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0 Introduction

The Kobayashi or Kobayashi/Royden metric FΩ
K(z, ξ), and its companion

the Carathéodory metric FΩ
C (z, ξ), has, in the past 40 years, proved to be an

important tool in the study of function-theoretic and geometric properties of
complex analytic objects—see [KOB1], [KOB2], [KOB3], for example. One
remarkable feature of this tool is that quite a lot of mileage can be had just by
exploiting formal properties of the metric (e.g., the distance non-increasing
property under holomorphic mappings). See [JAP], [EIS], [KRA2]. But more
profound applications of these ideas require hard analytic properties of the
metric. One of the first, and most profound, instances of this type of work
is [GRA]. Another is [LEM].

Our goal in this paper is to continue some of the basic development of
analytic facts about the Carathéodory and Kobayashi metrics. Our focus in
fact is on regularity of the metric. It is well known (see [JAP, pp. 98–99)
that the infinitesimal Kobayashi metric is always upper semicontinuous. The
reference [JAP] goes on to note that, on a taut domain, the infinitesimal
metric is in fact continuous. Continuity of the Carathéodory metric was
studied, for example, in [GRK].

But one would like to know more. For various regularity results, and
applications in function theory, it is useful to know that the infinitesimal
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metrics are Lipschitz as a function of the two arguments. In the present
paper we prove such a result (in the case of the Kobayashi metric) when
the domain of study Ω is smoothly bounded and Levi pseudoconvex; we
also prove such a result (for the Carathéodory metric) when the domain in
question is smoothly bounded and strongly pseudoconvex.

All necessary definitions of key concepts will be provided below.

1 Fundamental Concepts

A domain Ω ⊆ Cn is a connected, open set. We let D ⊆ C denote the
unit disc. It is common to let (U1, U2) denote the collection of holomorphic
mappings from U2 to U1. The infinitesimal Kobayashi metric on Ω is defined,
for z ∈ Ω and ξ ∈ Cn, to be

FΩ
K(z, ξ) ≡ inf{α : α > 0 and ∃f ∈ Ω(B) with f(0) = z, (f ′(0)) (e1) = ξ/α}

= inf

{
|ξ|

|(f ′(0))(e1)|
: f ∈ Ω(B), (f ′(0))(e1) is a

constant multiple of ξ}

=
|ξ|

sup{|(f ′(0))(e1)| : f ∈ Ω(B), (f ′(0))(e1) is a constant multiple of ξ} .

Here e1 is simply the unit tangent vector (1, 0, . . . , 0) = (1+i0, 0+i0, . . . , 0+
i0) in the unit disc. Also |ξ| denotes the standard Euclidean length of the
vector ξ.

It is frequently convenient to think of ξ as an element of the tangent space
to Ω at z; this notion will have no bearing on the present discussion. There
is also an integrated form of the Kobayashi metric (see [KRA1]). It will play
only a tacit role in the present paper.

It is well known that, if Φ : Ω1 → Ω2 is a holomorphic (not necessarily
biholomorphic) mapping, then

FΩ1
K (z, ξ) ≥ FΩ2

K (Φ(z),Φ∗ξ) .

Here Φ∗ξ is the standard push-forward of the vector ξ (see [FED]). It follows
immediately that, in case Φ is biholomorphic, then Φ induces an isometry of
Kobayashi metrics.

We shall do our work in this paper on Levi pseudoconvex domains. This
terminology is standard in the subject, and we refer the reader to [KRA1]
for the details.
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2 The Main Result

Fix a Levi pseudoconvex domain Ω ⊆ Cn with C2 boundary. This means that
the Levi form at each boundary point is positive semi-definite (see [KRA1]
for the details). Then we have:

Theorem 1 Let K ⊆ Ω and L ⊆ Cn be compact sets. There is a constant
C = CK,L > 0 such that, if z, z′ ∈ K and ξ, ξ′ ∈ L, then

∣∣∣FΩ
K(z, ξ) − FΩ

K(z′, ξ′)
∣∣∣ ≤ C ·

√
|z − z′|2 + |ξ − ξ′|2 .

3 Proof of the Main Result

This section is dedicated to the proof of Theorem 1. We begin with a lemma.

Lemma 2 Let Ω ⊆ Cn be a bounded, Levi pseudoconvex domain with C2

boundary. Let K be a relatively compact subset of Ω. Fix a number δ > 0.
Then there exists a number ε > 0 such that, if P ∈ K, ξ ∈ Cn is an arbitrary
Euclidean unit vector, ϕ : D → Ω is Kobayashi extremal for the base point
P in the direction ξ, and |ζ| ≤ 1 − δ, then

dist(ϕ(ζ), ∂Ω) > ε .

Proof: Suppose not. Then, for some fixed δ > 0, no corresponding number
ε > 0 exists.

This means that, for j = 1, 2, . . . there are ζj ∈ D with |ζj| ≤ 1 − δ,
Pj ∈ K, unit vectors ξj ∈ Cn, and Kobayashi extremal maps ϕj : D → Ω for
(Pj , ξj) such that

dist(ϕj(ζj), ∂Ω) ≤ 2−j . (∗)

Notice that the family of holomorphic functions {ϕj} on the unit disc D
with values in Ω is uniformly bounded. Thus Montel’s theorem applies and
we may extract a subsequence {ϕjk

} which converges uniformly on compact
subsets of D to a limit mapping ϕ0 : D → Ω. We use here the fact that Ω
is taut (see [WU][, [KER]). Since the unit sphere in Cn is compact, we may
also (by a simple diagonalization argument) suppose that ξjk

converges to
a limit vector ξ0. Next, since K is compact, we may assume that the Pjk

converge to a limit point P0. Finally, we may assume that ζjk
converge to a

limit point ζ0 with |ζ0| ≤ 1 − δ.
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But it follows then from (∗) that ϕ0(ζ0) ∈ ∂Ω. This is of course impossi-
ble, by elementary properties of smoothly bounded, pseudoconvex domains,
unless ϕ0 is constant (this is the Kontinuitätssatz—see [KRA1]). But it is
not (since ϕ′

0(0) 6= 0). So we have a contradiction.

We have observed that the domain Ω is taut. So a simple normal families
argument (see [JAP]) shows that there is a mapping ϕ : D → Ω with ϕ(0) = z
and ϕ′(0) parallel to ξ so that

|ξ|
|ϕ′(0)| =

|ξ|
|(ϕ′(0))(e1)|

= FΩ
K(z, ξ)

= inf

{
|ξ|

|(f ′(0))(e1)|
: f ∈ Ω(B), (f ′(0))(e1) is a constant multiple of ξ

}
.

We prove the desired inequality in two parts: namely, we examine vari-
ation in the base point z and then we separately examine variation in the
tangent vector ξ. Let us now inspect the first of these.

Fix a point P ∈ Ω and a unit vector ξ ∈ Cn. Let ϕ : D → Ω be extremal
for (P, ξ). Let µ be any unit vector in Cn and ε̃ > 0 be small.

Now let η : D → R+ be a C∞ cutoff function with these properties:

(a) 0 ≤ η ≤ 1;

(b) η ≡ 1 in a neighborhood of 0 ∈ D;

(c) η(ζ) = 0 for |ζ| > 1/2.

Define

h(ζ) = η(ζ) · [ϕ(ζ) + ε̃µ] + [1 − η(ζ)] · ϕ(ζ) + ζ2 · χ(ζ) . (∗∗)

There are three terms on the righthand side of the definition of h. The first
two of these should be thought of as a small perturbation of the extremal
mapping ϕ. The third is a correction term which we hope to choose (using
the ∂ problem) so as to make h holomorphic.

Now we have

0 = ∂h(ζ) = ∂η · [ϕ(ζ) + ε̃µ] − ∂η · ϕ(ζ) + ζ2 · ∂χ .
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Thus we must solve the equation

∂χ =
1

ζ2

[
−∂η[ϕ(ζ) + ε̃µ] + ∂η(ζ) · ϕ(ζ)

]
= −∂η · ε̃µ

ζ
. (?)

If we take |∇η| ≤ C and |∇2η| ≤ C then of course the righthand side of
this last equation, together with its first derivatives, is bounded by Cε̃. It
is also ∂-closed. Thus, by well-known estimates (see [KRA1] and references
therein) the equation (?) has a bounded solution χ with bound C ′ · ε̃; also
that solution has bounded gradient. Putting this function into (∗∗), we can
be sure that χ does not simply cancel the first two terms in the definition of
h. And we now know that h is holomorphic.

Most significantly, if ε̃ is chosen to be small enough, then the lemma
will guarantee that h : D → Ω. We think of h as a candidate holomorphic
mapping for the base point P̃ ≡ P + εµ and tangent vector ξ̃ = ξ.

In summary, we have shown that if we perturb the pair (P, ξ) to the new
pair (P̃ , ξ̃), then the extremal map ϕ is perturbed to a nearby map ϕ̃ = h.
The argument works just as well in reverse to show that any extremal map for
(P̃ , ξ̃) perturbs to a nearby mapping for (P, ξ). The upshot is that a small
perturbation of the base point gives a small perturbation of the extremal
map; and inspection of the argument shows that the variation is Lipschitz.

Next one must examine variation in the tangent vector ξ. But the argu-
ment is substantially the same. In the definition of h, one replaces (in the
first term) the expression

ϕ(ζ) + ε̃µ

with either
ϕ(ζ) · α ,

some unit vector α (with |α−1| small), for a rotation through angle α of the
tangent vector, or with

ϕ(ζ) · (1 + ε∗)

for a dilation of the tangent vector. The error term is still ζ2 ·χ (so that the
tangent vector is unchanged at the base point), and the rest of the argument
remains unchanged. And then one solves a ∂ problem to obtain a perturbed
mapping ϕ̃.

That completes our argument, and proves the proposition.
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4 The Carathéodory Metric

As a complement to the result of the preceding two sections, we now prove
a result about the Carathéodory metric. A form of the result presented here
appears in Proposition 2.5.1 of [JAP]. We include it here for completeness.

We begin with a quick review of that metric.
Let Ω ⊆ Cn be a domain, P ∈ Ω, and ξ ∈ Cn a vector. Then we define

the infinitesimal Carathéodory metric at P in the direction ξ to be

FC(z, ξ) = sup
f∈D(Ω)
f(z)=0

|f∗(z)ξ| ≡ sup
f∈D(Ω)
f(z)=0

∣∣∣∣∣∣

n∑

j=1

∂f

∂zj
(z) · ξj

∣∣∣∣∣∣
.

Now we have

Theorem 3 Let Ω ⊆ Cn be a strongly pseudoconvex domain with C2 bound-
ary. Then the infinitesimal Carathéodory metric on Ω is Lipschitz in the sense
that if if z, z′ ∈ Ω and ξ, ξ′ ∈ Cn, then

∣∣∣FΩ
C (z, ξ) − FΩ

C (z′, ξ′)
∣∣∣ ≤ C ·

√
|z − z′|2 + |ξ − ξ′|2 .

Proof: Let P ∈ Ω be a fixed point and ξ ∈ Cn a fixed vector. Let ϕ : Ω → D
be a candidate mapping for the infinitesimal Carathéodory metric at P in
the direction ξ. Let ε > 0.

Now let P ′ ∈ Ω be a point that is near to P . Let η ∈ C∞
c (Cn) be a cutoff

function that is equal to 1 near P (so that it is identically 1 in a neighborhood
of P and also in a a neighborhood of P ′). Define

h(z) = η(z) · ϕ(P + (z − P ′)) + (1 − η(z)) · ϕ(z) + χ(z) .

We think of h as a small perturbation of the extremal mapping ϕ. Notice
that h(P ′) = 0 + χ(P ′). We want to select χ, using the theory of the ∂
problem, so that h is holomorphic.

We have

∂χ(z) = ∂η(z)·ϕ(z)−∂η(z)·ϕ(P +(z−P ′)) = ∂η(z)·(ϕ(z)−ϕ(P+(z−P ′))) .
(∗)

The righthand side is of course ∂-closed.
Notice that the righthand side of (∗) is small in the uniform topology

provided only that P ′ is sufficiently close to P . In fact the same reasoning
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shows that it is small in the C1 topology. Thus the theory of the ∂ problem
on strongly pseudoconvex domains (see [KRA1], for instance) tells us that
we may choose χ to satisfy (∗) and so that χ is C1 small (i.e., bounded by
a universal constant times ε) provided only that P ′ is sufficiently close to P .
Thus h is holomorphic and close to ϕ in the C1 topology.

Now we set

h̃(z) = η(z)ϕ(P + (z − P ′)) + (1 − η(z))ϕ(z) + χ(z)− χ(P ′)

and

ϕ̃(z) =
1

1 + C · ε · h̃ .

We see that ϕ̃ is holomorphic, it takes the value 0 at P ′, and it is close to ϕ in
the C1 topology. We may also conclude that ϕ̃ shows that the Carathéodory
metric at P ′ in the direction ξ′ = ξ is C1-close to the metric at P in the
direction ξ.

The same argument holds in reverse if we choose P ′ as the base point at
P as the perturbed point. We may conclude therefore that the infinitesimal
Carathéodory metric varies in the Lipschitz topology when the base point is
perturbed.

A similar, but even easier, argument applies (just as in our discussion of
the Kobayashi metric) when the tangent vector ξ is perturbed. That com-
pletes our argument.

The reader will note that we restricted the enunciation of this theorem
to the case of strongly pseudoconvex domains. This is in marked contrast
to the situation for the Kobayashi metric. The difference, of course, is that
now we are considering maps from the domain Ω to the unit disc D. As a
consequence, the ∂ problem that we must solve lives on Ω rather than on
the disc. We restrict to the strongly pseudoconvex case so that we may have
favorable estimates on the ∂ problem.

5 Concluding Remarks

It is a natural question to consider regularity of the infinitesimal invariant
metrics. Our motivation was the study of extremal discs for the Kobayashi
metric in the sense of Lempert [LEM]. But there are many contexts in which
estimates of this kind may prove useful.
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