Instructions:

1. There are three parts in this exam. Part I is multiple choice, Part II is True/False, and Part III consists of hand-graded problems.
2. The total number of points is 100 .
3. You may use a calculator.
4. The scantron and Part III will be collected at the end of the exam. You may take Part I and Part II with you at the end of the exam.

Here are some definitions/identities that might be useful:

$$
\begin{aligned}
& \cosh t=\frac{e^{t}+e^{-t}}{2} \\
& \sinh t=\frac{e^{t}-e^{-t}}{2} \\
& e^{i t}=\cos t+i \sin t \\
& \cos t=\frac{e^{i t}+e^{-i t}}{2} \\
& \sin t=\frac{e^{i t}-e^{-i t}}{2 i} \\
& \int \sec t d t=\ln |\sec t+\tan t|+C \\
& \int \csc t d t=\ln |\csc t-\cot t|+C
\end{aligned}
$$

Part I. Multiple Choices $\quad 5 \times 10=50$ points

1. Consider the 2 nd order linear equation with constant coefficients:

$$
y^{\prime \prime}+a y^{\prime}+b y=0 .
$$

If r_{1} and r_{2} are the roots of its characterisitic equation, then what is $r_{1}^{2}+r_{2}^{2}$?
A. 1
B. $\sqrt{a^{2}-4 b}$
C. $a^{2}-4 b$
D. $a^{2}+2 b$
E. $a^{2}-2 b$
F. none of the above
2. Find the largest interval on which the following IVP has a unique solution.

$$
(2 t+1) y^{\prime \prime}+\sin t \cdot y^{\prime}+e^{t-3} y=\tan t, \quad y(0)=0, \quad y^{\prime}(0)=1 .
$$

A. $[0, \infty)$
B. $\left(-\frac{1}{2}, \infty\right)$
C. $\left(-\frac{\pi}{2}, \infty\right)$
D. $\left(-\frac{1}{2}, \frac{\pi}{2}\right)$
E. $(-\pi, \pi)$
F. none of the above
3. Consider the differential equation

$$
\begin{equation*}
y^{\prime \prime}-y=0 . \tag{1}
\end{equation*}
$$

Which of the following is NOT a solution of (1)?
A. 0
B. e^{t}
C. e^{-t}
D. $\cosh t$
E. $\cosh (t+1)$
F. all of the above are solutions of (1)
4. Consider the differential equation

$$
\begin{equation*}
y^{\prime \prime}+y=0 . \tag{2}
\end{equation*}
$$

Which of the following is NOT a solution of (2)?
A. 0
B. $\sin t$
C. $\cos t$
D. $\cos (t+1)$
E. $\tan t$
F. all of the above are solutions of (2)
5. Find the general solution of

$$
2 y^{\prime \prime}-7 y^{\prime}+3 y=0 .
$$

A. $y(t)=c_{1} e^{-\frac{1}{2} t}+c_{2} e^{3 t}$
B. $y(t)=c_{1} e^{-\frac{1}{2} t}+c_{2} e^{-3 t}$
C. $y(t)=c_{1} e^{\frac{1}{2} t}+c_{2} e^{3 t}$
D. $y(t)=c_{1} e^{\frac{1}{2} t}+c_{2}$
E. $y(t)=c_{1}+c_{2} e^{-3 t}$

F . none of the above
6. Find the solution to the IVP below:

$$
y^{\prime \prime}+2 y^{\prime}+y=0, \quad y(0)=5, \quad y^{\prime}(0)=-3 .
$$

A. $5 e^{-t}-2 t e^{-t}$
B. $5 e^{-t}+2 t e^{-t}$
C. $5 e^{-t}+3 e^{t}$
D. $5 e^{-t}-3 t e^{-t}$
E. $5 e^{-t}-2 e^{t}$
F. none of the above
7. Compute the Wronskian $W\left(y_{1}, y_{2}\right)(t)$ for $t>0$ where

$$
y_{1}(t)=t \ln t, \quad y_{2}(t)=t^{2} .
$$

A. $t^{2}(\ln t+1)$
B. $t^{2}(\ln t-1)$
C. $t^{2} \ln t$
D. $t \ln t+t^{2}$
E. 0
F. none of the above
8. Consider the differential equation

$$
\begin{equation*}
3 y^{\prime \prime}+y^{\prime}-2 y=2 \cos t \tag{3}
\end{equation*}
$$

Which of the following is the general solution of (3)?
A. $c_{1} e^{\frac{2}{3} t}+c_{2} e^{-t}-\frac{5}{13} \cos t+\frac{1}{13} \sin t$
B. $c_{1} e^{\frac{2}{3} t}+c_{2} e^{-t}-\frac{5}{13} \cosh t+\frac{1}{13} \sinh t$
C. $c_{1} e^{\frac{2}{3} t}+c_{2} e^{t}+\frac{5}{26} e^{i t}+\frac{1}{26} e^{-i t}$
D. $c_{1} e^{\frac{2}{3} t}+c_{2} e^{t}-\frac{5}{13} \cos t+\frac{1}{13} \sin t$
E. $c_{1} e^{\frac{2}{3} t}+c_{2} e^{t}-\frac{5}{13} e^{t}+\frac{1}{13} e^{-t}$
F. none of the above
9. Consider the differential equation

$$
\begin{equation*}
t^{2} y^{\prime \prime}-t(t+2) y^{\prime}+(t+2) y=0, \quad t>0 \tag{4}
\end{equation*}
$$

The function $y_{1}(t)=t$ is a solution of (4). Choose the function y_{2} such that y_{1} and y_{2} form a fundamental set of solutions to (4).
A. $y_{2}(t)=t^{2}$
B. $y_{2}(t)=e^{t}$
C. $y_{2}(t)=t e^{t}$
D. $y_{2}(t)=t^{2} e^{t}$
E. $y_{2}(t)=\ln t$
F. none of the above
10. Consider the differential equation

$$
\begin{equation*}
y^{\prime \prime \prime}+y^{\prime \prime}=3 e^{t}+4 t^{2} \tag{5}
\end{equation*}
$$

Which of the following is NOT a solution of (5)?
A. $\frac{3}{2} e^{t}+4 t^{2}-\frac{4}{3} t^{3}+\frac{1}{3} t^{4}$
B. $\frac{3}{2} e^{t}+1+4 t^{2}-\frac{4}{3} t^{3}+\frac{1}{3} t^{4}$
C. $\frac{3}{2} e^{t}+1+t+4 t^{2}-\frac{4}{3} t^{3}+\frac{1}{3} t^{4}$
D. $\frac{3}{2} e^{t}+2015 t+4 t^{2}-\frac{4}{3} t^{3}+\frac{1}{3} t^{4}$
E. $2 \cosh t+1+t+4 t^{2}-\frac{4}{3} t^{3}+\frac{1}{3} t^{4}$
F. all of the above are solutions of (5)

Part II. True/False $\quad 5 \times 2=10$ points
Choose ' A ' if the statement is true; choose ' B ' if the statement is false.
11. For a second order linear homogeneous ordinary differential equation with constant coefficients, if the characteristic equation has no real roots, then we cannot solve the equation.
12. Let p and q be continuous functions, and let y_{1} and y_{2} be solutions of the differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 .
$$

If $W\left(y_{1}, y_{2}\right)(0) \neq 0$, then $W\left(y_{1}, y_{2}\right)(t) \neq 0$ for all t.
13. The functions $y_{1}, y_{2}, \ldots, y_{n}$ are linearly independent, if and only if

$$
W\left(y_{1}, y_{2}, \ldots, y_{n}\right)\left(t_{0}\right) \neq 0
$$

for some t_{0}.
14. The quasi-frenquency of the dampened spring is always smaller than the natural frequency.
15. There are continuous functions p and q such that

$$
y_{1}(t)=t \ln t, \quad y_{2}(t)=t^{2}
$$

form a fundamental set of solutions of the second order homogeneous differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0, \quad t>0 .
$$

Hint: You may use your result in 7 .

Math 217 Exam $1 \quad$ Sept 17, 2015
Part III will be collected separately. Please write down your name and your student number. Student No.

Name:

For graders:
16.
17.

18
19.

Total:

Part III. Hand-graded problems $10+10+20=40$ points
16. $(5+5=10$ points $)$

Let m, γ and k be positive constant. Find the general solution of equation

$$
m u^{\prime \prime}(t)+\gamma u^{\prime}(t)+k u(t)=0
$$

in each of the two cases below:
(a) $\gamma^{2}-4 k m<0$
(b) $\gamma^{2}-4 k m>0$
17. (10 points)

Find the general solution of the equation

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-12 y=0, \quad t>0
$$

This page is intentionally left blank.
18. (10 points)

Find the general solution of the equation

$$
y^{(3)}+y^{\prime}-10 y=0 .
$$

This page is intentionally left blank.
19. (10 points)

Find the general solution of the equation

$$
y^{\prime \prime}+y=\tan t .
$$

This page is intentionally left blank.

