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1 Basics and Background

Modern security considerations make it desirable for us to have new types
of encryption schemes. It is no longer enough to render a message so that
only the intended recipient can read it (and outsiders cannot). In today’s
complex world, and with the advent of high-speed digital computers, there
are new demands on the technology of cryptography. The present brief paper
will discuss some of these considerations.

In the old days (beginning even with Julius Caesar), it was enough to have
a method for disguising the message that we were sending. For example,
imagine that the alphabet is turned into numeric symbols by way of the
scheme

A 7−→ 0

B 7−→ 1

C 7−→ 2

and so forth.
Then use the encryption

n 7−→ n + 3 mod 26 . (?)

And now convert these numbers back to roman letters. As a simple
example, the phrase

WHAT ME WORRY?

translates to the string of integers

22 7 0 19 12 4 22 14 17 17 24
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Notice that it is common, in elementary cryptography, to ignore punctuation
and spaces.

The encryption (?) turns this string of integers into

25 10 3 22 15 7 25 17 20 20 2

and this, in turn, transliterates to

ZKDWPHZRUUC (?)

It is clear that anyone receiving the message (?) would have no idea
what it means—nor even what the message was about, or what context it
fits into. On the other hand, such an encoded message is pretty easy to
decrypt. Especially if the decrypter knows that we have used a simple “shift
algorithm” to encode the message, and if in addition he/she knows that the
most commonly used letters in the alphabet are E and then T, then it would
be a fairly simple matter to reverse-engineer this encryption and recover the
original message.

Today life is more complex. One can imagine that there would be sce-
narios in which

(1) You wish to have a means that a minimum-wage security guard (whom
you don’t necessarily trust) can check that people entering a facility
know a password—but you don’t want him to know the password.

(2) You wish to have a technology that allows anyone to encrypt a message—
using a standard, published methodology—but only someone with spe-
cial additional information can decrypt it.

(3) You wish to have a method to be able to convince someone else that
you can perform a procedure, or solve a problem, or prove a theorem,
without actually revealing the details of the process.

This may all sound rather dreamy, but in fact—thanks to the efforts and
ideas of R. Rivest, A. Shamir, and L. Adleman—it is now possible. The
so-called RSA encryption scheme is now widely used. For example, the e-
mail messages that I receive on my cell phone are encrypted using RSA.
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Banks, secure industrial sites, high-tech government agences (for example,
the National Security Agency), and many other parts of our society routinely
use RSA to send messages securely.

In this discussion, we shall describe how RSA encryption works, and we
shall encrypt a message using the methodology. We shall describe all the
mathematics behind RSA encryption, and shall proved the results necessary
to flesh out the theory behind RSA. We shall also describe how to convince
someone that you can prove the Riemann hypothesis—without revealing any
details of the proof. This is a fascinating idea—something like convincing
your mother that you have cleaned your room without letting her have a look
at the room. But in fact the idea has profound and far-reaching applications.

2 Preparation for RSA

Background Ideas

We now sketch the background ideas for RSA. These are all elementary
ideas from basic mathematics. It is remarkable that these are all that are
needed to make this profound new idea work.

Computational Complexity

• Suppose that you have a deck of N playing cards and you toss them in the
air. Now you want to put them back into their standard order. How many
“steps” will this take? [ We want to answer this question in such a manner
that a machine could follow the instructions.]

First we look through all N cards and find the first card in the ordering.

Then we look through the remaining N − 1 cards and find the second card
in the ordering.

And so forth.
So the re-ordering of the cards takes

N + (N − 1) + (N − 2) + · · · 3 + 2 + 1 =
N(N + 1)

2
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A typical planar graph. An admissible coloring for
the planar graph.

Figure 1

steps. Notice that this answer is a quadratic polynomial in N . Thus we say
that the problem can be solved in polynomial time.

• We have heard a rumor that the four-color theorem is true. So we have
a graph with N vertices and we wish to color each vertex, using either red,
yellow, blue, or green. See Figure 1, where we have used shading to suggest
the coloring The only rule is that two adjacent vertices (i.e. vertices that are
connected by a segment) cannot be the same color.

Of course the number of possible colorings is the number of functions from
the set with N objects to the set with 4 objects. That is 4N . The machine,
being as dumb as it is, will simply try all the possible colorings until it finds
one that works. Thus we see that the number of steps is now an exponential
function of N .

We call this an exponential time problem.
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• Another interesting exponential time problem is that of scheduling planes
for an airline. If you have n cities and k planes and you take into account
different populations, different demands, crew availability, fuel availability,
and other factors, then it is easy to convince yourself that this is a problem
of exponential complexity. The theory of linear programming can be used
to reduce many problems of this kind to polynomial complexity. Linear pro-
gramming is routinely used by the airlines for this purpose.

• Certainly one of the most famous exponential time problems is the “trav-
eling salesman problem”. The issue here is that a certain salesman wants to
visit each of n cities precisely once. What is his most efficient path? It is not
difficult to discern that there are exponentially many possible paths, and no
evident strategy for picking one in any efficient manner.

Modular Arithmetic

This is a familiar idea, and we have already alluded to it earlier. The
“right” way to define the idea is with cosets, but we shall content ourselves
here with a more informal definition.

When we write n mod k we mean simply the remainder when n is divided
by k. Thus

25 = 1 mod 3 ,

15 = 3 mod 4 ,

−13 = −3 mod 5 = 2 mod 5 .

It is an important fact—which again is most clearly seen using the theory
of cosets—that modular arithmetic respects sums and products. That is,

a+b mod n = a mod n+b mod n and a·b mod n = (a mod n)·(b mod n) .

We shall use these facts in a decisive manner below.

Fermat’s Theorem

Let a and b be two (positive) integers. We say that a and b are relatively
prime if they have no common prime factors. For example,

72 = 23 · 32
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175 = 52 · 7

hence 72 and 175 are relatively prime.
If n is an integer, let P(n) be the set of integers less than n that are

relatively prime to it. Let ϕ(n) be the number of elements in P(n).

Theorem: If n is a positive integer and k is relatively prime to
n then

kϕ(n) = 1 modn .

Proof: The proof of this result is easy. For the collection P(n) of numbers
relatively prime to n forms a group under multiplication. That is, if a is
relatively prime to n and b is relatively prime to n then logic dictates that
a · b is relatively prime to n. Now it is a fundamental fact—we cannot prove
it here, but see [BMS]—that if a group has m elements and g is an element
of the group then gm is the group identity. Thus any element of the group,
raised to the power ϕ(n) (the number of elements in the group) will equal 1
modulo n.

For later use, it is worth noting that if p, q are prime numbers and n = p·q
then ϕ(n) = (p − 1) · (q − 1).

The reason is that the only numbers less than or equal to n that are not
relatively prime to n are p, 2p, 3p, . . . q · p and q, 2q, 3q, · · · (p − 1)q.

There are q numbers in the first list and p− 1 numbers in the second list.
The set P(n) of numbers relatively prime to n is the complement of these
two lists, and it therefore has

pq − q − (p − 1) = pq − q − p + 1 = (p − 1) · (q − 1) ≡ ϕ(n)

elements.

Relatively Prime Integers

Two integers a and b are relatively prime if they have no prime factors in
common. As noted above, for example, 72 and 175 are relatively prime.
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It is a fundamental fact of elementary number theory that if a, b are
relatively prime then we can find other integers x and y such that

xa + yb = 1 . (∗)

For example, we have noted that a = 72 and b = 175 are relatively prime.
The corresponding integers x, y are x = −17 and y = 7. Thus

(−17) · 72 + 7 · 175 = 1 .

One can prove this result using Fermat’s theorem above. For, since b is
relatively prime to a, thus

bϕ(a) = 1 mod a .

But this just says that
bϕ(a) − 1 = k · a

for some integer k. Unraveling this equation gives (∗).
In practice, one finds x and y using the Euclidean algorithm (otherwise

known as long division).
In the example of 72, 175, one calculates:

175 = 2 · 72 + 31

72 = 2 · 31 + 10

31 = 3 · 10 + 1 .

You know you are finished when the remainder is 1.
For now we have

1 = 31 − 3 · 10
= 31 − 3 · (72 − 2 · 31)
= 7 · 31 − 3 · 72
= 7 · (175 − 2 · 72) − 3 · 72
= 7 · 175 − 17 · 72 .

That is the decomposition we seek.
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3 The RSA System Enunciated

Description of RSA

Now we can quickly and efficiently describe how to implement the RSA
encryption system, and we can explain how it works.

Imagine that George W. Bush has an important message that he wishes
to send to Donald Rumsfeld. Of course Rumsfeld is a highly-placed man
of many responsibilities, and you can imagine that Bush’s message is quite
secret. So he wants to encode the message:

Your time is up. Hasta la vista, baby.

So Bush goes to the library and finds the RSA encryption book. This is
a readily available book that anyone can access. It is not secret. A typical
page in the book reads like this:

Name Value of n Value of e

Puck, Wolfgang 4431 . . . 7765 8894 . . . 4453
Rehnquist, William 6668 . . . 2345 1234 . . . 9876
Riddle, Nelson 7586 . . . 2390 4637 . . . 4389
Rin Tin-Tin 5355 . . . 5353 5465 . . . 7648
Rogers, Roy 7859 . . . 4359 3058 . . . 2934
Roosevelt, Theodore 7835 . . . 2523 7893 . . . 4232
Rotten, Johnny 3955 . . . 4343 4488 . . . 9922
Roy, Rob 3796 . . . 5441 2219 . . . 3319
Rumsfeld, Donald 1117 . . . 8854 9266 . . . 2388
Russert, Tim 6464 . . . 4646 3223 . . . 3232
Schwarzenegger, Arnold 6894 . . . 3242 7525 . . . 2314
Simpson, Orenthal James 6678 . . . 2234 4856 . . . 2223

What does this information mean? Of course we know, thanks to Euclid,
that there are infinitely many primes. So we can find prime numbers with
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as many digits as we wish. Each number n in the RSA encryption book is
the product of two 75-digit primes p and q: Thus n = p · q. Each number e
is chosen to be a number with at least 100 digits that is relatively prime to
ϕ(n) = (p− 1) · (q − 1). Of course we do not publish the prime factorization
of the number n; we also do not publish ϕ(n). All that we publish is n and
e for each individual.

Now an important point to understand is that Bush does not need to
understand any mathematics or any of the theory of RSA encryption in
order to encode his message. [Well, it would be nice if he understood modular
arithmetic. But he is, after all, the President of the United States.] All he
does is this:

(1) First he breaks the message into units of five letters. We call these
“words”, even though they may not be English language words.

For the message from Bush to Rumsefeld, the “words” would be

YOURT IMEIS UPHAS TALAV ISTAB

ABY

(2) He transliterates each “word” into a sequence of numerical digits, using
our usual scheme of translation.

(3) Then he encodes each transliterated word w with the rule

w 7−→ we mod n .

Bush will send to Rumsfeld this sequence of encrypted words. That is all
there is to it.

The real question now is:

What does it take to decrypt the encoded message?

How can Rumsfeld read the message?

This is where some mathematics comes into the picture. We must use
Fermat’s theorem, and we must use our ideas about relatively prime integers.
But the short answer to the question is this. If w̃ is a word encrypted
according to the simple scheme described above, then we decrypt it with this
algorithm:
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We find integers x and y so that xe + yϕ(n) = 1 and

then we calculate

w̃x modn .

That will give the decrypted word w with which we began. [We shall pro-
vide the mathematical details of this assertion in the next section.] Since w
has only five characters, and n has 150 characters, we know that w mod n =
w—so there is no ambiguity arising from modular arithmetic. We can trans-
late w back into roman characters, and we recover our message.

Now here is the most important point in our development thus far:

In order to encrypt a message, we need only look up

n and e in the public record RSA encryption book.

But, in order to decrypt the message, we must know
x. Calculating x necessitates knowing ϕ(n), and that

necessitates knowing the prime factorization of n.

It is a theorem that calculating the prime factorization of an integer with
k digits is a problem of exponential complexity in k. For an integer with 150
digits, using a reasonably fast computer, it would take several years to find
the prime factorization.1

4 The RSA Encryption System Explicated

Explanation of RSA

In fact, with all the preliminary setup that we have in place, it is a simple
matter to explain the RSA encryption system.

For suppose that we selected an n = p · q and an e relatively prime to
ϕ(n) = (p−1) · (q−1) corresponding to a particular person listed in the RSA

1A bright student who heard my lecture on this topic pointed out that—if your message
is just five letters long—then there are only 265 possible encryptions. You could decrypt the
message by trial and error. Because of considerations like this, we often find it convenient
to append a 50-digit random integer to the message. This technique is discussed in detail
near the end of the paper.
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encryption book. If we are the certified decrypter, then we know the prime
factorization of n—that is, we know that n = p · q for p and q prime.

We therefore know ϕ(n) = p · q − p − q + 1 = (p − 1) · (q − 1) and so we
can calculate the x and the y in the identity xe + yϕ(n) = 1. Once we know
x, then we know everything. For

w̃x mod n = [we]x mod n

= wex mod n

= w1−yϕ(n) mod n

= w · [wϕ(n)]−y mod n

= w · 1−y mod n

= w modn

= w

since w is certainly relatively prime to n.
This shows how we recover the original word w from the encrypted word

w̃ = we modn.

5 Zero Knowledge Proofs

How to Keep a Secret

We shall now give a quick and dirty description of how to convince some-
one that you can prove Proposition A without revealing any details of
the proof of Proposition A. The idea comes across most clearly if we deal
again with colorings of graphs.

So suppose once again that we are given a graph. See Figure 2. We are
the prover, and there is a remotely located verifier.

It is our job to convince the verifier that we know how to 4-color this
graph. But we do not want the verifier to actually know how to color the
graph. We only want him to be convinced that we know how to do it.

We begin by transmitting the adjacency matrix to the verifier. This data
is exhibited in Table 3.
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1 2 3 4 5 6 7
1 x x x x x
2 x x x
3 x x x
4 x x x
5 x x x x
6 x x x
7 x x x x

Table 3

This transmission is straightforward, and need not be encoded. We simply
tell the verifier: “In position (1, 1) of the matrix there is an x”; “In position
(1, 2) of the matrix there is an x”; In position (1, 5) of the matrix there is no
x.” And so forth.

Now we number the colors 1, 2, 3, 4. Here

1 ↔ blue

2 ↔ red

3 ↔ yellow

4 ↔ green

Finally, imagine that our coloring of the graph is as in Figure 4. Of course
we have used shading to suggest the coloring. We wish to communicate to
the verifier that we have a valid coloring—in such a manner that he can check
it, but he cannot learn any of the details of the coloring.

As we see from Figure 4, the coloring is encoded as

12 23 34 41 51 64 73 .

This is read as “node 1 is colored with color 2 (red),” “node 2 is colored
with color 3 ( yellow), etc. We will transmit these pairs of digits, suitably
encoded, to the verifier.

The trouble is that the verifier already knows that there are only seven
nodes in the graph, and only four colors, so he could (with a little effort)
figure out what color has been assigned to what node just with a little trial
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and error—even though the information has been encoded. So this will not
do.

Thus, instead of encoding and sending 12 and 23 and 34 and so forth,
instead the prover encodes and sends

12 r1

23 r2

34 r3

etc. ,

where r1, r2, r3 are 50-digit random integers.
More precisely, the step-by-step scenario is this:

(1) The prover sends the entire coloring to the verifier, in encoded form as
indicated above.
(2) The verifier stares at his adjacency matrix. He notices that, for example,
vertices 4 and 6 are adjacent. And he inquires specifically about those two
vertices.
(3) The prover sends the verifier the colorings for those two particular vertices
(with a 50-digit random integer attached to each, just as before).
(4) The verifier encrypts the information for those two vertices—using the
pre-agreed-upon public key encryption system. He then checks that those
two vertex colorings match colorings in the full coloring of the graph that
was sent in Step (1).

Now the verifier has checked that one pair of adjacent vertices is suitably
colored (i.e., with different colors). If he wants to perform further verifica-
tions, then the preceding steps are repeated. Except that first the prover
assigns numbers to the four colors red, yellow, blue, and green in some
new random fashion. And he chooses an entirely new set of random 50-digit
integers. Then he sends the entire colored graph, gets a query from the
verifier, and so forth.

If there are n nodes to be colored then there are n(n−1)/2 possible pairs
of nodes. The probability that the prover lied about the coloring and that
the verifier—in asking for the coloring of a particular pair of nodes—failed
to catch the lie is 1/[n(n − 1)]. If the entire process is iterated again, then
the probability that the verifier failed to catch the lie is 1/[n2(n − 1)2]. And
so forth. Thus each successive verification increases the likelihood that the
verifier may be certain of his check.
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The point of this procedure is that the verifier can check that any pair
of adjacent vertices is colored correctly, that no two adjacent vertices are
colored the same, but he cannot amalgamate the information and produce
the entire coloring of the graph.

Of course the example we have presented is for graph coloring, just be-
cause that is simple to describe. But any proof whatsoever can be translated
into binary code and then rendered as a statement about the coloring of some
graph. So in fact the example we have given is perfectly general.

Concluding Remarks

The RSA encryption scheme is one of the great ideas of modern coding
theory. It is being developed and enhanced even as we speak. There are
versions for multiple verifiers, for dishonest provers, and many other vari-
ants. The history of RSA is a remarkable one. There was a talk at the 1986
International Congress of Mathematicians in Berkeley about the method.
After that, the government attempted to co-opt the method, retract all the
preprints, and suppress the information. Interestingly, it was the National Se-
curity Agency (the branch of the government in Washington that specializes
in cryptography) that stepped in and prevented the government intervention.
Now RSA is in the public domain, and anyone can use it. It is a powerful
tool.
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