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1. Introduction

In 1977, Diederich and Fornæss [DIF] constructed a counterexample to the long-
standing conjecture that (the closure of) a smoothly bounded, pseudoconvex domain
in complex space is the decreasing intersection of smooth, pseudoconvex domains.
The smoothly bounded domain Ωβ that they constructed has become known as
the “worm”. The worm is smoothly bounded and pseudoconvex. In fact it is a
counterexample to several important questions:

• The worm Ωβ is not the decreasing intersection of smooth, pseudoconvex
domains.

• There is a function f that is C∞ on Ωβ, holomorphic on Ωβ, and such that
f cannot be approximated uniformly on Ωβ by functions holomorphic on a
neighborhood of Ωβ.

• The domain Ωβ does not have a global plurisubharmonic defining function.

The general concept of the worm domain has several concrete realizations. Two
of these that will be important for us are:

(i) The unbounded, non-smooth worm

Dβ ≡
{

(ζ1, ζ2) ∈ C2 : Re (ζ1e
−i log |ζ2|2) > 0 ,

∣∣ log |ζ2|2
∣∣ < β − π

2

}
(ii) The bounded, smooth worm

Ωβ = {(z1, z2) : |z1 + ei log |z2|2|2 < 1− η(log |z2|2)} ,

where
(a) η ≥ 0, η is even, η is convex;
(b) η−1(0) = Iβ−π/2 ≡ [−β + π

2
, β − π

2
];

(c) There exists a number a > 0 such that η(x) > 1 if x < −a or x > a;
(d) η′(x) 6= 0 if η(x) = 1.

It should be stressed that these two renditions of the worm, Dβ and Ωβ, are not
biholomorphically equivalent. But there are devices (see [BAR3]) for passing back
and forth between the two domains. The essential feature of a worm domain is that
the Euclidean normal vector to the boundary changes (rotates) rather rapidly as
|z2| ranges over its values. In fact all of the important examples based on the worm
mandate that β be sufficiently large, which simply means that the normal rotates a
sufficient number of times.

Let U ⊆ Cn be a bounded domain (i.e., a connected, open set). Let L2(U) be
the usual space of square integrable, measurable functions on U (with respect to
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ordinary Lebesgue volume measure). Let A2(U) ⊆ L2(U) be the square-integrable
holomorphic functions. Of course A2(U) is a Hilbert subspace of L2(U).

Let
P : L2(U) → A2(U)

be the Hilbert space projection. Then P is representable by an integral formula:

PUf(z) =

∫
U

f(ζ)KU(z, ζ) dV (ζ) .

The kernel KU(z, ζ) is called the Bergman kernel for U (see [KRA1] for details on
the Bergman kernel and related ideas).

If U is a smoothly bounded domain then certainly C∞(U) is a dense subspace
of L2(U). In the paper [BEL1], Steven Bell introduced the following important
paradigm: If the Bergman projection maps C∞(U) into C∞(U) then U is said to
satisfy Condition R. The most important fact about Condition R is this:

Theorem: [Bell, 1981] Let U1, U2 ⊆ Cn be smoothly bounded,
pseudoconvex domains that satisfy Condition R. Then any biholo-
morphic mapping ϕ : U1 → U2 will extend to a diffeomorphism of U1

to U2.

This result generalizes the foundational theorem of Fefferman [FEF], and extends
the ideas to a broader class of domains. The boundary behavior of biholomorphic
and proper mappings has been a subject of intense study for the past 30 years.
Condition R has thus proved to be a powerful and central tool in the function
theory of several complex variables.

Standard methods for establishing Condition R on a given domain are

(a) The ∂-Neumann problem [KRA2], [CSH];
(b) Symmetries [BOS];
(c) Control of the normals to the boundary [BAR1].

It is conjectured that any biholomorphic mapping of smoothly bounded, pseudocon-
vex domains (and, more generally, all smoothly bounded domains) will extend to
diffeomorphisms of the closures. [This problem is called the Mapping Conjecture.]
Thus it was natural to suspect that Condition R will hold on any smoothly bounded,
pseudoconvex domain.

It came as something of a surprise when, in 1984, David Barrett [BAR] produced a
smoothly bounded (non-pseudoconvex) domain in C2 on which Condition R fails. In
1991, Kiselman showed that the Domain Dβ (which is certainly pseudoconvex) fails
to satisfy Condition R. While Kiselman’s arguments are elegant and compelling,
his result is not entirely satisfactory because the domain Dβ does not have smooth
boundary.

In 1992, Barrett [BAR3] built on Kiselman’s ideas and showed that the smooth
worm Ωβ has the property that the Bergman projection P does not map W s to W s,
where W s is the s-order Sobolev space and s is sufficiently large. Barrett does his
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analysis on the non-smooth worm, but then uses an exhaustion procedure to get a
negative result on the smooth worm.

All of this is a prelude to the theorem of Christ [CHR]. He showed that the smooth
worm Ωβ does not satisfy Condition R.

Christ’s result is definitive, and shows that we must seek tools other than Condi-
tion R if we are to resolve the Mapping Conjecture. Christ’s techniques are deep and
difficult. It is worthwhile to have other methods for exploring this central collection
of ideas.

It should be stressed that the work of Kiselman, Barrett, and Christ uses Bergman
theory (as it must). But these works decompose the Bergman space into infinitely
many invariant subspaces, and actually (because they are in pursuit of a negative
result) calculate the kernel and perform the necessary estimates on just one of these
subspaces—namely the space H−1 (see below for the definition). This particular
choice is dictated by the fact that, when the index equals −1, a number of compli-
cated terms cancel out and the calculation is thus simplified. As a result, until now,
nothing explicit has been known about the full Bergman kernel or full Bergman
projection on the worm.

2. The Bergman Kernel for the Worm

In the work that is being announced here, we actually calculate the Bergman
kernel for the non-smooth worm Dβ. More precisely, we can write an asymptotic
expansion for the kernel in this form:

K(ζ, ω) = K(ζ, ω) + E(ζ, ω) .

Here K is the “principal term” of the expansion for the kernel, and E is the er-
ror. The term E is bounded, and all of its derivatives are bounded. So mapping
properties of the kernel and other properties of the kernel and projection may be
determined simply by studying K. The full asymptotic for the Bergman kernel on
Dβ is as follows:

Theorem: Let c0 be a positive fixed constant. Let χ1 be a smooth cuf-off function
on the real line, supported on {x : |x| ≤ 2c0}, identically 1 for |x| < c0. Set
χ2 = 1− χ1.

Let β > π and let νβ = π/(2β − π). Let h be fixed, with

νβ < h < min(1, 2νβ) . (1)

There exist functions G1, G2, . . . , G9 and G̃1, G̃2, . . . , G̃9, holomorphic in ζ and anti-
holomorphic in ω, for ζ = (ζ1, ζ2), ω = (ω1, ω2) varying in D′

β \ {0}, such that

∂α
ζ ∂γ

ωG(ζ, ω) = O
(
|ζ1|−|α||ω1|−|γ|

)
as |ζ1|, |ω1| → 0 ,
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where G denotes any of the functions Gj, G̃j, and such that the following holds. Set

Hb(ζ, w) =
G1(ζ, w)

(i log(ζ1/ω1) + 2β)2(eβ̃ − ζ2ω2)2

+
G2(ζ, w)

(i log(ζ1/ω1) + 2β)2
(
(ζ1/ω1)−i/2e−π/2 − ζ2ω2

)2

+
G3(ζ, w)(

(ζ1/ω1)−i/2eπ/2 − ζ2ω2

)2
(eβ̃ − ζ2ω2)2

+
G4(ζ, w)

(i log(ζ1/ω1)− 2β)2
(
(ζ1/ω1)−i/2eπ/2 − ζ2ω2

)2

+
G5(ζ, w)

(i log(ζ1/ω1)− 2β)2(e−β̃ − ζ2ω2)2

+
G6(ζ, w)(

(ζ1/ω1)−i/2e−π/2 − ζ2ω2

)2
(e−β̃ − ζ2ω2)2

+
G7(ζ, w)

(i log(ζ1/ω1) + 2β)2(eβ̃ − ζ2ω2)
(
(ζ1/ω1)−i/2e−π/2 − ζ2ω2

)
+

G8(ζ, w)

(i log(ζ1/ω1)− 2β)2(e−β̃ − ζ2ω2)
(
(ζ1/ω1)−i/2eπ/2 − ζ2ω2

) + G9(ζ, w)

≡ H1(ζ, ω) + · · ·+ H8(ζ, ω) + G9(ζ, ω) . (2)

Define Hb̃ by replacing G1, . . . , G9 by G̃1, . . . , G̃9 and H1, . . . , H8 by H̃1, . . . , H̃8

respectively.
Then, setting t = |ζ1| − |ω1|, we have this asymptotic expansion for the Bergman

kernel on Dβ:

KDβ

(
(ζ1, ζ2), (ω1, ω2)

)
= χ1(t)

Hb(ζ, ω)

ζ1ω1

+ χ2(t)

{(
|ζ1|
|ω1|

)−hsgnt

e−hsgnt·(arg ζ1+arg ω1)Hb̃(ζ, ω)

ζ1ω1

+

(
|ζ1|
|ω1|

)−νβsgnt

e−νbsgnt·(arg ζ1+arg ω1)

(
g1(ζ1, ω1)

ζ1ω1

· 1(
(ζ1/ω1)−i/2eπ/2 − z2ω2

)2

+
g2(ζ, ω)

ζ1ω1

· 1(
(ζ1/ω1)−i/2e−π/2 − z2ω2

)2

)}
.
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One can see immediately that, when β is sufficiently large (β > 3π/2 will do),

then the term
(

ζ1
ω1

)νβ

causes trouble: the Bergman projection cannot map C∞(Ω)

to C∞(Ω). In addition, one recovers Ligocka’s result [LIG]: that the Bergman kernel
on the worm domain is not smooth on W ×W \ (diagonal).

One useful consequence of this nice, explicit form for the Bergman kernel is that
we can calculate the mapping properties of the Bergman projection on Lp(Ω). In
fact we have:

Theorem: The Bergman projection

P : L2(Dβ) → A2(Dβ)

is bounded on Lp(Dβ) for

2

1 + νβ

< p <
2

1− νβ

and unbounded on Lp(Dβ) for either

p ≤ 2

1 + νβ

or p ≥ 2

1− νβ

as long as β > 3π/2.

It is noteworthy that, as β → +∞, the parameter νβ → 0 and hence the range of
p for which the Bergman projection is bounded on Lp shrinks to the singleton {2}.

We may mention that there is another useful presentation of the nonsmooth worm
Dβ, called D′

β, in which the slices are planar strips rather than halfplanes. One may
obtain an asymptotic expansion for the Bergman kernel of D′

β by a simple application
of the standard transformation formula for Bergman kernels (see [KRA1]). A curious
feature, however, is that the Bergman projection on D′

β is bounded on Lp for 1 <
p < ∞.

3. Some Remarks about the Proof

The calculation of the Bergman kernel for the worm Dβ is long and difficult.
The idea is, emulating Kiselman and Barrett, to define Hj(Dβ) to consist of those
elements f of H(Dβ) ≡ A2(Dβ) that satisfy f(z1, e

iθz2) = eijθf(z1, z2). Elementary
Fourier analysis shows that H =

⊕
Hj. Then we use Hilbert space theory and

Fourier analysis to obtain a formula for the Bergman kernel Kj of each Hj. In fact
it is given by

Kj(ω, ζ) = kj(ω1, ζ1)ω
j
2ζ

j

2 .

Here

kj(ω1, ζ1) =

[
eiζξ

λ̂j(−2iξ)

]∨
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(where ∨ is the inverse Fourier transform),

λj(s) = χπ/2 ∗ [e(j+1)( · )χβ−π/2] ,

and χs is the characteristic function of the interval [−s, s] when s ≥ 0.
Of course the full Bergman kernel for the worm is just the sum of the kernels

Kj for the component subspaces. The principal term for the Bergman kernel is
separated from the error term when we approximate the sinh (which obviously
arises in the Fourier transform calculations) by an exponential.

The verification of the failure of Condition R, and of Ligocka’s theorem, follows
from inspection of the formula for the Bergman kernel.

The necessary estimates for the result on mappings of Lp spaces arise from an
application of a refined form of Schur’s lemma.

4. Further Explorations

It is hoped that techniques of Christ [CHR], [SIU] and others may be adapted
to obtain results on the smooth worm. The analysis will be more difficult on that
domain because its boundary no longer resembles a product.

It should be noted that So-Chin Chen [CHE] has actually calculated all the biholo-
morphic self-maps of the worm Ωβ. These maps may be written down explicitly, and
they plainly extend smoothly to the boundary. One might anticipate that a more
complete understanding of the Bergman kernel for the smooth worm Ωβ will allow
us to analyze biholomorphic mappings of the worm to other smoothly bounded,
pseudoconvex domains.

We plan to develop all these ideas in future papers.
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