is a Lipschitz function
g : BM(y, ρ/4) → R satisfying the following conditions

Lip g ≤ γ, (9.22)

sup
{
|g(z) − g(y)| : z ∈ BM (y, ρ/4)

}
≤ c2 ρ

(
E(T, y, ρ)

) 1
2M , (9.23)

LM
[
BM (y, ρ/4) \

{
z ∈ BM (y, ρ/4) : p −1(z) ∩ spt T = {(z, g(z))}

}]

≤ ρM c3 γ
−2M E(T, y, ρ), (9.24)

‖T − T g‖C(y, ρ/4) ≤ ρM c4 γ
−2M E(T, y, ρ) , (9.25)

where
T g = G#

(
EM BM (y, ρ/4)

)
, (9.26)

with G : BM (y, ρ/4) → C(y, ρ/4) defined by

G(x) = (x, g(x)) , for x ∈ BM (y, ρ/4) .

Proof. Fix the choice of 0 < γ ≤ 1 and specify a value of ε0 for which the
conclusion of Lemma 9.2.1 holds with σ chosen to equal 2/3. That is, if the
hypotheses (H1–H4) hold with ε = ε0 and with z and δ in place of y and ρ,
respectively, then

sup
{
|q (X1) − q (X2)| : X1, X2 ∈ sptT ∩ C(z, 2δ/3)

}

≤ c1 δ
(
E(T, z, δ)

) 1
2M . (9.27)

Consider η with
0 < η < ε0 . (9.28)

Set

A =
{
z ∈ BM(y, ρ/4) : E(T, z, δ) ≤ η for all δ with 0 < δ < 3ρ/4

}
,

(9.29)
and set

B = BM (0, ρ/4) \A .



9.2. THE HEIGHT BOUND AND LIPSCHITZ APPROXIMATION 289

For each b ∈ B there exists δ(b) with 0 < δ(b) < 3ρ/4 such that the excess
E(T, b, δ(b)) is greater than η, that is,

1

2

∫

C(b,δ(b))
|
−⇀
T − eM |2 d‖T‖ = δ(b)M · E(T, b, δ(b)) > η · δ(b)M . (9.30)

Applying the Besicovitch covering theorem to the family of closed balls

B =
{

BM
(b, δ(b)) : b ∈ B

}
,

we obtain the subfamilies B1,B2, . . . ,BN of B such that each Bi consists of
pairwise disjoint balls and

B ⊆
N⋃

i=1

Bi ,

where
Bi =

⋃

BM
(b,δ(b))∈Bi

BM
(b, δ(b)) .

Here N is a number that depends only on the dimension M . Using (9.30),
we see that, for each i = 1, 2, . . . , N , we have

η LM (Bi) = η
∑

BM
(b,δ(b))∈Bi

ΩM

[
δ(b)

]M

< ΩM

∑

BM
(b,δ(b))∈Bi

δ(b)M E(T, b, δ(b))

=
1

2
ΩM

∫

Bi

|
−⇀
T − eM |2 d‖T‖

≤ 1

2
ΩM

∫

C(y,ρ)
|
−⇀
T − eM |2 d‖T‖ .

We conclude that

ηLM (B) ≤
N∑

i=1

ηLM

(⋃

i

Bi

)

≤ N

2
ΩM

∫

C(y,ρ)
|
−⇀
T − eM |2 d‖T‖

= c5 ρ
M E(T, y, ρ) . (9.31)
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If x1, x2 ∈ BM (0, ρ/4) ∩A, and if X1, X2 are points with

Xi ∈ spt T ∩ p −1(xi), i = 1, 2,

then
|x1 − x2| < ρ/2 ,

so we can apply (9.27) with z = x1 and with δ chosen to satisfy

3 |x1 − x2|/2 < δ < 3ρ/4 . (9.32)

Letting δ in (9.32) decrease to 3 |x1 − x2|/2, we conclude that

|q (X1) − q (X2)| ≤ c6 η
1/(2M) |x1 − x2| , (9.33)

where we set
c6 = max{ 3/2, (3/2) c1, ε

−1
0 } . (9.34)

Thus, we may choose

η = γ2M c−2M
6 ≤ c−2M

6 < c−1
6 ≤ ε0 , (9.35)

so that c6 η
1/(2M) = γ holds, and consequently we have

|q (X1) − q (X2)| ≤ γ |x1 − x2| (9.36)

for any points
x1, x2 ∈ BM (0, ρ/4)

⋂
A ,

where
X1 ∈ spt T

⋂
p −1(x1) and X2 ∈ sptT

⋂
p−1(x2) .

In particular, (9.36) shows that, for any x ∈ A∩BM (0, ρ/4), there is exactly
one X ∈ p−1(x)

⋂
spt T . Thus, we can define g∗ : A

⋂BM(0, ρ/4) → R by
requiring

{
(x, g∗(x))

}
= p−1(x)

⋂
spt T, whenever x ∈ A

⋂BM(0, ρ/4) .

Inequality (9.36) tells us that Lip (g∗) ≤ γ holds on A
⋂

BM (y, ρ/4), so by
Kirszbraun’s extension theorem, [KPk 99; Theorem 5.2.2], g∗ extends to g∗∗ :
BM (y, ρ/4) → R with the same Lipschitz constant.

By Lemma 9.2.1, if we set

g = min {α, max{β, g∗∗ }
}
,
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where

α = g(y) − c1E
1/(2M)(T, y, ρ) ρ, β = g(y) + c1E

1/(2M)(T, y, ρ) ρ ,

then

{
(x, g(x))

}
= p −1(x)

⋂
sptT, whenever x ∈ A

⋂BM (0, ρ/4)

and

sup
{
|g(x) − g(y)| : BM (y, ρ/4)

}
≤ c1E

1/(2M)(T, y, ρ) ρ

will both hold.
Using (9.17), (9.31), and (9.35), we see that

‖T‖
[
(BM (y, ρ/4) \A) × R

]

= LM
[
BM (y, ρ/4) \A

]
+

1

2

∫

(BM (y,ρ/4)\A)×R
|
−⇀
T − eM |2 d‖T‖

≤ LM [B] +
1

2

∫

C(y,ρ)
|
−⇀
T − eM |2 d‖T‖

≤ (η−1c5 + 1) ρM E(T, y, ρ)

= (c5 c
2M
6 γ−2M + 1) ρM E(T, y, ρ)

≤ (c5 c
2M
6 + 1) γ−2M ρM E(T, y, ρ) .

So we conclude that (9.24) holds with c3 = c5 c
2M
6 + 1.

Finally, we have

‖T − T g‖C(y, ρ/4) ≤ ‖T‖
[
(BM (y, ρ/4) \A) × R

]

+ ‖T g‖
[

(BM(y, ρ/4) \A) × R
]

≤ ‖T‖[ (BM(y, ρ/4) \A) × R
]

+ γ LM [B]

≤ 2 (c5 c
2M
6 + 1) γ−2M ρM E(T, y, ρ) ,

so we see that (9.25) holds with c4 = 2 (c5 c
2M
6 + 1).
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9.3 Currents defined by integrating over graphs

Currents obtained by integration over the graph of a function are particu-
larly nice and are helpful to our intuitive understanding. We will show how
the cylindrical excess of such a current relates to a familiar quantity from
analysis, namely the Dirichlet integral (see Corollary 9.3.7).

Notation 9.3.1 Let f : BM (0, σ) → R be Lipschitz.

(1) We use the notation F for the function from BM (0, σ) to RM+1 given
by F (x) = (x, f(x)).

(2) We use the notation GF for the M -dimensional current that is defined
by integration over the graph of f , that is,

GF = F#(EM BM (0, σ)) .

Writing

JF (x) = 〈∧M (DF (x)), eM 〉 ,

we have

GF [ψ] =
∫

BM (0,σ)
〈ψ(x, f(x)), JF (x) 〉 dLMx (9.37)

for any differential M -form ψ defined on C(0, σ).

Lemma 9.3.2 If f : BM (0, σ) → R is Lipschitz, then we have

−⇀
G F (F (x)) = (1 + |Df |2)−1/2

(
eM +

M∑

i=i

∂f

∂xi

e ı̂

)
, (9.38)

DA(
−⇀
G F ) = (1 + |Df |2)−1/2

(
dxM +

M∑

i=1

(
∂f

∂xi

)
dx ı̂

)
, (9.39)

DA(
−⇀
G F ) −DA(eM ) =

(1 + |Df |2)−1/2

(
dxM +

M∑

i=1

(
∂f

∂xi

)
dx ı̂

)
− dxM . (9.40)
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Proof. By definition, we have

〈∧M (DF (x)), eM 〉 =
M∧

i=1

(
ei +

∂f

∂xi

eM+1

)
.

So

JF = eM +
M∑

i=i

∂f

∂xi
e ı̂ . (9.41)

We obtain (9.38) from (9.41) by dividing by the Euclidean norm of JF .
Equation (9.39) follows from (9.38) and (9.7). Equation (9.40) follows from
(9.39) and (9.8).

For the record, we note that the coefficient of dxM in (9.40) is

(1 + |Df |2)−1/2 − 1 .

Lemma 9.3.3 Define a map from RM to RM+1 by

x = (x1, x2, . . . , xM ) 7−→ X = (1 + |x|2)−1/2 (1, x1, x2, . . . , xM)

If A and B are the images of a and b under this map then

(1) |A−B| ≤ |a− b| ;

(2) for each 0 < c <∞, it holds that

|a|, |b| ≤ c implies |a− b| ≤ (1 + c2)2 |A−B| .

Proof. The mapping x 7→ X is the composition of two mappings: the
distance preserving map

x = (x1, x2, . . . , xk) 7−→ (1, x1, x2, . . . , xk)

followed by the radial projection onto the unit sphere

y = (y1, y2, . . . , yk+1) 7−→ |y|−1 (y1, y2, . . . , yk+1) .

Part (1) follows from the fact that the radial projection does not increase the
distance between points that are outside of the open unit ball.

To prove (2), we note that

|1 + a · b| ≤ (1 + |a|2)1/2 (1 + |b|2)1/2
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holds, with equality if and only if a = b. Thus

0 < (1 + |a|2)1/2 (1 + |b|2)1/2 + (1 + a · b)

always holds, so we may compute

(1 + |a|2)1/2 (1 + |b|2)1/2 |A−B|2

= 2
[

(1 + |a|2)1/2 (1 + |b|2)1/2 − (1 + a · b)
]

= 2
[

(1 + |a|2)1/2 (1 + |b|2)1/2 + (1 + a · b)
]−1

·
[

(1 + |a|2) (1 + |b|2) − (1 + a · b)2
]

= 2
[

(1 + |a|2)1/2 (1 + |b|2)1/2 + (1 + a · b)
]−1

·
[
|a− b|2 + |a|2 |b|2 − (a · b)2

]

≥ 2
[

(1 + |a|2)1/2 (1 + |b|2)1/2 + (1 + a · b)
]−1

|a− b|2 .

The estimate in (2) now follows readily.

Proposition 9.3.4 We have
∣∣∣∣
−⇀
G F (F (x)) −

−⇀
G F (F (y))

∣∣∣∣ ≤ |Df(x) −Df(y)| (9.42)

and, provided |Df(x)|, |Df(y)| ≤ c, we have

|Df(x) −Df(y)| ≤ (1 + c2)2

∣∣∣∣
−⇀
G F (F (x)) −

−⇀
G F (F (y))

∣∣∣∣ . (9.43)

Proof. This result follows immediately from Lemma 9.3.3 and (9.38).

We leave the easy proof of the next lemma to the reader.

Lemma 9.3.5 For t ∈ R we have

0 ≤ 1 − (1 + t2)−1/2 ≤ min{1
2
t2 , |t|} . (9.44)

If additionally |t| ≤ C <∞ holds, then we have

t2

2(1 + C2)
≤ 1 − (1 + t2)−1/2 . (9.45)
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Proposition 9.3.6 It holds that

[1 + Lip (f)]−2 |Df |2 ≤
∣∣∣∣
−⇀
G F − eM

∣∣∣∣
2

≤ min
{
|Df |2, 2|Df |

}
. (9.46)

Proof. By (9.38) we have

−⇀
G F − eM = (1 + |Df |2)−1/2

[
(1 − (1 + |Df |2)1/2)eM +

M∑

i=1

∂f

∂xi
e ı̂

]
,

so

|
−⇀
G F − eM |2 = (1 + |Df |2)−1

[
1 − 2(1 + |Df |2)1/2 + (1 + |Df |2) + |Df |2

]

= (1 + |Df |2)−1
[

2(1 + |Df |2) − 2(1 + |Df |2)1/2
]

= 2
[

1 − (1 + |Df |2)−1/2
]
.

The upper bound follows from (9.44) while the lower bound follows from
(9.45).

Corollary 9.3.7 It holds that

2−1 [1 + Lip (f)]−2 σ−M
∫

BM (0,σ)
|Df |2 dLM ≤ E(GF , 0, σ)

≤ 2−1 σ−M
∫

BM (0,σ)
|Df |2 dLM .

Proof. The corollary is an immediate consequence of Proposition 9.3.6 and
the definition of the cylindrical excess, i.e., Definition 9.1.4.

Proposition 9.3.8 We have
∣∣∣∣DA(

−⇀
G F ) −DA(eM)

∣∣∣∣ ≤ min
{
|Df |2, 2 |Df |

}
. (9.47)

Proof. By (9.40), we have

DA(
−⇀
G F ) −DA(eM)

= (1 + |Df |2)−1/2

[
(1 − (1 + |Df |2)1/2dxM +

M∑

i=1

(
∂f

∂xi

)
dx ı̂

]
,

so we can proceed as in the proof of Proposition 9.3.6 and apply (9.44).
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9.4 Estimates for Harmonic Functions

The heuristic behind the regularity theory for area-minimizing surfaces is
that, at a point where an area-minimizing surface is horizontal, the closer
you look at the surface, the more it looks like the graph of a harmonic
function. This is made plausible by the fact that an area-minimizing graph
is given by a function u that minimizes the integral of the area integrand

√
1 + |Du|2 ,

while a harmonic function u minimizes the integral of

1

2
|Du|2 .

Since the area integrand
√

1 + |Du|2 has the expansion

1 +
1

2
|Du|2 +

∞∑

k=2

(
1/2

k

)
|Du|2k ,

we see that, at a point where the graph is horizontal, minimizing 1
2
|Du|2

must be nearly the same as minimizing
√

1 + |Du|2.
To turn the heuristic discussion above into a useful estimate, we will need

to investigate the boundary regularity of solutions for the Dirichlet problem
for Laplace’s equation on the unit ball. To obtain a sharp result we must use
the Lipschitz spaces that we introduce next.

Notation 9.4.1 Let B denote the open unit ball in RM and let Σ denote
the unit sphere.

(1) For g : Σ → R, we say g is differentiable at x ∈ Σ if G defined by

G(z) = g(z/|z|) , (z 6= 0) ,

is differentiable at x. This definition exploits the special structure
of Σ, but it is easily seen to be equivalent to the usual definition of
differentiability for a function defined on a surface (for example, see
[Hir 76; p. 15ff]).
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(2) If g : Σ → R is differentiable at x ∈ Σ and if v a unit vector, then the
directional derivative of g at x in the direction v is defined by

∂g

∂v
(x) = 〈DG(x), v 〉 .

(3) For δ with 1 < δ < 2, we say that g : Σ → R is Lipschitz of order δ,

written g ∈ Λδ(Σ), if g is differentiable at every point of Σ,
∂g

∂v
(x) is a

continuous function of x for each unit vector v, and there exists C <∞
such that, for each unit vector v,

∣∣∣∣∣
∂g

∂v
(x1) −

∂g

∂v
(x0)

∣∣∣∣∣ ≤ C |x1 − x0|δ−1

holds for x0, x1 ∈ Σ.

(4) If g : Σ → R is Lipschitz of order δ on Σ (1 < δ < 2), then we set

‖g‖Λδ
= sup

x∈Σ

|v|=1

∣∣∣∣∣
∂g

∂v
(x)

∣∣∣∣∣

+ sup
x0 ,x1∈Σ, x0 6=x1

|v|=1

|x1 − x0|1−δ

∣∣∣∣∣
∂g

∂v
(x1) −

∂g

∂v
(x0)

∣∣∣∣∣ . (9.48)

The number ‖g‖Λδ
defines a seminorm on Λδ(Σ). Had we wished to de-

fine a norm, we could have done so by including the term supx∈Σ |g(x)|
as an additional summand on the righthand side of (9.48).

We have only defined the Lipschitz spaces Λδ(Σ) for δ in the range 1 <
δ < 2 that we need in this section. For a comprehensive study of these spaces,
the reader should see [Kra 83].

Lemma 9.4.2 For δ with 1 < δ < 2 there exists a constant c7 = c7(δ) with
the following property:

If g ∈ Λδ(Σ) and if u ∈ C0(B)
⋂
C2(B) satisfies

4u = 0 on B ,

u = g on Σ ,
(9.49)
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then the Hilbert–Schmidt norm of the Hessian matrix of u (i.e., the
square root of the sum of the squares of the entries in the matrix) is
bounded by ∣∣∣Hess [u(x)]

∣∣∣ ≤ c7 · ‖g‖Λδ
· %(x)δ−2 . (9.50)

Here, of course, 4 denotes the Laplacian
∑M

i=1 ∂
2/∂x2

i .

Proof. Our proof will be based on the fact that the function u solving
(9.49) is given by the Poisson integral formula. Recall (see [CH 62; p. 264ff],
[Kra 99; p. 186] or [Kra 05; p. 143]) that the Poisson kernel for the unit ball
in RM is given by

P (x, y) =
Γ(M/2)

2πM/2
· 1 − |x|2

|x− y|M (9.51)

=
Γ(M/2)

2πM/2
· %(x) (2 − %(x))

|x− y|M , (9.52)

where %(x) = 1 − |x| is the distance from x ∈ B to Σ. The solution to the
Dirichlet problem (9.49) is given by

u(x) =
∫

Σ
P (x, y) g(y) dHM−1(y) . (9.53)

Interior estimate. Observe that, if x ∈ B stays at least a fixed positive
distance away from Σ, then each |∂P/∂xi| will be bounded above. Thus we
can obtain estimates for the derivatives of u by differentiating the righthand
side of (9.53) under the integral and estimating the resulting integral. Thus
we have (9.50) for x ∈ BM(0, 1/2).

Notation. For v ∈ RM a unit vector, ∂f/∂v will denote the directional
derivative of the function f in the direction v. Here f may be real-valued or
vector-valued.

Of particular interest are the directional derivatives of the Poisson kernel
P (x, y). Since P depends on the two arguments x ∈ RM and y ∈ RM , we
will augment our notation for directional derivatives to indicate the variable
with respect to which the differentiation is to be performed. The notation
∂P/∂xv will mean that the directional derivative of P (x, y) in the direction
v is to be computed by differentiating with respect to x while treating y as
a parameter. We have

∂P

∂xv
=

M∑

i=1

vi
∂P

∂xi

.
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On the other hand, when we wish to differentiate P (x, y) as a function of y
while treating x as a parameter, we will write ∂P/∂yv . We have

∂ P

∂yv
=

M∑

i=1

vi
∂P

∂yi
.

An identity for tangential derivatives. Fix a point x ∈ B \ {0} and let
τ be a unit vector tangent at x to the sphere of radius |x| centered at the
origin. Because τ is tangent to the sphere of radius |x|, we will call ∂P/∂xτ
a tangential derivative of P .

Using

• the symmetry in x and y of the function |x− y|−M ,

• the fact that
∂%

∂τ
(x) = 0

holds, which is true because τ is tangent at x to the sphere of radius
|x| centered at the origin and % is constant on that sphere,

we have

∂P

∂xτ
(x, y) =

Γ(M/2)

2πM/2
· ∂
∂τ

(
%(x) (2 − %(x))

|x− y|M

)

=
Γ(M/2) %(x) (2 − %(x))

2πM/2
· ∂
∂τ

(
1

|x− y|M

)

=
Γ(M/2) %(x) (2 − %(x))

2πM/2
·

M∑

i=1

τi
∂

∂xi

(
1

|x− y|M

)

=
Γ(M/2) %(x) (2 − %(x))

2πM/2
·

M∑

i=1

τi
∂

∂yi

(
1

|x− y|M

)

=
∂ P

∂yτ
(x, y) .

Note that the vector τ in
∂P

∂xτ
(x, y) is the same vector as the vector τ in

in
∂ P

∂yτ
(x, y). The subscript y in the notation

∂ P

∂yτ
(x, y) merely tells us to
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differentiate with respect to y while treating x as a constant; the subscript
in no way implies that τ is tangent to the sphere of radius |y|.
Estimates for derivatives of P . Using (9.51), we compute the derivatives
of P (x, y) as follows: Let v be a unit vector. Since

∂x

∂v
= v

(that is, the directional derivative, in the direction v, of the map x 7→ x is v
itself), we have

∂P

∂xv
(x, y) =

Γ(M/2)

2πM/2
·
(
− 2x · v
|x− y|M − M (1 − |x|2) (x− y) · v

|x− y|M+2

)
.

If x ∈ B \ {0} and τ is a unit vector tangent at x to the sphere of radius
|x| centered at the origin, then x · τ = 0 holds. We compute

∂P

∂xτ
(x, y) =

Γ(M/2)

2πM/2
· −M (1 − |x|2) (x − y) · τ

|x− y|M+2
= −M (x− y) · τ

|x− y|2 P (x, y) .

We obtain the estimate
∣∣∣∣∣
∂P

∂xτ
(x, y)

∣∣∣∣∣ = M
|(x− y) · τ |
|x− y|2 P (x, y)

≤ M |x− y|−1 P (x, y) . (9.54)

Suppose x ∈ B \{0} and let ν = x/|x| be the outward unit normal vector
at x to the sphere of radius |x| centered at the origin. We compute

∂P

∂xν
(x, y) =

Γ(M/2)

2πM/2
·
(
− 2x · ν
|x− y|M − M (1 − |x|2) (x− y) · ν

|x− y|M+2

)
.

We obtain the estimate
∣∣∣∣∣
∂P

∂xν
(x, y)

∣∣∣∣∣ ≤ Γ(M/2)

2πM/2
· 1 − |x|2

|x− y|M

(
2 |x · ν|
1 − |x|2 +M

|(x− y) · ν|
|x− y|2

)

≤ Γ(M/2)

2πM/2
· 1 − |x|2

|x− y|M

(
2 |x|

%(x) (2 − %(x)
+M

|x− y|
|x− y|2

)

≤ P (x, y) (2 %(x)−1 +M |x− y|−1)

≤ P (x, y) · (M + 2) · %(x)−1 , (9.55)
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where we have used the fact that %(x) ≤ |x− y| which implies

1

|x− y| ≤ %(x)−1 . (9.56)

In the remainder of the proof, we will use the identity for tangential
derivatives and the estimates for the derivatives of P to obtain estimates for
the second derivatives of u.

Estimates for tangential second derivatives of u. Fix a point x ∈
B \ {0}. Let τ and τ̂ be unit vectors tangent at x to the sphere of radius |x|
centered at the origin.

We compute

∂2u

∂τ ∂τ̂
=

∫

Σ

∂2P

∂τ ∂τ̂
(x, y) g(y) dHM−1(y)

=
∫

Σ

∂2P

∂yτ ∂τ̂
(x, y) g(y) dHM−1(y) (9.57)

=
∫

Σ

∂P

∂xτ̂
(x, y)

∂ g

∂yτ
(y) dHM−1(y)

=
∫

Σ

∂P

∂xτ̂
(x, y)

[
∂ g

∂yτ
(y) − ∂

∂yτ
(g ◦ π)(x)

]
dHM−1(y) , (9.58)

where π(x) is the radial projection of x into Σ. Here we have also used the
fact that ∫

Σ

∂P

∂xτ̂
(x, y) dHM−1(y) = 0 . (9.59)

Equation (9.59) holds because

∫

Σ
P (x, y) dHM−1(y) ≡ 1 (9.60)

implies

0 =
∂P

∂xτ̂

∫

Σ
(x, y) dHM−1(y)

=
∫

Σ

∂

∂τ̂
P (x, y) dHM−1(y) .
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Set

S1 =
{
y ∈ Σ : |y − π(x)| ≤ %(x)

}
, (9.61)

S2 =
{
y ∈ Σ : |y − π(x)| > %(x)

}
. (9.62)

Using (9.54), we can estimate that the quantity in (9.58) is bounded by

M
∫

Σ

1

|x− y| P (x, y) ‖g‖Λδ
|y − π(x)|δ−1 dHM−1(y)

= M
∫

S1

1

|x− y| P (x, y) ‖g‖Λδ
|y − π(x)|δ−1 dHM−1(y) (9.63)

+ M
∫

S2

1

|x− y| P (x, y) ‖g‖Λδ
|y − π(x)|δ−1 dHM−1(y) .(9.64)

We estimate (9.63) by using (9.56), (9.60), the non-negativity of P , and
the fact that, on S1, it holds that

|y − π(x)|δ−1 ≤ %(x)δ−1

because δ − 1 > 0. We have

∫

S1

1

|x− y| P (x, y) ‖g‖Λδ
|y − π(x)|δ−1 dHM−1(y)

≤ ‖g‖Λδ
· %(x)−1

∫

S1

P (x, y) |y − π(x)|δ−1 dHM−1(y)

≤ ‖g‖Λδ
· %(x)−1

∫

S1

P (x, y) %(x)δ−1 dHM−1(y)

= ‖g‖Λδ
· %(x)δ−2

∫

S1

P (x, y) dHM−1(y)

≤ ‖g‖Λδ
· %(x)δ−2

∫

Σ
P (x, y) dHM−1(y) = ‖g‖Λδ

· %(x)δ−2 .

To estimate (9.64), we first note that

|y − π(x)| ≤ |y − x| + |π(x) − x| = |y − x| + %(x) ≤ 2|y − x|
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implies
1

|x− y| ≤ 2|y − π(x)|−1 .

Also we note that, on S2, it holds that

|y − π(x)|δ−2 ≤ %(x)δ−2

because δ − 2 < 0. We estimate
∫

S2

1

|x− y|
P (x, y) ‖g‖Λδ

|y − π(x)|δ−1 dHM−1(y)

≤ 2 ‖g‖Λδ

∫

S2

P (x, y) |y − π(x)|δ−2 dHM−1(y)

≤ 2 ‖g‖Λδ

∫

S2

P (x, y) %(x)δ−2 dHM−1(y)

= 2 ‖g‖Λδ
· %(x)δ−2

∫

S2

P (x, y) dHM−1(y)

≤ 2 ‖g‖Λδ
· %(x)δ−2

∫

Σ
P (x, y) dHM−1(y) = 2 ‖g‖Λδ

· %(x)δ−2 .

Thus we have ∣∣∣∣∣
∂2u

∂τ ∂τ̂

∣∣∣∣∣ ≤ 3M · ‖g‖Λδ
· %(x)δ−2 , (9.65)

for x ∈ B \ {0} and unit vectors τ , τ̂ with τ · x = τ̂ · x = 0.

Mixed normal and tangential second derivatives. Fix a point x ∈
B \ {0}, let τ be a unit vector tangent at x to the sphere of radius |x|
centered at the origin, and let ν = x/|x| be the outward unit normal vector
at x to the sphere of radius |x|.

We have

∂2u

∂ν ∂τ
=
∫

Σ

∂2P

∂ν ∂τ
(x, y) g(y) dHM−1(y)

=
∫

Σ

∂P

∂xν
(x, y)

∂ g

∂yτ
(y) dHM−1(y)

=
∫

Σ

∂P

∂xν
(x, y)

[
∂ g

∂yτ
(y) − ∂ (g ◦ π)

∂yτ
(g ◦ π)(x)

]
dHM−1(y) . (9.66)
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We can proceed as before, with S1 and S2 defined as in (9.61) and (9.62), to
estimate

∣∣∣∣∣
∂2u

∂ν ∂τ

∣∣∣∣∣ ≤ ‖g‖Λδ

∫

Σ

∣∣∣∣∣
∂P

∂xν
(x, y)

∣∣∣∣∣ |y − π(x)|δ−1 dHM−1(y)

= ‖g‖Λδ

∫

S1

∣∣∣∣∣
∂P

∂xν
(x, y)

∣∣∣∣∣ |y − π(x)|δ−1 dHM−1(y) (9.67)

+ ‖g‖Λδ

∫

S2

∣∣∣∣∣
∂P

∂xν
(x, y)

∣∣∣∣∣ |y − π(x)|δ−1 dHM−1(y) . (9.68)

We use (9.55) to estimate (9.67) by

‖g‖Λδ

∫

S1

∣∣∣∣∣
∂P

∂xν
(x, y)

∣∣∣∣∣ |y − π(x)|δ−1 dHM−1(y) ≤ ‖g‖Λδ
· (M + 2) · %(x)δ−2 .

Estimating (9.68) is more complicated. We use the estimate (9.55) to see
that

∣∣∣∣∣
∂P

∂xν
(x, y)

∣∣∣∣∣ ≤ (M + 2) · %(x)−1 · P (x, y)

= (M + 2) · %(x)−1 · Γ(M/2)

2πM/2
· %(x) (2 − %(x))

|x− y|M

= (M + 2) · Γ(M/2)

2πM/2
· 2 − %(x)

|x− y|M

≤ (M + 2) Γ(M/2)

πM/2
· 1

|x− y|M
.

Then, using the estimate |y − x|−1 ≤ 2|y − π(x)|−1, we can bound (9.68) by

(M + 2) Γ(M/2)

πM/2
‖g‖Λδ

2M
∫

S2

|y − π(x)|δ−1−M dHM−1(y) .

To estimate this last integral, we let θ denote the angle between y and π(x).
Then we have

|y − π(x)| = 2 sin θ/2 .
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For each θ, the set

{
y ∈ Σ : |y − π(x)| = 2 sin θ/2

}

is an (M − 2)-dimensional sphere of radius sin θ and thus has (M − 2)-
dimensional area (M − 1) ΩM−1 sinM−2 θ. Now, letting θ0 ∈ (0, π) be such
that

%(x) = 2 sin θ0/2 ,

we have
∫

S2

|y−π(x)|δ−1−M dHM−1(y) = (M−1) ΩM−1

∫ π

θ0

[2 sin θ/2]δ−1−M sinM−2 θ dθ .

Since

θ/2 ≤ 2

π
sin θ/2 ≤ 2 sin θ/2, for 0 ≤ θ ≤ π,

and

sin θ ≤ θ, for 0 ≤ θ,

we have

%(x) = 2 sin θ0/2 ≤ θ0 .

We can estimate
∫ π

θ0

[2 sin θ/2]δ−1−M sinM−2 θ dθ

≤
∫ π

%(x)
[2 sin θ/2]δ−1−M sinM−2 θ dθ

≤ 2M+1−δ
∫ π

%(x)
θδ−3 dθ

=
2M+1−δ

2 − δ

[
%(x)δ−2 − πδ−2

]
≤ 2M+1−δ

2 − δ
%(x)δ−2 .

Thus we have
∣∣∣∣∣
∂2u

∂ν ∂τ

∣∣∣∣∣ ≤ (M + 2)

(
1 + (M − 1) ΩM−1 ·

Γ(M/2)

πM/2
· 22M+1−δ

2 − δ

)

· ‖g‖Λδ
· %(x)δ−2 . (9.69)
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The second normal derivative. Fix a point x ∈ B \{0} and let ν = x/|x|
be the outward unit normal vector to the sphere of radius |x| centered at the
origin.

If τ1, τ2, . . . , τM−1 are pairwise orthogonal unit vectors, all tangent at x
to the sphere of radius |x|, then

∂2u

∂ν2
= −

M−1∑

i=1

∂2

∂τ 2
i

u

so that ∣∣∣∣∣
∂2

∂ν2
u

∣∣∣∣∣ ≤ 3M(M − 1) · ‖g‖Λδ
· %(x)δ−2 . (9.70)

Summary. Fix x ∈ B \ {0}. By making an orthogonal change of basis, we
can arrange for x/|x| to coincide with one of the standard basis vectors. Then
(9.65), (9.69), and (9.70), give us the required bound for the Hilbert–Schmidt
norm of the Hessian matrix for u at x.

Lemma 9.4.3 Fix 0 < δ < 1 and 1 < σ̂ < 2. There is a constant c8 = c8(δ)
such that if

g : BM (0, σ̂) → R

is smooth and u ∈ C0(B)
⋂
C2(B) satisfies

4u = 0 on B ,

u = g on Σ ,

then

(1) sup
{
|x− z|−δ |Du(x) −Du(z)| : x, z ∈ B, x 6= z

}

+ sup
B

|Du|

≤ c8 ·
(

sup
{
|x− z|−δ |Dg(x) −Dg(z)| : x, z ∈ BM (0, σ̂), x 6= z

}

+ sup
BM (0,σ̂)

|Dg|
)
,

(2) sup
BM (0,1/2)

∣∣∣Hess [u(x)]
∣∣∣ ≤ c8

(∫

B

∣∣∣Hess [u(x)]
∣∣∣
2
dLM

)1/2

,
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(3) sup
x∈BM(0,η̂)

|Du(x) −Du(0)|2 ≤ c8 η̂
2
∫

B

∣∣∣Hess [u(x)]
∣∣∣
2
dLM ,

for each 0 < η̂ < 1/2.

Proof.
(1) Since

sup
B

|Du| ≤ sup
Σ

|Dg|

holds by the maximum principle, it suffices to estimate

sup
{
|x− z|−δ |Du(x) −Du(z)| : x, z ∈ B, x 6= z

}
.

We do so by comparing
|Du(x1) −Du(x0)|

to hδ, where x0, x1 ∈ B and h = |x1 − x0|. We only need to consider h small
and, again by the maximum principle, we only need to consider x0 near to
Σ.

Set δ̂ = 1 + δ. We will apply Lemma 9.4.2 with δ replaced by δ̂. By that
lemma, we have ∣∣∣Hess [u(x)]

∣∣∣ ≤ c7 · ‖g‖Λ
δ̂
· %(x)δ̂−2

for x ∈ B, where %(x) = 1 − |x|. Note that

‖g‖Λ
δ̂

≤ sup
{
|x− z|−δ |Dg(x) −Dg(z)| : x, z ∈ BM (0, σ̂), x 6= z

}

+ sup
BM (0,σ̂)

|Dg|

holds. In what follows, C will denote a generic positive, finite constant
incorporating the value of c7.

We need to estimate |Du(x1) −Du(x0)|. The proximity of the boundary
Σ makes it difficult to obtain the needed estimate. Rather than proceeding
directly, we replace each point xi by a point x̃i that is a distance h farther
away from Σ (see Figure 9.3). Remarkably, it is then feasible to estimate
the individual terms |Du(x̃0) −Du(x0)|, |Du(x̃1) −Du(x1)|, and |Du(x̃0) −
Du(x̃1)|.

Let x̃i be such that

π(x̃i) = π(xi) ,

|x̃i| = |xi| − h ;
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Figure 9.3: Moving the points away from the boundary.

then we have

|Du(x1) −Du(x0)| ≤ |Du(x1) −D(x̃1)|
+ |Du(x̃1) −Du(x̃0)|
+ |Du(x̃0) −Du(x0)|
= I + II + III .

Set ν = x0/|x0|. We have

III ≤
∫ h

0

∣∣∣∣∣
∂(Du)

∂ν
(x0 − tν)

∣∣∣∣∣ dL
1(t)

≤
∫ h

0

∣∣∣Hess [u(x0 − tν)]
∣∣∣ dL1(t)

≤ C ‖g‖Λ
δ̂

∫ h

0
%(x0 − tν)δ̂−2 dL1(t)

≤ C ‖g‖Λ
δ̂

∫ h

0
[%(x0) + t]δ̂−2 dL1(t)

= C ‖g‖Λ
δ̂

(
[%(x0) + h]δ̂−1 − %(x0)

δ̂−1
)

≤ C hδ̂−1 = C hδ ,

if %(x0) is small. (Note that δ̂ − 1 > 0.)
Likewise, we estimate

I ≤ C ‖g‖Λ
δ̂
hδ̂−1 .
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To estimate II, we note that

II ≤
∫ h

0
h
∣∣∣Hess [u(x̃0 + ξ)]

∣∣∣ dL1(t) (9.71)

where x̃0 + ξ is a point on the segment between x̃0 and x̃1. The righthand
side of (9.71) is bounded above by

C ‖g‖Λ
δ̂
h
∫ h

0
%(x̃0 + ξ)δ̂−2 dL1(t) ≤ C ‖g‖Λ

δ̂
h
∫ h

0
hδ̂−2 dL1(t)

≤ C ‖g‖Λ
δ̂
hδ̂ .

(2) Fix i, j ∈ {1, 2, . . . ,M} and x ∈ BM (0, 1/2). For 0 < r < 1/2, we have

∂2u

∂xi ∂xj
(x) =

∫

{y:|y|=r}

∂2u

∂xi ∂xj
(x+ y) dHM−1(y)

by the mean value property of harmonic functions. But then

∣∣∣∣∣
∂2u

∂xi ∂xj
(x)

∣∣∣∣∣ =

∣∣∣∣∣

∫ 1/2

0

∫

{y:|y|=r}

∂2u

∂xi ∂xj
(x+ y) dHM−1(y) dL1(r)

∣∣∣∣∣

=

∣∣∣∣∣

∫

BM (x,1/2)

∂2u

∂xi ∂xj
(z) dLM (z)

∣∣∣∣∣

≤ (ΩM )1/2 ·


∫

B

∣∣∣∣∣
∂2u

∂xi ∂xj

∣∣∣∣∣

2

dLM




1/2

holds and the result follows.

(3) Fix i ∈ {1, 2, . . . ,M} and x ∈ BM (0, 1/2) \ {0}. Set ν = x/|x| and

ψ(t) =
∂u

∂xi
(tν)

for −1 < t < 1. Thus ψ′(t) is the directional derivative of ∂u/∂xi in the
direction ν at the point tν. It follows that |ψ′(t)| is bounded by the operator
norm of the Hessian matrix for u at tν. Hence |ψ′(t)| is bounded by a multiple

of
∣∣∣Hess [u(tν)]

∣∣∣.
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Using the fundamental theorem of calculus, we estimate

∣∣∣∣∣
∂u

∂xi
(x) − ∂u

∂xi
(0)

∣∣∣∣∣

2

=

∣∣∣∣∣

∫ |x|

0
ψ′(t) dL1(t)

∣∣∣∣∣

2

≤ |x|2 · sup
{
|ψ′(t)|2 : 0 ≤ t ≤ |x|

}

≤ |x|2 · sup
y∈BM (0,1/2)

∣∣∣Hess [u(y)]
∣∣∣
2
,

so we see that conclusion (3) follows from conclusion (2).

9.5 The Main Estimate

The next lemma is the main tool in the regularity theory. The lemma tells us
that once the cylindrical excess (see Definition 9.1.4) of an area-minimizing
surface is small enough, then the excess on a smaller cylinder can be made
even smaller by appropriately rotating the surface.

Lemma 9.5.1 There exist constants

0 < θ < 1/8 , 0 < ε∗ ≤ (θ/4)2M , (9.72)

depending only on M , with the following property:
If 0 ∈ spt T , if T0 = T C(0, ρ/2), and if the hypotheses (H1–H5) hold

with

y = 0 , ε = ε∗ ,

then

sup
X∈sptT0

|q (X)| ≤ ρ/8 (9.73)

holds and there exists a linear isometry j : RM+1 → RM+1 with

‖j − IRM+1‖2 ≤ θ−2M E(T, 0, ρ ) ≤ 1/64 , (9.74)

E( j#T0, 0, θρ ) ≤ θ E(T, 0, ρ ) . (9.75)

Here IRM+1 is the identity map on RM+1.
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Proof. Since we may change scale if need be, it will be sufficient to prove
the lemma with ρ = 1. We ultimately will choose

ε∗ < ε0 (9.76)

where ε0 is as in Lemmas 9.2.1 and 9.2.2 (in particular, Lemma 9.2.1 is
invoked with σ = 2/3), so we will assume that 0 ∈ spt T and that the
hypotheses (H1–H5) hold with y = 0 ρ = 1, and with ε = ε0, where ε0 is as
in Lemma 9.2.1.

We set

δ =
1

9M2
,

E = E(T, 0, 1 ) .

Lipschitz approximations. We can apply Lemma 9.2.2 to obtain a Lips-
chitz function whose graph approximates spt T . In fact, there are two such
approximating functions that will be of interest:

• We let gδ : BM (0, 1/4) → R be a Lipschitz function as in Lemma 9.2.2
corresponding to the choice

γ = E2 δ .

• We let h : BM (0, 1/4) → R be a Lipschitz function as in Lemma 9.2.2
corresponding to the choice γ = 1.

Smoothing g . Let ϕ ∈ C∞(RM ) be a mollifier as in Definition 5.5.1 with
N replaced by M . As usual, for 0 < ν,

• set

ϕν(z) = ν−M ϕ(ν−1z);

• let f ∗ ϕν denote convolution of f with ϕν .

Let 0 < c9 <∞ satisfy

sup |ϕ| ≤ c9 ,

sup |Dϕ| ≤ c9 ,

supx 6=z |x− z|−δ |Dϕ(x) −Dϕ(z)| ≤ c9 .
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Defining

g̃δ = gδ ∗ ϕE , (9.77)

we obtain the following standard estimates:

sup
BM (0,1/8)

|Dg̃δ| ≤ sup
BM (0,1/4)

|Dgδ| ≤ E2δ ≤ Eδ, (9.78)

sup
BM (0,1/8)

|g̃δ − gδ| ≤ E sup
BM (0,1/4)

|Dgδ| ≤ E1+δ, (9.79)

sup{ |x− z|−δ |Dg̃δ(x) −Dg̃δ(z)| : x, z ∈ BM (0, 1/8), x 6= z }

≤ sup
BM (0,1/4)

|Dgδ| · sup
x 6=z

|x− z|−δ |φ(E−1x) − φ(E−1z)|

≤ E2δ · E−δ · sup
x 6=z

|x− z|−δ |φ(x) − φ(z)|

≤ c9E
δ . (9.80)

The graph of g̃ . We next define

S̃ = G̃#(EM BM(0, 1/8) ) , (9.81)

where G̃ : BM (0, 1/8) → C(0, 1/8) is defined by

G̃(x) = (x, g̃δ(x)) .

Choosing σ. For each 0 < σ < 1/8 we let

Tσ = T C(0, σ), S̃σ = S̃ C(0, σ) .

We wish to show that there is a finite positive constant c10 such that there are
infinitely many choices of 1/16 < σ < 1/8 for which the following inequalities
all hold:

HM−1
{
x ∈ ∂BM(0, σ) : gδ(x) 6= h(x)

}
≤ c10E

1−4Mδ (9.82)

‖∂Tσ‖(RM+1) ≤ c10, (9.83)

‖∂Tσ‖
{
X : |P (X) −X| > E1+δ

}
≤ c10E

1−4Mδ , (9.84)
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where P is the “vertical retraction” of C(0, 1/8) onto (graph g̃δ)
⋂

C(0, 1/8).
That is, for X ∈ C(0, 1/8) we have

P (X) = (p (X), g̃δ(p (X))) .

Notice that P#Tσ = S̃σ by (9.18) and the definition of S̃.
• First, by (9.24) and by Theorem 5.2.1, i.e., the coarea formula, we have

∫ 1/8

1/16
HM−1

{
x ∈ ∂BM (0, σ) : gδ(x) 6= h(x)

}
dL1σ

≤ LM
(

BM (y, 1/4) \
{
z ∈ BM (y, 1/4) : p−1(z)

⋂
spt T = {(x, h(x))}

})

+ LM
(

BM (y, 1/4) \
{
z ∈ BM (y, 1/4) : p−1(z)

⋂
spt T = {(x, gδ(x))}

})

≤ c3 (1 + E−4δ)E ≤ 2 c3 E
1−4δ .

• Because ∂T has its support outside the cylinder of radius 1, we can iden-
tify ∂Tσ with the slice 〈T, r, σ+〉, where r is the distance from the axis of the
cylinder. We conclude that

∫ 1/8

1/16
‖∂Tσ‖(RM+1) dL1σ ≤

∫

C(0,1/8)
d‖T‖

holds.
• Third, by (9.79), ifX = (x, gδ(x)) coincides with the point p−1(x)

⋂
spt T ,

then X and P (X) are separated by a distance not exceeding E1+δ. So we
use (9.25) to estimate

∫ 1/8

1/16
‖∂Tσ‖{ X : |P (X) −X| > E1+δ } dL1σ

=
∫ 1/8

1/16
‖〈T, r, σ+〉‖{ X : |P (X) −X| > E1+δ } dL1σ

=
∫ 1/8

1/16
‖〈T − S̃, r, σ+〉‖C(y, 1/4) dL1σ

≤ ‖T − S̃‖C(y, 1/4) ≤ c4E
−4Mδ E ,

where we note that, in the notation of Lemma 9.2.2, S̃ corresponds to T gδ.



314 REGULARITY OF MASS-MINIMIZING CURRENTS

The homotopy between T and S̃ . Let H : [0, 1] × C(0, 1/8) → RM+1

be defined by H(t, x) = tP (X) + (1− t)X. By the homotopy formula (7.22),
we have

∂V = ∂Tσ − ∂S̃σ, where V = H#( 0, 1 × ∂Tσ) . (9.85)

By (7.23) and Lemma 9.2.2 applied with γ = E2δ (in particular, using (9.22)
and (9.24)), and by (9.79), (9.82), and (9.84), we have

‖V ‖(RM+1)

≤ 2
∫

|P (X) −X| d‖Tσ‖

≤ 2
(

sup
X∈spt∂Tσ

|P (X) −X|
)
· ‖∂Tσ‖

{
X : |X − P (X)| > E1+δ

}

+ c10E
1+δ

≤ c11E
1+1/(2M)−4Mδ + c10E

1+δ

≤ c12E
1+δ , (9.86)

where we have made use of the fact that δ = (9M2)−1.

The approximating harmonic function. The aim is to show that, with
1/16 < σ < 1/8 chosen so that (9.82), (9.83), and (9.84) hold, T C(0, σ)
can be very closely approximated by the graph of a harmonic function.

Let 1/16 < σ < 1/8 be such that (9.82), (9.83), and (9.84) (and conse-

quently (9.86)) hold. Let u : BM
(0, σ) → R be continuous and satisfy

4u = 0 on BM (0, σ),

u = g̃δ on ∂BM(0, σ),



 (9.87)

where g̃δ is as in (9.77), so (9.78) and (9.80) will hold.
Recall that (9.78) and (9.80) are the estimates

sup
BM (0,1/8)

|Dg̃δ| ≤ Eδ

and

sup{ |x− z|−δ |Dg̃δ(x) −Dg̃δ(z)| : x, z ∈ BM (0, 1/8), x 6= z} ≤ c9E
δ .
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By applying Lemma 9.4.3 with σ̂ = 1/(8σ), g(x) = g̃δ(x/σ), and η̂ = η/σ,
we see that there exist constants c13 and c14 such that if u is as in (9.87),
then the following estimates hold:

sup{ |x− z|−δ |Du(x) −Du(z)| : x, z ∈ BM(0, σ), x 6= z}

+ sup
BM (0,σ)

|Du| ≤ c13E
δ , (9.88)

sup
x∈BM(0,η)

|Du(x) −Du(0)|2 ≤ c14 η
2
∫

BM (0,σ)
|Du|2 dLM , (9.89)

for each 0 < η < σ/2.

The comparison surface and the first use of the minimality of T .
Define G : BM (0, σ) → C(0, σ) by setting G(x) = (x, u(x)) and set

S = G#(EM BM(0, σ)) .

We have ∂S = ∂S̃σ, where we recall that S̃σ = S̃ C(0, σ) and that S̃ is
defined in (9.81). Consequently, we have

∂(V + S − Tσ) = 0 , (9.90)

by (9.85). This last equation tells us that

∂(V + S) = ∂Tσ ,

so we can use V +S as a comparison surface for the area-minimizing surface
Tσ. Since it is true for any V and S that

A[V ] + A[S] ≥ A[V + S] ,

we have
A[V ] + A[S] ≥ A[V + S] ≥ A[Tσ] , (9.91)

because Tσ is area-minimizing.

The first calculation of the difference between T and S. We extend
−⇀
S to all of C(0, σ) by setting

−⇀
S (X) =

−⇀
S
(
p (X), u(p (X))

)
. (9.92)
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Using the extension of
−⇀
S in (9.92) and noting that

−⇀
Tσ =

−⇀
T holds ‖Tσ‖-

almost everywhere, we get

A[Tσ] − A[S] =
∫
A(

−⇀
T ) d‖Tσ‖ −

∫
A(

−⇀
S ) d‖S‖

=
∫ (

A(
−⇀
T ) −

〈
DA(

−⇀
S ),

−⇀
T
〉 )

d‖Tσ‖

+
∫ 〈

DA(
−⇀
S ),

−⇀
T
〉
d‖Tσ‖ −

∫
A(

−⇀
S ) d‖S‖

=
∫ (

A(
−⇀
T ) −

〈
DA(

−⇀
S ),

−⇀
T
〉 )

d‖Tσ‖

+
∫ 〈

DA(
−⇀
S ),

−⇀
T
〉
d‖Tσ‖ −

∫ 〈
DA(

−⇀
S ),

−⇀
S
〉
d‖S‖ , (9.93)

where we have also used (9.6) to conclude that A(
−⇀
S ) =

〈
DA(

−⇀
S ),

−⇀
S
〉
.

By (9.12) we have

A(
−⇀
T ) −

〈
DA(

−⇀
S ),

−⇀
T
〉

=
1

2

∣∣∣
−⇀
T −

−⇀
S
∣∣∣
2
. (9.94)

For integrands other than area, a Weierstrass condition would be used here

instead of (9.12). Recalling from (9.7) that we may also treat DA(
−⇀
S ) as a

differential M -form, we have
∫ 〈

DA(
−⇀
S ),

−⇀
T
〉
d‖Tσ‖ −

∫ 〈
DA(

−⇀
S ),

−⇀
S
〉
d‖S‖ = [Tσ − S]

(
DA(

−⇀
S )

)
.

(9.95)
Using (9.93), (9.94) and (9.95), we see that

A[Tσ] − A[S] =
1

2

∫ ∣∣∣
−⇀
T −

−⇀
S
∣∣∣
2
d‖Tσ‖ + [Tσ − S]

(
DA(

−⇀
S )

)
. (9.96)

Use of the comparison surface and the second use of the minimality
of T . Since (9.90) tells us that ∂(V + S − Tσ) = 0, we have

V + S − Tσ = ∂R

for some (M + 1)-dimensional current R, so (see (9.3) for notation)

(V + S − Tσ)
(
dxM

)
= (∂R)

(
dxM

)
= R

(
d dxM

)
= 0 .
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Since (9.7) tells us that DA(eM) = dxM , we conclude that

(V + S − Tσ)
(
DA(eM )

)
= 0 .

Thus we have

A[Tσ] −A[S] =
1

2

∫ ∣∣∣
−⇀
T −

−⇀
S
∣∣∣
2
d‖Tσ‖

+ (Tσ − S)
(
DA(

−⇀
S ) −DA(eM)

)

+ V
(
DA(eM)

)
. (9.97)

From(9.91), (9.96), and (9.97) we obtain

A[V ] ≥ A[Tσ] − A[S]

≥ 1

2

∫ ∣∣∣
−⇀
T −

−⇀
S
∣∣∣
2
d‖Tσ‖

+ (Tσ − S)
(
DA(

−⇀
S ) −DA(eM )

)

+ V (DA(eM ) ) . (9.98)

By (9.86), we have A[V ] = ‖V ‖(RM+1) ≤ c12E
1+δ and consequently also

∣∣∣V (DA(eM) )
∣∣∣ ≤ c12E

1+δ .

Thus we have

2c12E
1+δ ≥ 1

2

∫ ∣∣∣
−⇀
T −

−⇀
S
∣∣∣
2
d‖Tσ‖

+ (Tσ − S)
(
DA(

−⇀
S ) −DA(eM )

)
. (9.99)

Estimating the second term on the right in (9.99). We wish to es-
timate the second term on the right in (9.99) by an expression similar to
the first term on the right. The argument to obtain the desired estimate is
sufficiently complicated that we state the result as a separate claim.
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Claim. There exist constants c15 and c16 such that

∣∣∣ (Tσ − S)
(
DA(

−⇀
S ) −DA(eM)

) ∣∣∣

≤ c15E
1+δ + 2 c16E

δ
∫ ∣∣∣

−⇀
S −

−⇀
T
∣∣∣
2
d‖Tσ‖ . (9.100)

Proof of the Claim. We recall that h is as in Lemma 9.2.2 with γ = 1,
and we introduce

T 0
σ = G0

#(EM BM(0, σ)) ,

where G0(x) = (x, h(x)). By (9.25) of the Lipschitz approximation lemma,
we have

‖T 0
σ − Tσ‖C(0, σ) ≤ c4E , (9.101)

because γ = 1, ρ = 1, and σ < 1/8.
The estimate (9.88) gives us the bound |Du| ≤ c13E

δ. Then, using (9.47),
we obtain ∣∣∣DA(

−⇀
S ) −DA(eM )

∣∣∣ ≤ 2 c13E
δ . (9.102)

By (9.101) and (9.102) we have

∣∣∣ (Tσ − S)
(
DA(

−⇀
S ) −DA(eM)

) ∣∣∣

≤
∣∣∣ (T 0

σ − S)
(
DA(

−⇀
S ) −DA(eM)

) ∣∣∣+
∣∣∣ (Tσ − T 0

σ )
(
DA(

−⇀
S ) −DA(eM )

) ∣∣∣

≤
∣∣∣ (T 0

σ − S)
(
DA(

−⇀
S ) −DA(eM)

) ∣∣∣+ c4E · 2 c13E
δ . (9.103)

Because S is the current defined by integrating over the graph of u, we
apply (9.40) with f = u to obtain

DA(
−⇀
S ) −DA(eM )

= (1 + |Du|2)−1/2

(
dxM +

M∑

i=1

(Diu) dx ı̂

)
− dxM . (9.104)

Because T 0
σ is the current defined by integration over the graph of h, we may

apply (9.37), (9.41), and (9.38), with f = h, and use (9.104) to find that

T 0
σ

(
DA(

−⇀
S ) −DA(eM )

)
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=
∫

BM (0,σ)

[
(1 + |Du|2)−1/2

(
1 +

M∑

i=1

DiuDih

)
− 1

]
dLM . (9.105)

Similarly, taking f = u, we obtain

S
(
DA(

−⇀
S ) −DA(eM )

)

=
∫

BM (0,σ)

[
(1 + |Du|2)−1/2

(
1 +

M∑

i=1

DiuDiu

)
− 1

]
dLM . (9.106)

Combining (9.105) and (9.106), we find that

(T 0
σ − S)

(
DA(

−⇀
S ) −DA(eM)

)

=
∫

BM (0,σ)

[
(1 + |Du|2)−1/2

M∑

i=1

DiuDi(h− u)

]
dLM . (9.107)

We will simplify the integrand in (9.107) so that we can use the fact that
u is a harmonic function. To this end we use (9.44) to bound

∣∣∣∣∣

∫

BM (0,σ)

[
(1 + |Du|2)−1/2

M∑

i=1

DiuDi(h− u)

]
dLM

−
∫

BM (0,σ)

[
M∑

i=1

DiuDi(h− u)

]
dLM

∣∣∣∣∣

above by

∫

BM (0,σ)
|Du|

∣∣∣∣∣
M∑

i=1

DiuDi(h− u)

∣∣∣∣∣ dL
M

≤
∫

BM (0,σ)
|Du| |Du| |D(h− u)| dLM

≤
∫

BM (0,σ)
|Du| |Du|

(
|Dh| + |Du|

)
dLM

≤
∫

BM (0,σ)
|Du|3 dLM +

∫

BM (0,σ)
|Du| |Du| |Dh| dLM
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≤
∫

BM (0,σ)
|Du|3 dLM +

1

2

∫

BM (0,σ)
|Du|

(
|Du|2 + |Dh|2

)
dLM

≤ 3

2

∫

BM (0,σ)
|Du|

(
|Du|2 + |Dh|2

)
dLM .

So, using the bound |Du| ≤ c13E
δ from (9.88), we can write

(T 0
σ − S)(DA(

−⇀
S ) −DA(eM)) =

∫

BM (0,σ)

[
M∑

i=1

DiuDi(h− u)

]
dLM +R ,

(9.108)
where

|R| ≤ (3/2) c13 E
δ
∫

BM (0,σ)

(
|Du|2 + |Dh|2

)
dLM . (9.109)

The fact that u is harmonic will allow us to express the integrand

M∑

i=1

DiuDi(h− u)

in (9.108) as the divergence of a vector field, and thereby allow us to use
the Gauss–Green theorem to replace the integral over the disc by an integral
over the boundary of the disc.

Set

w = (h− u)
M∑

i=1

Diu ei .

We compute

divw =
M∑

i=1

∂

∂xi
[(h− u)Diu]

=
M∑

i=1

DiuDi(h− u) + (h− u)
M∑

i=1

∂2u

∂x2
i

=
M∑

i=1

DiuDi(h− u) .

Applying the Gauss–Green theorem (Theorem 6.2.6), we obtain
∫

BM (0,σ)
divw dLM =

∫

∂BM (0,σ)
w·η dHM−1
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where η is the outward unit normal to ∂BM(0, σ). Hence we conclude that

∫

BM (0,σ)

[
M∑

i=1

DiuDi(h− u)

]
dLM

=
∫

∂BM(0,σ)
(h− u)

M∑

i=1

Diuηi dHM−1

=
∫

∂BM(0,σ)
(h− g̃δ)

M∑

i=1

Diuηi dHM−1 ,

where we use the boundary condition in (9.87) to replace u by g̃δ in the last
term. Thus we have

(T 0
σ − S)

(
DA(

−⇀
S ) −DA(eM)

)

=
∫

∂BM(0,σ)
(h− g̃δ)

M∑

i=1

Diuηi dHM−1 +R .

Now, using (9.88) to estimate |Du| ≤ c13E
δ, (9.23) to estimate |h− gδ| ≤

2 c2E
1/(2M), (9.79) to estimate |gδ − g̃δ| ≤ E1+δ, and (9.82) to estimate

HM−1
{
x ∈ ∂BM(0, σ) : gδ(x) 6= h(x)

}
≤ c10E

1−4Mδ ,

and recalling that δ = 1/(9M2), we obtain the estimate
∣∣∣∣∣

∫

∂BM(0,σ)
(h− g̃δ)

M∑

i=1

Diuηi dHM−1

∣∣∣∣∣

≤
∣∣∣∣∣

∫

∂BM(0,σ)
(h− gδ)

M∑

i=1

Diuηi dHM−1

∣∣∣∣∣

+

∣∣∣∣∣

∫

∂BM (0,σ)
(gδ − g̃δ)

M∑

i=1

Diuηi dHM−1

∣∣∣∣∣

≤ c13E
δ

(∫

∂BM (0,σ)
|h− gδ| dHM−1

+
∫

∂BM(0,σ)
|gδ − g̃δ| dHM−1

)
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≤ c13E
δ
(

2 c2 E
1/(2M) c10E

1−4Mδ + E1+δ M ΩM

)

= c13

(
2 c2 c10E

6−1δ1/2

+M ΩM Eδ
)
E1+δ . (9.110)

Combining equation (9.108) with the estimates (9.109) and (9.110), we
obtain the estimate

∣∣∣ (T 0
σ − S)

(
DA(

−⇀
S ) −DA(eM )

) ∣∣∣

≤ c17E
1+δ + (3/2) c13 E

δ
∫

BM ((,0),σ)
(|Du|2 + |Dh|2) dLM ,

where we set c17 = c13 ( 2 c2 c10 +M ΩM ), as we may since E < 1.
Next, noting that we have Lipu ≤ 1 and Liph ≤ 1, we apply Proposi-

tion 9.3.6 to conclude that

|Du|2 + |Dh|2 ≤ 4
(
|
−⇀
S − eM |2 + |

−⇀
T 0

σ − eM |2
)
.

Assume now that the function
−⇀
T 0

σ has been extended (as has
−⇀
S ) to all

of C(0, σ) by defining
−⇀
T 0

σ (X) =
−⇀
T 0

σ [p (X), h(p (X))] at points where the

righthand side is defined and
−⇀
T 0

σ (X) = eM otherwise. Using also the fact
that the measure ‖Tσ‖ is larger than the measure LM , we obtain

∣∣∣ (T 0
σ − S)

(
DA(

−⇀
S ) −DA(eM )

) ∣∣∣

≤ c17E
1+δ + c16E

δ
∫ (

|
−⇀
S − eM |2 + |

−⇀
T 0

σ − eM |2
)
d‖Tσ‖ ,

with c16 = 4 · (3/2) c13.
Since

∣∣∣
−⇀
S − eM

∣∣∣
2
≤
( ∣∣∣

−⇀
S −

−⇀
T
∣∣∣+

∣∣∣
−⇀
T − eM

∣∣∣
)2

≤ 2
( ∣∣∣

−⇀
S −

−⇀
T
∣∣∣
2

+
∣∣∣
−⇀
T − eM

∣∣∣
2 )
,

we deduce that

∣∣∣ (T 0
σ − S)

(
DA(

−⇀
S ) −DA(eM )

) ∣∣∣

≤ c17E
1+δ
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+ c16E
δ
∫ (

2
∣∣∣
−⇀
S −

−⇀
T
∣∣∣
2

+ 2
∣∣∣
−⇀
T − eM

∣∣∣
2

+
∣∣∣
−⇀
T 0

σ − eM
∣∣∣
2 )
d‖Tσ‖

= c17E
1+δ + 2 c16 E

δ
∫ ∣∣∣

−⇀
S −

−⇀
T
∣∣∣
2
d‖Tσ‖

+ 2 c16 E
δ
∫ ∣∣∣

−⇀
T − eM

∣∣∣
2
d‖Tσ‖

+ c16E
δ
∫ ∣∣∣

−⇀
T 0

σ − eM
∣∣∣
2
d‖Tσ‖

≤ c17E
1+δ + 2 c16 E

δ
∫ ∣∣∣

−⇀
S −

−⇀
T
∣∣∣
2
d‖Tσ‖

+ 4 c16 E
δ · E + c16E

δ
∫ ∣∣∣

−⇀
T 0

σ − eM
∣∣∣
2
d‖Tσ‖ . (9.111)

We note that

∫ ∣∣∣
−⇀
T 0

σ − eM
∣∣∣
2
d‖Tσ‖

≤
∫ ∣∣∣

−⇀
T − eM

∣∣∣
2
d‖Tσ‖ +

∫ ∣∣∣
∣∣∣
−⇀
T 0

σ − eM |2 −
∣∣∣
−⇀
T − eM

∣∣∣
2 ∣∣∣ d‖Tσ‖

≤ 2E +
∫ ∣∣∣

∣∣∣
−⇀
T 0

σ − eM
∣∣∣
2
−
∣∣∣
−⇀
T − eM

∣∣∣
2 ∣∣∣ d‖Tσ‖

≤ 2E + 2
∫ ∣∣∣ (

−⇀
T 0

σ −
−⇀
T ) · eM

∣∣∣ d‖Tσ‖

≤ 2E + 2
∫ ∣∣∣

−⇀
T 0

σ −
−⇀
T
∣∣∣ d‖Tσ‖ .

By (9.25), we have

‖T 0
σ − Tσ‖C(0, σ) ≤ c4E ,

so ∫ ∣∣∣
−⇀
T 0

σ −
−⇀
T
∣∣∣ d‖Tσ‖ ≤ c4E ,

and we conclude that

∫ ∣∣∣
−⇀
T 0

σ − eM
∣∣∣
2
d‖Tσ‖ ≤ 2 (1 + c4)E . (9.112)
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Combining (9.103), (9.111), and (9.112), we obtain the estimate

∣∣∣ (Tσ − S)
(
DA(

−⇀
S ) −DA(eM )

) ∣∣∣

≤ c15E
1+δ + 2 c16E

δ
∫ ∣∣∣

−⇀
S −

−⇀
T
∣∣∣
2
d‖Tσ‖ ,

with

c15 = c4 · 2 c13 + c17 + 4 c16 + c16 · 2 (1 + c4) .

Thus the claim has been proved.

Combining the estimates. Combining (9.97) and (9.100), we obtain the
estimate

(
1/2 − 2 c16 E

δ
) ∫ ∣∣∣

−⇀
S −

−⇀
T
∣∣∣
2
d‖Tσ‖ ≤ 2 c12E

1+δ + c15E
1+δ .

So we have ∫ ∣∣∣
−⇀
S −

−⇀
T
∣∣∣
2
d‖Tσ‖ ≤ c18E

1+δ , (9.113)

where c18 = 4 (2 c12 + c15), provided that

c16E
δ ≤ 1/8 (9.114)

holds.

Considering candidates for θ. Consider an arbitrary 0 < θ < σ/4. We
have

∫

C(0,2θ)

∣∣∣
−⇀
T −

−⇀
S (0)

∣∣∣
2
d‖T‖

≤ 2
∫

C(0,2θ)

∣∣∣
−⇀
T −

−⇀
S
∣∣∣
2
d‖T‖ + 2

∫

C(0,2θ)

∣∣∣
−⇀
S −

−⇀
S (0)

∣∣∣
2
d‖T‖

≤ 2
∫

C(0,2θ)

∣∣∣
−⇀
T −

−⇀
S
∣∣∣
2
d‖T‖ + 2

(
sup

C(0,2θ)

∣∣∣
−⇀
S −

−⇀
S (0)

∣∣∣
2 )

· ‖T‖C(0, 2θ) .

Now

‖T‖C(0, 2θ) − ΩM (2θ)M =
1

2

∫

C(0,2θ)

∣∣∣
−⇀
T − eM

∣∣∣
2
d‖T‖ ≤ E
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(see (9.16)), so that

‖T‖C(0, 2θ) ≤ ΩM (2θ)M + E ≤ (1 + ΩM2M ) θM , (9.115)

provided that
E ≤ θM (9.116)

holds. Successively applying (9.42), (9.89), and Proposition 9.3.6, we see
that

sup
C(0,2θ)

∣∣∣
−⇀
S −

−⇀
S (0)

∣∣∣
2

≤ sup
C(0,2θ)

|Du −Du(0)|2

≤ c14 θ
2
∫

BM (0,σ)
|Du|2 dLM

≤ 4 c14 θ
2
∫ ∣∣∣

−⇀
S − eM

∣∣∣
2
d‖Tσ‖ . (9.117)

Using (9.115) and (9.117), we then deduce, subject to (9.116), that

1

2

∫

C(0,2θ)

∣∣∣
−⇀
T −

−⇀
S (0)

∣∣∣
2
d‖T‖

≤
∫

C(0,2θ)

∣∣∣
−⇀
T −

−⇀
S
∣∣∣
2
d‖T‖

+ c19 θ
M+2

∫ ∣∣∣
−⇀
S − eM

∣∣∣
2
d‖Tσ‖

≤
∫

C(0,2θ)

∣∣∣
−⇀
T −

−⇀
S
∣∣∣
2
d‖T‖

+ 2 c19 θ
M+2

∫ ( ∣∣∣
−⇀
S −

−⇀
T
∣∣∣
2

+
∣∣∣
−⇀
T − eM

∣∣∣
2 )
d‖Tσ‖

≤ (1 + 2 c19)
∫ ∣∣∣

−⇀
T −

−⇀
S
∣∣∣
2
d‖Tσ‖ + 4 c19 θ

M+2E , (9.118)

where c19 = 4 c14 · (1 + ΩM2M). Combining (9.118) and (9.113), we deduce
that

1

2

∫

C(0,2θ)

∣∣∣
−⇀
T −

−⇀
S (0)

∣∣∣
2
d‖T‖ ≤ (1 + 2 c19) · 2 c18 E

1+δ + 4 c19 θ
M+2E ,
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so
1

2
θ−M

∫

C(0,2θ)

∣∣∣
−⇀
T −

−⇀
S (0)

∣∣∣
2
d‖T‖ ≤ (1 + 4 c19) θ

2 E (9.119)

holds, provided that

c16E
δ ≤ 1/8, E ≤ θM , (1 + 2 c19) c18E

δ ≤ θ2 . (9.120)

Note that (9.120) includes conditions (9.114) and (9.116).

Bounding the slope of the harmonic function at 0. By definition we
have

1

2
θ−M

∫

C(0,2θ)

∣∣∣
−⇀
T − eM

∣∣∣
2
d‖T‖ ≤ θ−M E . (9.121)

Using ΩM (2 θ)M ≤ ‖T‖[C(0, 2 θ)], we can estimate

∣∣∣
−⇀
S (0) − eM

∣∣∣
2

=
1

‖T‖C(0, 2 θ)

∫

C(0,2 θ)

∣∣∣
−⇀
S (0) − eM

∣∣∣
2
d‖T‖

≤ 1

ΩM (2 θ)M

∫

C(0,2 θ)

∣∣∣
−⇀
S (0) − eM

∣∣∣
2
d‖T‖

≤ 2

ΩM (2 θ)M

∫

C(0,2 θ)

( ∣∣∣
−⇀
S (0) −

−⇀
T
∣∣∣
2

+
∣∣∣
−⇀
T − eM

∣∣∣
2 )
d‖T‖

≤ 1

ΩM 2M−2

1

2
θ−M

∫

C(0,2 θ)

∣∣∣
−⇀
S (0) −

−⇀
T
∣∣∣
2
d‖T‖

+
1

ΩM 2M−2

1

2
θ−M

∫

C(0,2 θ)

∣∣∣
−⇀
T − eM

∣∣∣
2
d‖T‖ .

By (9.119) and (9.121), we have

∣∣∣
−⇀
S (0) − eM

∣∣∣
2
≤ c20 θ

−M E , (9.122)

provided that (9.120) holds, where we may set c20 = 23−M Ω−1
M (1 + 2 c19).

Defining the isometry. It is easy to see that there exists a constant c21

such that (9.122) implies the existence of a linear isometry j of RM+1 with

〈 ∧
M j,

−⇀
S (0)

〉
= eM and ‖j − IRM+1‖2 ≤ c21 θ

−M E . (9.123)
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One way to construct such a j is to set vi = 〈Du(0), ei 〉 for i = 1, 2 . . . ,M .
Then apply the Gram–Schmidt orthogonalization procedure to the set

{v1, v2, . . . , vM , eM+1}

to obtain the orthonormal basis {w1, w2, . . . , wM+1}. Finally let j be the
inverse of the isometry represented by the matrix having the vectors wi as
its columns.

Recall that T0 = T C(0, 1/2). By (H1) (see page 283), we have spt ∂T ⊆
RM+1 \ C(0, 1). So we see that

dist( spt ∂T0, C(0, 1/4) ) = 1/4 .

By Lemma 9.2.1 and the assumption that 0 ∈ spt T , we have

sup
X∈C(0,1/2)∩sptT

|q (X)| ≤ c4E
1/(2M) , (9.124)

so spt ∂T0 ⊆ B(0, 1/2 + c4E
1/(2M)). By (9.123), we have

|x− j(x)| ≤ (c21 θ
−M E)1/2 · (1/2 + c4E

1/(2M))

for x ∈ spt ∂T0. Thus if

(c21 θ
−M E)1/2 · (1/2 + c4E

1/(2M)) < 1/4 (9.125)

holds, then we have

spt ∂j#T0 ⊆ RN \ C(0, 1/4) .

A similar argument shows that if

(c21 θ
−M E)1/2 · (θ + c4E

1/(2M)) < θ (9.126)

holds, then we have

sptT0
⋂

j−1C(0, θ) ⊆ C(0, 2θ) .

Selecting θ and ε∗ to complete the proof of the lemma. If we satisfy
the conditions (9.120), (9.125), and (9.126), then we obtain the estimates
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(9.119), (9.123), and (9.124). Those estimates are

1

2
θ−M

∫

C(0,2θ)

∣∣∣
−⇀
T −

−⇀
S (0)

∣∣∣
2
d‖T‖

(9.119)

≤ (1 + 4 c19) θ
2E ,

‖j − IRM+1‖2
(9.123)

≤ c21 θ
−M E ,

sup
X∈C(0,1/2)∩sptT

|q (X)|
(9.124)

≤ c4 E
1/(2M) .

We must make our choices of θ and ε∗ so that the estimates (9.119), (9.123),
and (9.124) will imply that (9.73), (9.74), and (9.75) hold. Finally, we need to
meet the conditions (9.72) in the statement of the lemma and the condition
(9.76) that allowed the use of Lemmas 9.2.1 and 9.2.2. Thus a full set of
conditions that, if satisfied, complete the proof of the lemma is the following:

θ
(9.72)
< 1/8 , (9.127)

ε∗
(9.72)

≤ (θ/4)2M ,

ε∗
(9.76)
< ε0 ,

c16E
δ

(9.120)

≤ 1/8 ,

E
(9.120)

≤ θM ,

(1 + 2 c19) c18E
δ

(9.120)

≤ θ2 ,

(c21 θ
−M E)1/2 · (1/2 + c4E

1/(2M))
(9.125)
< 1/4 ,

(c21 θ
−M E)1/2 · (θ + c4E

1/(2M))
(9.126)
< θ ,

c4E
1/(2M)

(9.73)

≤ 1/8 ,

c21 θ
−M E

(9.74)

≤ θ−2M E , (9.128)

θ−2M E
(9.74)

≤ 1/64 ,
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(1 + 4 c19) θ
2E

(9.75)

≤ θ E . (9.129)

We first choose and fix 0 < θ so that (9.127), (9.128), and (9.129) hold. This
choice is clearly independent of the value of E and the choice of ε∗. Then we
select 0 < ε∗ so that, assuming that E < ε∗ holds, the remaining conditions
are satisfied.

9.6 The Regularity Theorem

The next theorem gives us a flexible tool that we can use in proving regularity;
the proof of the theorem is based on iteratively applying Lemma 9.5.1.

Theorem 9.6.1 Let θ and ε∗ be as in Lemma 9.5.1. There exist constants
c22 and c23, depending only on M , with the following property:

If 0 ∈ spt T , if T0 = T C(0, ρ/2), and if the hypotheses (H1–H5) (see
page 283) hold with

y = 0 , ε = ε∗ ,

then
E(T, 0, r ) ≤ c22E(T, 0, ρ ) , for 0 < r ≤ ρ , (9.130)

and there exists a linear isometry j of RM+1 such that

spt ∂j#T0 ∩ C(0, ρ/4) = ∅ ,

‖j − IRM+1‖ ≤ 4 θ−2M E(T, 0, ρ ) ≤ 4−2 , (9.131)

E( j#T0, 0, r ) ≤ c23 ·
r

ρ
· E(T, 0, ρ ) , for 0 < r ≤ ρ/4 . (9.132)

Proof. Set j0 = IRM+1. We will show inductively that, for q = 1, 2, . . ., there
are linear isometries jq of RM+1 so that, writing

Tq = jq#T0 ,

we have

sup
X∈sptTq−1∩C(0,θq−1ρ/4)

|q (X)| ≤ θq−1 ρ/2 for q ≥ 2 , (9.133)

E(Tq, 0, θq ρ ) ≤ θ E(Tq−1, 0, θq−1 ρ ) for q ≥ 2 , (9.134)
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‖jq − jq−1‖ ≤ θ−M θ(q−1)/2E(T, 0, ρ )1/2 , (9.135)

E(Tq, 0, θq ρ ) ≤ θq E(T, 0, ρ ) . (9.136)

Note that, for q = 2, 3, . . ., (9.136) follows from (9.134) and from the
instance of (9.136) in which q is replaced by q − 1. Thus we will need only
verify (9.136) for the specific value q = 1.

Start of induction on q to prove (9.133)–(9.136). For q = 1, conditions
(9.133) and (9.134) are vacuous, so we need only verify (9.135) and (9.136).
Let j1 be the isometry whose existence is guaranteed by Lemma 9.5.1. Then
the inequality (9.74) gives us (9.135) and the inequality (9.75) gives us
(9.136).

Induction step. Now suppose that (9.133–9.136) hold for q. We apply
Lemma 9.5.1 to Tq with ρ replaced by θqρ. We may do so because Tq = jq#T0

is mass-minimizing. Inequality (9.73) of Lemma 9.5.1 gives us (9.133) with
q replaced by q + 1.

The isometry j whose existence is guaranteed by Lemma 9.5.1 satisfies

‖j − IRM+1‖ ≤ θM E(Tq, 0, θ
qρ)1/2 , (9.137)

E
(
j#
(
Tq C(0, θqρ/2)

)
, 0, θq+1ρ

)
≤ θ E(Tq, 0, θqρ ) . (9.138)

By (9.136) and (9.137), we have

‖j − IRM+1‖ ≤ θ−M θq/2E(T, 0, ρ )1/2 .

Setting jq+1 = j ◦ jq, we obtain

‖jq+1 − jq‖ = ‖(j − IRM+1) ◦ jq‖ = ‖j − IRM+1‖ ≤ θ−M θq/2E(T, 0, ρ )1/2 ,

which gives us (9.135) with q replaced by q + 1.
Since

j#
(
Tq C(0, θqρ/2)

)
C(0, θq+1ρ) = (j#Tq) C(0, θq+1ρ) ,

we have

E(Tq+1, 0, θq+1ρ ) = E
(
j#
(
Tq C(0, θqρ/2)

)
, 0, θq+1ρ

)
≤ θ E(Tq, 0, θqρ ) ,

which gives us (9.134) with q replaced by q+ 1. The induction step has been
completed.
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Next we show that jq has a well-defined limit as q → ∞. For Q > q ≥ 0,
we estimate

‖jQ − jq‖ ≤
Q+1∑

s=q

‖js+1 − js‖ ≤ θ−M
∞∑

s=q

θs/2 E(T0, 0, ρ)
1/2

= θ(q/2)−M E(T0, 0, ρ)
1/2 · 1

1 −
√
θ
≤ 2 θ(q/2)−M E(T0, 0, ρ)

1/2 .

Thus the jq form a Cauchy sequence in the mapping-norm topology. We set

j = lim
q→∞

jq

and conclude that

‖j − jq‖2 ≤ 4 θq−2M E(T0, 0, ρ) ≤ 1/16 (9.139)

holds for 0 ≤ q.
Recall Corollary 9.1.7 which tells us how the excess is affected by an

isometry. Using (9.139) together with (9.133), (9.135), and (9.136), we see
that, with an appropriate choice of c24,

E(j#T0, 0, θ
qρ) ≤ c24 θ

q E(T0, 0, ρ) (9.140)

holds for each q ≥ 1. Using (9.140) together with (9.73) and (9.139) with
q = 0, we see that, with an appropriate choice of c25,

E(j#T0, 0, r) ≤ c25 (r/ρ) E(T0, 0, ρ)

holds for 0 < r < ρ/4, proving (9.132). Finally, we see that (9.130) follows
from (9.73), (9.132), (9.133), and (9.139), again with q = 0.

We are now ready to state and prove the regularity theorem.

Theorem 9.6.2 (Regularity) There exist constants

0 < ε1 , 0 < c26 <∞ ,

depending only on M , with the following property:
If the hypotheses (H1–H5) (see page 283) hold with

ε = ε1 ,
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then spt T ∩C(y, ρ/4) = graph u, for a C1 function. Moreover u satisfies the
following Hölder condition with exponent 1/2:

sup
BM (y,ρ/4)

‖Du‖ + ρ1/2 sup
x,z∈BM (y,ρ/4),x 6=z

|x− z|−1/2 ‖Du(x) −Du(z)‖

≤ c26

(
E(T, y, ρ )

)1/2
. (9.141)

Remark 9.6.3

(1) Once (9.141) is established, the higher regularity theory applies to show
that u is in fact real analytic. The treatise [Mor 66] is the standard ref-
erence for the higher regularity theory including the results for systems
of equations needed when surfaces of higher codimension are consid-
ered.

(2) By the constancy theorem, the regularity theorem implies immediately

that T C(y, ρ/4) = G#

(
EM BM(y, ρ/4)

)
, where G is the mapping

x 7−→ (x, u(x)).

Proof. We set
ε1 = min{ θ2M ε∗, 2−M c−2M

6 c−1
22 } ,

where θ and ε∗ are as in Lemma 9.5.1, c22 is as in (9.130) in Theorem 9.6.1,
and c6 is as in (9.33) in the proof of Lemma 9.2.2.

In (9.72) in the statement of Lemma 9.5.1, we required that 0 < θ < 1/8
and that 0 < ε∗ < (θ/4)2M . Thus we have ε1 < ε∗/2

M , so E(T, y, ρ ) < ε1
implies that E(T, z, ρ/2 ) < ε∗ for each z ∈ BM (y, ρ/2). Therefore, after
translating the origin and replacing ρ by ρ/2, we can apply Theorem 9.6.1
to conclude that

E(T, z, r ) ≤ c22 E(T, z, ρ/2 )

≤ 2M c22 E(T, y, ρ ) (9.142)

holds for 0 < r ≤ ρ/2 and z ∈ BM (y, ρ/2). Theorem 9.6.1 also tells us that

E( jz# Tz, z, r ) ≤ c23 ·
r

ρ/2
· E(T, z, ρ/2 )

≤ 2M+1 c23E(T, y, ρ ) (9.143)
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holds for 0 < r ≤ ρ/8, where Tz = T C(y, ρ/4). It also says that jz is an
isometry of RM+1 with spt ∂jz#Tz ∩C(z, ρ/8) = ∅, jz(z,w) = (z,w) for some
point (z,w) ∈ sptT , and

‖Djz − IRM+1‖ ≤ 4 θ−2M E(T, z, ρ/2 ) ≤ 4−2 . (9.144)

In (9.76) of the proof of Lemma 9.5.1 we required that ε∗ < ε0, where
ε0 is as in Lemma 9.2.1. Thus we also have ε1 < ε0. Now we look in detail
at the construction in the proof of Lemma 9.2.2 with γ = 1. In particular,
when the choice

η = c−2M
6

is made in (9.35), we guarantee that η = c−2M
6 is strictly less than ε0. Since

ε1 ≤ 2−M c−2M
6 holds, (9.142) implies that

E(T, z, r ) ≤ c−2M
6 = η

holds for 0 < r ≤ ρ/2 and z ∈ BM (y, ρ/2). Thus the set A defined in (9.29)
contains all of BM(y, ρ/2). We conclude that there exists a Lipschitz function
g : BM (y, ρ/4) → R such that

Lip g ≤ 1 , (9.145)

T C(y, ρ/4) = G#

(
EM BM(y, ρ/4)

)
, (9.146)

with G : BM (y, ρ/4) → C(y, ρ/4) defined by G(x) = (x, g(x)).
If Lz : RM → R denotes the linear map whose graph is mapped to

RM × {0} by Djz, then estimates (9.143), (9.144), (9.145) and equation
(9.146) imply that

r−M
∫

BM (z,r)
‖Dg − Lz‖2 dLM ≤ c27 (r/ρ) E(T, y, ρ ) (9.147)

holds for 0 < r ≤ ρ/8 and z ∈ BM (y, ρ/4), where c27 is an appropriate
constant.

We will apply (9.147) with z1, z2 ∈ BM (y, ρ/4) and with r = |z1 − z2| <
ρ/8. Setting z∗ = (z1 + z2)/2 and B = BM(z1, r)

⋂BM (z2, r), we estimate

ΩM (r/2)M ‖Lz1 − Lz2‖2 ≤
∫

B
‖Lz1 − Lz2‖2 dLM

≤ 2
∫

B

(
‖DLz1 −Dg‖2 + ‖Dg − Lz2‖2

)
dLM
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≤ 2
∫

BM (z1,r)
‖DLz1 −Dg‖2 dLM

+ 2
∫

BM (z2 ,r)
‖Dg − Lz2‖2 dLM

≤ 2 rM c27 (r/ρ) E(T, y, ρ ) .

Thus we have

‖Lz1 − Lz2‖2 ≤ 2M+1 Ω−1
M c27 (|z1 − z2|/ρ) E(T, y, ρ ) .

Since (9.147) also implies that

Dg(z) = Lz

holds for LM -almost all z ∈ BM(y, ρ/4), we conclude that

‖Dg(z1) −Dg(z2)‖ ≤ c28 (|z1 − z2|/ρ)1/2E(T, y, ρ )1/2 (9.148)

holds for LM -almost all z1, z2 ∈ BM (y, ρ/4), where we set

c28 = 2(M+1)/2 Ω
−1/2
M c

1/2
27 .

Since g is Lipschitz, we conclude that g is C1 in BM (y, ρ/4), that (9.148)
holds for all z1, z2 ∈ BM (y, ρ/4), and that (9.141) follows from (9.144) and
(9.148) when we set u = g.

9.7 Epilogue

In our exposition of the regularity results, we made the simplifying assump-
tions that the current being studied was of codimension one and that it
minimized the integral of the area integrand. Relaxing these assumptions
introduces notational and technical complexity and requires deeper results
to obtain bounds for solutions of the appropriate partial differential equa-
tion or system of partial differential equations. Nonetheless the proof of the
regularity theorem goes through—as Schoen and Simon showed.

What is affected fundamentally by relaxing the assumptions is the appli-
cability of the regularity theorem and the further results that can be proved.
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It is the hypothesis (H3) which causes the most difficulty in applying Theo-
rem 9.6.2.

Because we have limited our attention to the codimension one case, we
have Theorem 7.5.5 available to decompose a mass-minimizing current into
a sum of mass-minimizing currents each of which is the boundary of the
current associated with a set of locally finite perimeter. Thus we have proved
following theorem.

Theorem 9.7.1 If T is a mass-minimizing, integer-multiplicity current of
dimension M in RM+1, then, for HM -almost every a ∈ spt T \ spt ∂T , there
is r > 0 such that B(a, r)

⋂
spt T is the graph of a C1 function.

The more general form of the regularity theorem in [SS 82] extends Theo-
rem 9.7.1 to currents minimizing the integral of smooth elliptic integrands
and, in higher codimensions, yields a set of regular points that is dense,
though not necessarily of full measure.

Suppose that T is an M -dimensional, integer-multiplicity current in RN ,
and suppose that T minimizes the integral of a smooth M -dimensional elliptic
integrand F . Let us denote the set of regular points of the current T by
regT and the set of singular points of T by singT . More precisely, regT
consists of those points a ∈ spt T \ spt ∂T for which there exists r > 0
such that B(a, r)

⋂
spt T is the graph of a C1 function, and singT = spt T \

(spt ∂T
⋃

regT ). The following table summarizes what is known about regT
and singT (and gives a reference for each result). In the table, A denotes
the M -dimensional area integrand.

F = A F 6= A

N − M = 1 dimH (sing T ) ≤M − 7 HM−2(sing T ) = 0

[Fed 70] [SSA 77]

N − M ≥ 2 dimH (sing T ) ≤M − 2 regT is dense in sptT \ spt ∂T

[Alm 00] [Alm 68]

Interior regularity of minimizing currents.

One can also consider the question of what happens near points of spt ∂T ,
that is, boundary regularity as opposed to the interior regularity considered
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above. The earliest results in the context of geometric measure theory is
are in William K. Allard’s work [All 68], [All 75]. Allard’s work focuses on
the area integrand. Robert M. Hardt considered more general integrands
in [Har 77]. For area-minimizing hypersurfaces, the definitive result is that
of Hardt and Simon [HS 79] which tells us that if ∂T is associated with a
C2 submanifold, then, near every point of spt ∂T , spt T is a C1 embedded
submanifold-with-boundary.

Regularity theory is not a finished subject. The finer structure of the
singular set is usually not known (2-dimensional area-minimizing currents
are an important exception—see [Cha 88]), so understanding the singular
set remains a challenge. Also, techniques created to answer questions about
surfaces that minimize integrals of elliptic integrands have found applicability
in other areas: for instance to systems of partial differential equations (e.g.,
[Eva 86]), mean curvature flows (e.g., [Whe 05]), and harmonic maps (e.g.,
[Whe 97]). The future will surely see more progress.



Appendix

A.1 Transfinite Induction

We provide a sketch of transfinite induction over the smallest uncountable
ordinal. Since we only use transfinite induction for the specific purpose of
constructing the Borel sets, we have kept the discussion here minimal. The
reader interested in a more complete discussion should see [Hal 74; Sections
17–19].

Definition A.1.1 A relation < on a set Z is a well ordering if

(1) for x, y ∈ Z exactly one of x < y, y < x, and x = y holds,

(2) for x, y, z ∈ Z, x < y and y < z imply x < z,

(3) if A ⊆ Z is non-empty, then there exists a ∈ A such that a < x holds
for all x ∈ A with x 6= a; in this case, we call a the least element of A
and write a = minA.

Recall the well ordering principle (see for instance [Fol 84] or [Roy 88]).

Theorem A.1.2 (Well Ordering Principle) Every set can be well or-
dered.

Now choose any uncountable set Z, and let it be well ordered by the
relation <. Every non-empty set has a least element. In particular, the
entire well ordered set will have a least element: Let 1 denote that least
element of Z, so 1 = minZ. Now that 1 has been defined, we can write 2 =
min (Z \ {1}). Of course, this process can be continued by using induction
over the positive integers. Below we will describe induction over an ordered
set of cardinality strictly larger than the cardinality of the integers.

337
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The set of predecessors of α ∈ Z is { β : β < α }. Let ω1 be the least
element of Z for which the set of predecessors is uncountable; that is,

ω1 = min{ x ∈ Z : {z : z < x} is uncountable } .

By Definition A.1.1(3), we have

{z : z < x} is uncountable. (A.149)

The next lemma describes induction over ω1. This is an example of transfinite
induction.

Lemma A.1.3 (Transfinite Induction over ω1) Suppose P (α) is a
statement that is either true or false depending on the choice of the pa-
rameter α < ω1. If

(1) P (1) is true and

(2) for α < ω1, P (α) is true whenever P (β) is true for all β < α,

then P (α) is true for all α < ω1.

Proof. If A = { α : α < ω1, P (α) is false } were non-empty, then α̃ =
minA would exist. Note that by (1), α̃ cannot equal 1. Then by (2), α̃
cannot be any other element of {z ∈ Z : z < ω1}, and we have reached a
contradiction.

The next lemma tells us that we cannot traverse ω1 in countably many
steps. Thus there is an essential difference between induction over the posi-
tive integers and induction over ω1. In the construction of the Borel sets, this
lemma allows us to conclude that induction over ω1 is sufficient to construct
all the Borel sets; that is, no new sets would be constructed if we continued
the inductive construction beyond ω1.

Lemma A.1.4 If α1, α2, . . . is a sequence in Z and if αi < ω1 holds for each
i = 1, 2, . . ., then there is α∗ with α∗ < ω1 and αi < α∗ for all i.

Proof. Since αi < ω1, the set of predecessors of αi is countable. Thus the
set

A = {αi : i = 1, 2, . . .} ∪
∞⋃

i=1

{x ∈ Z : x < αi}

is a countable union of countable sets and, hence, is countable.
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By (A.149), there exists

α∗ ∈ {z : z < ω1} \A .

For each i, α∗ is unequal to αi and is not a predecessor of αi, so αi < α∗

must hold. Thus α∗ is as required.

A.2 Dual Spaces

Throughout this section we let V be a vector space over the real numbers.

Definition A.2.1 The dual space of V , denoted V ∗, is the set of real-valued
linear functions on V together with the operations of scalar multiplication
and vector addition defined, for α ∈ R and ξ, η ∈ V ∗, by setting

(αξ)(v) = α(ξ(v)), for v ∈ V,

(ξ + η)(v) = (ξ(v)) + (η(v)), for v ∈ V.

With these operations, V ∗ forms a vector space in its own right.

Remark A.2.2 The elements of the dual space V ∗ are sometimes called
functionals, providing a briefer way to say “real-valued linear functions.”
Elements of V ∗ are also called dual vectors or covectors.

Notation A.2.3 Because of the way the vector space operations are defined
in V ∗, the expression

ξ(v) ,

where ξ ∈ V ∗, v ∈ V , is linear in both ξ and v. The symmetry of this
situation is better emphasized by writing

〈ξ, v〉 = ξ(η) .

The bilinear function 〈ξ, v〉 is called the dual pairing.

Example A.2.4 When RN is viewed as a vector space, its elements are
typically represented by column vectors:

x =




x1

x2
...
xN



.
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Elements of the dual space (RN)∗ are represented by row vectors:

ξ = (ξ1 ξ2 . . . ξN ) .

With these notational conventions the dual pairing is expressed as

〈ξ, x〉 = (ξ1 ξ2 . . . ξN )




x1

x2
...
xN



, (A.150)

where the operation on the right-hand side of (A.150) is ordinary matrix
multiplication. Equation (A.150) justifies our convention of writing the el-
ement of the dual space on the left in the dual pairing. This convention is
not followed universally as some authors put the dual space element on the
right.

Definition A.2.5 Suppose a basis for V has been selected:

B = {ba}a∈A ,

where A is some index set. For each ba we define b∗a ∈ V ∗ by setting

〈b∗a, ba′〉 =





1, if a′ = a,

0, if a′ 6= a,

for basis elements ba′ and extending by linearity to all of V . The mapping

ba 7−→ b∗a

can in turn be extended from B to all of V by linearity, thus defining a
mapping iB : V → V ∗.

Remark A.2.6 We will see in Corollary A.2.9 that, when V is finite dimen-
sional, the set of {b∗a}a∈A forms a basis for V ∗ called the “dual basis.”

Lemma A.2.7 The map iB : V → V ∗ is one-to-one.
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Proof. Suppose iB(v) = 0. Write v =
∑n

j=1 αjbaj as we may since B is a
basis for V . By linearity

iB(v) =
n∑

j=1

αj iB(baj)

holds, so, for any j0 ∈ {1, 2, . . . , n}, we have

0 = 〈iB(v), baj0
〉

=
n∑

j=1

αj 〈b∗aj
, baj0

〉

= αj0 .

Thus we have α1 = α2 = . . . = αn = 0 and consequently v = 0.

Lemma A.2.8 The map iB : V → V ∗ is an isomorphism if and only if V is
finite dimensional.

Proof. By Lemma A.2.7, we need to show that iB is surjective if and only
if V is finite dimensional.

First suppose V is infinite dimensional. We define X ∈ V ∗ by setting

〈
X,

n∑

j=1

αjbaj

〉
=

n∑

j=1

αj

We cannot express X as a finite linear combination of the functionals b∗a, so
X is not in the range of iB (one can write X formally as an infinite linear
combination of b∗a, namely as X =

∑
a∈B b

∗
a, because whenever X is evaluated

on v ∈ V only finitely many of the summands will be non-zero).
Now suppose that V is finite dimensional. We can write

B = {b1, b2, . . . , bN} .

Letting ξ ∈ V ∗ be arbitrary, we see by linearity that

ξ =
N∑

i=1

〈ξ, bi〉 b∗i .

From the proof of Lemma A.2.8 we obtain the following corollary.
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Corollary A.2.9 If V is finite dimensional with basis B = {b1, b2, . . . , bN} ,
then B∗ = {b∗1, b∗2, . . . , b∗N} is a basis for V ∗ called the dual basis.

Remark A.2.10 As was noted in Section 6.1, for the special case of RN with
coordinates x1, x2, . . ., xN and standard basis e1, e2, . . ., eN , it is traditional
to write dxi to denote the dual of ei; that is,

dxi = e∗
i , for i = 1, 2, . . . , N . (A.151)

The reason for this notation is made clear in Section A.3.

Remark A.2.11 One can consider the dual space of V ∗, denoted V ∗∗. It is
always possible to imbed V into V ∗∗ using the mapping I : V → V ∗∗ defined
by setting

〈I(v), ξ〉 = 〈ξ, v〉 ,

for v ∈ V and ξ ∈ V ∗. If V is finite dimensional with basis B and dual basis
B∗, then one checks that I = iB∗ ◦ iB. Thus by Lemma A.2.8, we see that
if V is finite dimensional, then I is an isomorphism. Because the natural
imbedding I is an isomorphism when V is finite dimensional, it is common
in the finite dimensional case to identify V and V ∗∗.

A.2.1 The Dual of an Inner Product Space

In this subsection, we assume that V also has the structure of an inner
product space and let the inner product of x, y ∈ V be denoted by x · y. In
this case, every element x ∈ V defines a corresponding element ξx ∈ V ∗ by
setting

〈ξx, y〉 = x · y .

The mapping x 7−→ ξx is one-to-one because 〈ξx, x〉 = x · x = 0 if and only
if x = 0.

Remark A.2.12 If V has the orthonormal basis B, then the mapping iB is
the same as the mapping x 7−→ ξx

Lemma A.2.13 If V is a finite dimensional inner product space, then the
mapping x 7−→ ξx is an isomorphism of V onto V ∗.
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Proof. If V is finite dimensional, then V ∗ is also finite dimensional and
dimV = dimV ∗. Since the mapping x 7−→ ξx is one-to-one, its image must
have the same dimension as its domain, thus it maps onto V ∗.

Lemma A.2.13 gives us a natural way to define an inner product on the
dual of a finite dimensional inner product space, which we do in the next
definition.

Definition A.2.14 If V is a finite dimensional inner product space, then
the dual inner product on V ∗ is defined by requiring the mapping x 7−→ ξx
to be an isometry. Equivalently, if B is an orthonormal basis for V , then we
decree B∗ to be an orthonormal basis for V ∗.

Remark A.2.15 Even with the extra structure of an inner product on V , if
V is infinite dimensional, then V and V ∗ are not isomorphic. What is true is
that V is isomorphic to the vector space V ′ of continuous linear functionals.

A.3 Line Integrals

In a course on vector calculus, a student will learn about line integrals along
a curve in Euclidean space, first in R2 and then more generally in R3, or
perhaps even in RN . Such an introduction typically will involve two types of
line integral, one being the integral with respect to arc length

∫

C
f ds

and the second being the the integral of a differential form

∫

C
f dx+ g dy + h dz .

The vector calculus definition of a line integral is operational:

Definition A.3.1 If the curve C is parametrized by the smooth function
γ : [a, b] → RN , then the integral with respect to arc length of the function f
over the curve C is given by

∫

C
f ds :=

∫ b

a
f [γ(t)] |γ′(t)| dt .
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If we suppose the component functions of C are γ1, γ2, . . . , and γN , then the
integral of the differential form f1 dx1 + f2 dx2 + · · · + fN dxN over the curve
C is given by

∫

C
f1 dx1 + f2 dx2 + · · · + fN dxN :=

∫ b

a

(∑N
i=1 fi[γ(t)] γ′i(t)

)
dt . (A.152)

The mnemonic for the latter definition is that the component functions
could be written

x1(t), x2(t), . . . , xN (t)

inspiring the mechanical calculations

dx1 = x′1(t) dt, dx2 = x′2(t) dt, . . . , dxN = x′N(t) dt .

The operational definition of the line integral of a differential form begs
the question of what a differential form is. To answer that question, recall
that if RN has coordinates x1, x2, . . . , xN and has the standard basis e1, e2,
. . . , eN , then dx1, dx2, . . . , dxN are are dual to e1, e2, . . . , eN , respectively.
So for any fixed point in the domain of f1, f2, . . . , fN ,

f1 dx1 + f2 dx2 + · · · + fN dxN

is an element of the dual space of RN . In light of this interpretation of the
differential form, the integrand on the right-hand side of (A.152),

∑N
i=1 fi[γ(t)] γ′i(t) ,

is the dual pairing of

f1 dx1 + f2 dx2 + · · · + fN dxN

against the velocity vector of the curve

γ′1(t) e1 + γ′2(t) e2 + · · · + γ′N (t) eN .

A.3.1 Exterior Differentiation

The fundamental theorem of calculus tells us that integration and differenti-
ation of functions can be thought of as inverse operations. We might wonder
if the line integral is also inverse to some type of differentiation. Indeed,
“exterior differentiation” which we define next plays that role.
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Definition A.3.2 Suppose U ⊆ RN is open. If F : U → R is differentiable,
then the exterior derivative of F , denoted dF , is the differential form defined
by

dF =
∂F

∂x1
dx1 +

∂F

∂x2
dx2 + · · · +

∂F

∂xN
dxN (A.153)

Example A.3.3 Fix i ∈ {1, 2, . . . , N}. Suppose F : RN → R is defined by
setting

F (x1, x2, . . . , xN) = xi . (A.154)

We compute

dF = dxi . (A.155)

The function F defined by (A.154) is often denoted xi. If we used that
notation then (A.155) would be the tautology “dxi = dxi”.

The next theorem shows us that the line integral is indeed the inverse
operation to exterior differentiation, justifying the use of the notation “dF”.

Theorem A.3.4 If U ⊆ RN is open, F : U → R is continuously differen-
tiable, and C ⊆ U is a curve with initial point p0 and terminal point p1,
then ∫

C
dF = F (p1) − F (p0) .

Proof. Suppose the curve C is parametrized by the smooth function γ :
[a, b] → RN . Then the initial point of the curve is p0 = γ(a) and the terminal
point of the curve is p1 = γ(b).

Consider the function φ : R → R defined by φ(t) = F [γ(t)]. The funda-
mental theorem of calculus tells us that

∫ b

a
φ′(t) dt = φ(b) − φ(a) = F (p1) − F (p0) .

On the other hand, the chain-rule and (A.152) tell us that

∫ b

a
φ′(t) dt =

∫ b

a

(
∂F

∂x1
γ′1(t) +

∂F

∂x2
γ′2(t) + · · · +

∂F

∂xN
γ′N (t)

)
dt =

∫

C
dF .
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A.4 Pullbacks and Exterior Derivatives

Theorem 6.2.8 tells us that, for differential forms, the operations of pullback
and exterior differentiation commute. In this section, we give an alternative
proof of that theorem. The proof given here hinges on the fact that that
the order of differentiation does not matter in a second derivative of a C2

function.
We will need to develop an new expression for the exterior derivative.

Definition A.4.1 Suppose that the differential m-form φ : U → ∧m (RN)
is given and is at least C1. For any vector v ∈ RN , the directional derivative
of φ in the direction v is the m-form, denoted Dvφ, which when applied to
the m vectors v1, v2, . . . , vm ∈ RN at the point p is defined by setting
〈(
Dvφ(p)

)
, v1 ∧ v2 ∧ . . . ∧ vm

〉

= lim
t→0

〈φ(p + tv), v1 ∧ v2 ∧ . . . ∧ vm〉 − 〈φ(p), v1 ∧ v2 ∧ . . . ∧ vm〉
t

.(A.156)

To obtain an (m + 1)-form by differentiating φ, we need to modify the
directional derivative so as to make it an alternating function of m+ 1 vec-
tors. The standard way to convert a multilinear function into an alternating,
multilinear function is to average the alternating sum over all permutations
of the arguments. Since the underlying m-form φ is already alternating in
its m arguments, the required alternating sum simplifies to the following:

1

m+ 1

m+1∑

i=1

(−1)i+1
〈(
Dviφ(p)

)
, v1 ∧ . . . ∧ vi−1 ∧ vi+1 ∧ . . . vm+1

〉
. (A.157)

Expressions such as v1 ∧ . . . ∧ vi−1 ∧ vi+1 ∧ . . . vm+1 occur with enough
frequency that it is useful to have a special notation for them.

Notation A.4.2 Given vectors v1, v2, . . . , v`, we set

v1 ∧ . . . ∧ v̂j ∧ . . . ∧ v` = v1 ∧ . . . ∧ vj−1 ∧ vj+1 ∧ . . . v` , (A.158)

v1 ∧ . . . ∧ v̂i ∧ . . . ∧ v̂j ∧ . . . ∧ v`

= v1 ∧ . . . ∧ vi−1 ∧ vi+1 ∧ . . . ∧ vj−1 ∧ vj+1 ∧ . . . v` . (A.159)

Using the preceding notation, we can easily see that the next proposition is
true (we just need to check it for basis vectors).
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Proposition A.4.3 Suppose that the differential m-form φ : U → ∧m (RN )
is given and is at least C1. Then, for any set ofm+1 vectors v1, v2, . . . , vm+1 ∈
RN , we have

〈dφ(p), v1 ∧ v2 ∧ . . . ∧ vm ∧ vm+1〉

=
1

m+ 1

m+1∑

i=1

(−1)i+1
〈(
Dviφ(p)

)
, v1 ∧ . . . ∧ v̂i ∧ . . . ∧ vm+1

〉
. (A.160)

Theorem A.4.4 Suppose that U ⊆ RN is open and F : U → RM is at least
C2. Fix a point p ∈ U . If the differential m-form φ is defined and at least
C1 in a neighborhood of F (p), then dF#φ = F#dφ holds at p.

Proof. Fix vectors u, v1, v2, . . . , vm ∈ RN . We do a preliminary calculation
of the directional derivative in the direction u of φ#F applied to the m-vector
v1 ∧ v2 ∧ . . . ∧ vm. Writing w = DuF , we obtain

〈Du(F#φ), v1 ∧ v2 ∧ . . . ∧ vm〉

= lim
t→0

〈(F#φ)(p+ tu), v1 ∧ . . . ∧ vm〉 − 〈(F#φ)(p), v1 ∧ . . . ∧ vm〉
t

= lim
t→0

[
〈φ ◦ F (p+ tu), Dv1F (p+ tu) ∧ . . . ∧DvmF (p+ tu)〉

− 〈 φ ◦ F (p), Dv1F (p) ∧ . . . ∧DvmF (p) 〉
]/
t

= 〈Dwφ[F (p)], Dv1F ∧Dv2F ∧ . . . ∧DvmF 〉

+ 〈φ ◦ F,DuDv1F ∧Dv2F ∧ . . . ∧DvmF 〉

+ 〈φ ◦ F,Dv1F ∧DuDv2F ∧ . . . ∧DvmF 〉

+ · · · + 〈φ ◦ F,Dv1F ∧Dv2F ∧ . . . ∧DuDvmF 〉 .

Now fix vectors v1, v2, . . . , vm+1 ∈ RN . Writing wi = DviF , we see that

(m+ 1) 〈dF#φ, v1 ∧ v2 ∧ . . . ∧ vm+1〉

=
m+1∑

i=1

(−1)i+1〈Dvi(F
#φ), v1 ∧ . . . ∧ v̂i ∧ . . . ∧ vm+1〉

=
m+1∑

i=1

(−1)i+1〈Dwiφ[F (p)],Dv1F ∧ . . . ∧ D̂viF ∧ . . . ∧Dvm+1F 〉
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+
m+1∑

i=1

(−1)i+1

(
i−1∑

j=1

〈φ ◦ F,Dv1F ∧ . . . ∧DviDvjF ∧ . . . ∧ D̂viF ∧ . . . ∧Dvm+1F 〉

+
m+1∑

j=i+1

〈φ ◦ F,Dv1F ∧ . . . ∧ D̂viF ∧ . . . ∧ DviDvjF ∧ . . . ∧Dvm+1F 〉
)
.

By Proposition A.4.3, we have

m+1∑

i=1

(−1)i+1〈Dwiφ[F (p)],Dv1F ∧ . . . ∧ D̂viF ∧ . . . ∧Dvm+1F 〉

= (m+ 1) 〈dφ[F (p)],Dv1F ∧ . . . ∧ Dvm+1F 〉

= (m+ 1) 〈F#dφ, v1 ∧ v2 ∧ . . . ∧ vm+1〉 .

and
m+1∑

i=1

(−1)i+1

(
i−1∑

j=1

〈φ ◦ F,Dv1F ∧ . . . ∧DviDvjF ∧ . . . ∧ D̂viF ∧ . . . ∧ Dvm+1F 〉

+
m+1∑

j=i+1

〈φ ◦ F,Dv1F ∧ . . . ∧ D̂viF ∧ . . . ∧DviDvjF ∧ . . . ∧Dvm+1F 〉
)

=
m+1∑

i=1

i−1∑

j=1

(−1)i+j〈φ ◦ F,

DviDvjF ∧Dv1F ∧ . . . ∧ D̂vjF ∧ . . . ∧ D̂viF ∧ . . . ∧ Dvm+1F 〉

+
m+1∑

i=1

m+1∑

j=i+1

(−1)i+j−1〈φ ◦ F,

DvjDviF ∧Dv1F ∧ . . . ∧ D̂viF ∧ . . . ∧ D̂vjF ∧ . . . ∧ Dvm+1F 〉

=
m+1∑

1≤j<i≤m+1

(−1)i+j〈φ ◦ F,

DviDvjF ∧Dv1F ∧ . . . ∧ D̂vjF ∧ . . . ∧ D̂viF ∧ . . . ∧ Dvm+1F 〉

+
m+1∑

1≤i<j≤m+1

(−1)i+j−1〈φ ◦ F,

DvjDviF ∧Dv1F ∧ . . . ∧ D̂viF ∧ . . . ∧ D̂vjF ∧ . . . ∧ Dvm+1F 〉

= 0 ,
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where the last equality follows from the fact that DvjDviF = DviDvjF, that
is, from the fact that the order of differentiation can be interchanged.
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de l’Académie des Sciences, Paris 194 (1932), 344–346.

Herbert Federer

[Fed 54] An analytic characterization of distributions whose partial derivatives
are representable by measures, Bulletin of the American Mathematical
Society 60 (1954), 339.

[Fed 59] Curvature measures, Transactions of the American Mathematical So-
ciety 93 (1959), 418–491.

[Fed 69] Geometric Measure Theory, Springer-Verlag, Berlin, 1969.

[Fed 75] A minimizing property of extremal submanifolds, Archive for Rational
and Mechanical Analysis 59 (1975), 207–217.

[Fed 70] The singular sets of area minimizing rectifiable currents with codimen-
sion one and of area minimizing flat chains modulo two with arbitrary
codimension, Bulletin of the American Mathematical Society 76 (1970),
767–771.



356 BIBLIOGRAPHY

Herbert Federer and Wendel H. Fleming

[FF 60] Normal and integral currents, Annals of Mathematics (2) 72 (1960),
458–520.

Wendel H. Fleming

[Fle 62] On the oriented Plateau problem, Rendiconti del Circolo Matematico
di Palermo (2) 11 (1962), 69–90.

Gerald B. Folland

[Fol 84] Real Analysis: Modern Techniques and Their Applications, John Wiley
& Sons, New York, 1984.

Wilhelm Gross
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et des Lettres de Varsovie, Classe III, 30 (1937), 212–234.

William P. Ziemer

[Zie 89] Weakly Differentiable Functions, Springer–Verlag, New York, 1989.



364 BIBLIOGRAPHY



Index of Notation

Notation Section Page

R 1.1 1

x · y 1.1 1

|x| 1.1 1

ei 1.1 1

B(x, r) 1.1 2

B(x, r) 1.1 2
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