On Limits of Sequences of
Holomorphic Functions

Steven G. Krantz!

Abstract: We study functions which are the pointwise limit of a
sequence of holomorphic functions. In one complex variable this
is a classical topic, though we offer some new points of view and
new results. Some novel results for solutions of elliptic equations
will be treated. In several complex variables the question seems
to be new, and we explore some new results.

0 Introduction

It is a standard and well known fact from complex function theory (which
appears to be due to Weierstrass (see [WEI]); closely related results appear
in [STE] and [VIT]) that if {f;} is a sequence of holomorphic functions on a
planar domain €2 and if the sequence converges uniformly on compact subsets
of €2 then the limit function is holomorphic on ). Certainly this result is one
of several justifications for equipping the space of holomorphic functions on
2 with the compact-open topology (see also [LUR], where this point of view
is developed in detail from the perspective of functional analysis).

Considerably less well known is the following result of William Fogg Os-
good [OSG]:

Theorem 1 Let {f;} be a sequence of holomorphic functions on a planar
domain ). Assume that the f; converge pointwise to a limit function f on
Q. Then f is holomorphic on a dense, open subset of (). The convergence is
uniform on compact subsets of the dense, open set.

This result is not completely obvious; it is certainly surprising and inter-
esting. For completeness, we now offer a proof of the theorem:
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Proof of the Theorem: Let U be a nonempty open subset of 2 with
compact closure in €). Define, for k = 1,2, ...,

Sk={2€U:|fi()| <k for all j € N}.

Since the f; converge at each z € U, certainly the set {f;(z) : j € N} is
bounded for each fixed z. So each z € U lies in some Sj. In other words,

T=JS.
k

Now of course U is a complete metric space (in the ordinary Euclidean
metric), so the Baire category theorem tells us that some Si must be “some-
where dense” in U. This means that Sj will contain a nontrivial Euclidean
metric ball (or disc) in U. Call the ball B. Now it is a simple matter to apply
Montel’s theorem on B to find a subsequence f;, that converges uniformly
on compact sets to a limit function g. But of course g must coincide with f,
and ¢ (hence f) must be holomorphic on B.

Since the choice of U in the above arguments was arbitrary, the conclu-
sion of the theorem follows. O

Remark: An alternative approach, which avoids the explicit use of Montel’s
theorem, is as follows. Once one has identified an S whose closure contains
a ball or disc D(P,r), let v be a simple closed curve in D(P,r). Then of
course the image 7 of v is a compact set. Let € > 0. By Lusin’s theorem, the
sequence f; converges uniformly on some subset £ C v with the property
that the linear measure of 4 \ E is less than e. Let K be a compact subset
of the open region surrounded by v, and let o > 0 be the Euclidean distance
of K to~. Let € > 0 and choose J > 0 so large that when j, k > J then

[fi(2) = fu(2)] <€
for all z € E. Then, for w € K,

|fi(w) = fr(w)] =
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Thus we see that we have uniform convergence on K. And the holomorphic-
ity follows as usual. O

The next example is inspired by ideas in [ZAL, pp. 131-133]. It demon-
strates that Osgood’s theorem has substance, and describes a situation that
actually occurs. A thorough discussion of many of the ideas treated here—
from a somewhat different point of view—appears in [BEM]. In fact [BEM]
presents quite a different contruction of an example that illustrates Theorem
1.

EXAMPLE 1 Let
U={2€C:|Rez| < 1,|Imz| < 1}.
For j =1,2,..., define
Sj={2€U:Rez=0o0r Imz=0,|Rez| <1-1/[j+2], [Imz| <1-1/[j+2]}.
Also define
Ty = {z € U: 1/[j+2] < [Re 2| < 1-1/[j+2), 1/[j+2] < lm 2| < 1-1/[j+2]}.

We invite the reader to examine Figure 1 to appreciate these sets.

Now, for each j, we apply Runge’s theoreom. Notice that for each j
the complement of S; U T} is connected, so that we can push the poles of
the approximating functions to the complement of U. We are able then to
produce for each j a holomorphic function f; on U such that

1
|f3(2’) — 0| < ; for z € Tj,

1
|.fj(z)_1| <3 for ZESj.

Then it is easy to see that the sequence {f;} converges pointwise to the
function f given by

(2) = 0 if zeU\{z€U:Rez=0or Imz =0}
Y1 zeUN{z€U:Rez=0o0r Imz=0}.

Thus the limit function f is holomorphic on a dense open subset of U, and
the exceptional set is the two axes in U. O
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Figure 1: The sets S; and T}.

One might ask what more can be said about the open, dense set V' on
which the limit function f is holomorphic. Put in other words, what can one
say about Q\ V7 Lavrentiev [LAV] was the first to give a characterization
of those open sets on which a pointwise convergent sequence of holomorphic
functions can converge. Siciak [SIC] has given a rather different answer in
the language of capacity theory.

In fact a suitable version of the theorem is true for harmonic functions, or
more generally for solutions of a uniformly elliptic partial differential equation
of second order. We shall prove such results later in the present paper.

It is a pleasure to thank T. W. Gamelin, D. Minda, D. Sarason, and L.
Zalcman for helpful discussions of the topics of this paper.

1 More Results on Planar Domains

Our first new result for planar domains concerns harmonic functions:

Theorem 2 Let {f;} be a sequence of harmonic functions on a planar do-
main ). Assume that the f; converge pointwise to a limit function f on €.
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Then f is harmonic on a dense open subset of ().

Sketch of the Proof of the Theorem: Proceed as in the proof of the result
for holomorphic functions. It is certainly true that a collection of harmonic
functions on a planar domain that is uniformly bounded on compacta will
have a subsequence that converges uniformly on compact sets. This follows
from easy estimates on the Poisson kernel. The rest of the argument is the
same as before. O

Theorem 3 Let £ be a uniformly elliptic operator of order 2 on a planar
domain €. Let {f;} be a sequence of functions that are annihilated by £ on
Q). Assume that the f; converge pointwise to a limit function f on 2. Then
f is annihilated by L on a dense open subset of ().

Proof: The proof is the same as the last result. The only thing to check is
that a collection of functions annihilated by £ that is bounded on compact
sets will have a subsequence that converges uniformly on compact sets. This
will follow, as in the harmonic case, from the Poisson formula for £. The
rest of the argument is the same. O

Theorem 4 Let {f;} be a sequence of holomorphic functions on a planar
domain Q). Suppose that there is a constant M > 0 such that |f;(z)] < M
for all j and for all z € ). Assume that the f; converge pointwise to a limit
function f on ). Then f is holomorphic on all of ).

Remark: Of course the new feature in this last theorem of Stieltjes [STE]
is that we are assuming that the family {f;} is uniformly bounded. This
Tauberian hypothesis gives a stronger conclusion. The proof will now be a
bit different.

Proof: Let U be an open subset of 2. Then the argument from the proof of
Theorem 1 applies immediately on U. Thus the limit function is holomorphic
on U. Since the choice of U was arbitrary, we are finished. O

In fact there is a much weaker condition (than in the last theorem) that
will give the same result:



Theorem 5 Let {f;} be a sequence of holomorphic functions on a planar
domain €). Suppose that there is a nonnegative, integrable function g on €
such that |f;(z)| < g(z) for all j and for all z € . Assume that the f;
converge pointwise to a limit function f on 2. Then f may be corrected on
a set of measure zero so that it is holomorphic on all of €.

Proof: The proof is simplicity itself. Let ¢ be a C° function on 2. Then

Iy

= [ = (C)dA
SEORQ 44
for each j. Here dA is Lebesgue area measure on C. Now the Lebesgue
dominated convergence theorem allows us to let 7 — oo and infer that

d¢
0= [ L dA(C) .
52 OO dAQ)
Thus f is a weakly holomorphic function. But Weyl’s lemma then tells us
that f may be corrected on a set of measure zero so that it is holomorphic
in the classical sense. O

The following result is discussed but not proved in [DAV]:

Theorem 6 Let {f;} be a sequence of univalent holomorphic functions on a

domain ) that converges pointwise. Then the limit function is holomorphic
on all of ().

For the proof, one first observes that each f; omits an arc from its image
(this is a standard fact about univalent functions that follows simply from
the topology of the Riemann sphere and the open mapping principle). Then
one postcomposes each f; with an automorphism p; of the Riemann sphere
to arrange that there are two complex values p and ¢ that are omitted by all
the f;. [Of necessity, these automorphism will converge then to the identity.]
Then Montel’s classic theorem (see [MON]) yields that the family {p,o f;} is
normal. Unraveling the logic, we see that the original family {f;} is normal.
The result follows immediately.



2 Results in Several Complex Variables

The first result in C" is as follows.

Theorem 7 Let {f;} be a sequence of holomorphic functions on a domain
1 C C". Assume that the f; converge pointwise to a limit function f on €.
Then f is holomorphic on a dense open subset of ). Also the convergence is
uniform on compact subsets of the dense open set.

Proof: The argument is the same as that for Theorem 1. We need only note
that Montel’s theorem is still valid. The rest of the argument is the same. O

Remark: Just as in the Remark following the proof of Theorem 1, we could
use the Henkin-Ramirez integral formula on small balls (see [KRA, Ch. §])
to give an alternative proof of this result. O

Theorem 8 Let {f;} be a sequence of holomorphic functions on a domain
1 C C". Assume that the f; converge pointwise to a limit function f on €.
Let ¢ be any complex line in C". Then the limit function f is holomorphic
on a dense open subset of £ N (2.

Proof: Of course we simply apply the argument from the proof of Theorem
1lon N O

Remark: This is a stronger result than Theorem 6. One may note that
something similar could be proved with “‘complex line” replaced by “com-
plex analytic variety”. It is not clear what the optimal result might be. O

3 Concluding Remarks

It is clear that there is more to learn in the several complex variable setting.
We would like a result that has a chance of being sharp, so that the excep-
tional set for convergence can be characterized (as in [SIC] for one complex
variable). This matter will be explored in future papers.
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