Instructions:

1. There are three parts in this exam. Part I is multiple choice, Part II is True/False, and Part III consists of hand-graded problems.
2. The total number of points is 100 .
3. You may use a calculator.
4. The scantron and Part III will be collected at the end of the exam. You may take Part I and Part II with you at the end of the exam.

Here are some definitions/identities/integrals that might be useful:

$$
\begin{aligned}
& \cosh t=\frac{e^{t}+e^{-t}}{2} \\
& \sinh t=\frac{e^{t}-e^{-t}}{2} \\
& e^{i t}=\cos t+i \sin t \\
& \cos t=\frac{e^{i t}+e^{-i t}}{2} \\
& \sin t=\frac{e^{i t}-e^{-i t}}{2 i} \\
& \int \sec t d t=\ln |\sec t+\tan t|+C \\
& \int \csc t d t=\ln |\csc t-\cot t|+C
\end{aligned}
$$

Part I. Multiple Choices $\quad 5 \times 10=50$ points

1. Consider the 2 nd order linear equation with constant coefficients:

$$
y^{\prime \prime}+a y^{\prime}+b y=0 .
$$

If r_{1} and r_{2} are the roots of its characterisitic equation, then what is $r_{1}^{2}+r_{2}^{2}$?
A. 1
B. $\sqrt{a^{2}-4 b}$
C. $a^{2}-4 b$
D. $a^{2}+2 b$
E. $a^{2}-2 b$
F. none of the above

E
The characterisitic equation is

$$
r^{2}+a r+b=\left(r-r_{1}\right)\left(r-r_{2}\right)=r^{2}-\left(r_{1}+r_{2}\right) r+r_{1} r_{2}=0 .
$$

Therefore,

$$
\begin{aligned}
& r_{1}+r_{2}=-a, \quad r_{1} r_{2}=b \\
& r_{1}^{2}+r_{2}^{2}=\left(r_{1}+r_{2}\right)^{2}-2 r_{1} r_{2}=a^{2}-2 b .
\end{aligned}
$$

2. Find the largest interval on which the following IVP has a unique solution.

$$
(2 t+1) y^{\prime \prime}+\sin t \cdot y^{\prime}+e^{t-3} y=\tan t, \quad y(0)=0, \quad y^{\prime}(0)=1 .
$$

A. $[0, \infty)$
B. $\left(-\frac{1}{2}, \infty\right)$
C. $\left(-\frac{\pi}{2}, \infty\right)$
D. $\left(-\frac{1}{2}, \frac{\pi}{2}\right)$
E. $(-\pi, \pi)$
F. none of the above

D
Rewriting the equation, we have

$$
y^{\prime \prime}+\frac{\sin t}{2 t+1} \cdot y^{\prime}+\frac{e^{t-3}}{2 t+1} y=\frac{\tan t}{2 t+1}
$$

Discontinuities occur as $2 t+1=0$ and $\tan t=0$. Thus, the largest interval of continuity, containing 0 , is $\left(-\frac{1}{2}, \frac{\pi}{2}\right)$.
3. Consider the differential equation

$$
\begin{equation*}
y^{\prime \prime}-y=0 . \tag{1}
\end{equation*}
$$

Which of the following is NOT a solution of (1)?
A. 0
B. e^{t}
C. e^{-t}
D. $\cosh t$
E. $\cosh (t+1)$
F. all of the above are solutions of (1)

F
The general solution is

$$
y(t)=c_{1} e^{t}+c_{2} e^{-t} .
$$

We note that

$$
\cosh (t+1)=\frac{e^{t+1}-e^{-(t+1)}}{2}=\frac{e}{2} e^{t}-\frac{1}{2 e} e^{-t} .
$$

4. Consider the differential equation

$$
\begin{equation*}
y^{\prime \prime}+y=0 . \tag{2}
\end{equation*}
$$

Which of the following is NOT a solution of (2)?
A. 0
B. $\sin t$
C. $\cos t$
D. $\cos (t+1)$
E. $\tan t$
F. all of the above are solutions of (2)

E
The general solution is

$$
y(t)=c_{1} \cos t+c_{2} \sin t .
$$

We note that

$$
\cos (t+1)=\cos 1 \cos t-\sin 1 \sin t
$$

5. Find the general solution of

$$
2 y^{\prime \prime}-7 y^{\prime}+3 y=0 .
$$

A. $y(t)=c_{1} e^{-\frac{1}{2} t}+c_{2} e^{3 t}$
B. $y(t)=c_{1} e^{-\frac{1}{2} t}+c_{2} e^{-3 t}$
C. $y(t)=c_{1} e^{\frac{1}{2} t}+c_{2} e^{3 t}$
D. $y(t)=c_{1} e^{\frac{1}{2} t}+c_{2}$
E. $y(t)=c_{1}+c_{2} e^{-3 t}$

F . none of the above
C
The characterisitic equation is

$$
2 r^{2}-7 r+3=0
$$

The roots are

$$
r_{1}=\frac{1}{2}, \quad r_{2}=3 .
$$

$$
\begin{aligned}
& r_{1}+r_{2}=-a, \quad r_{1} r_{2}=b \\
& r_{1}^{2}+r_{2}^{2}=\left(r_{1}+r_{2}\right)^{2}-2 r_{1} r_{2}=a^{2}-2 b .
\end{aligned}
$$

6. Find the solution to the IVP below:

$$
y^{\prime \prime}+2 y^{\prime}+y=0, \quad y(0)=5, \quad y^{\prime}(0)=-3 .
$$

A. $5 e^{-t}-2 t e^{-t}$
B. $5 e^{-t}+2 t e^{-t}$
C. $5 e^{-t}+3 e^{t}$
D. $5 e^{-t}-3 t e^{-t}$
E. $5 e^{-t}-2 e^{t}$
F. none of the above

B
The characterisitic equation is

$$
r^{2}+2 r+1=0
$$

We have repeated roots

$$
r_{1}=r_{2}=-1,
$$

and the general solution is

$$
y(t)=c_{1} e^{-t}+c_{2} t e^{-t}
$$

Taking derivative, we have

$$
y^{\prime}(t)=-c_{1} e^{-t}+c_{2} e^{-t}-c_{2} t e^{-t} .
$$

The initial condition implies

$$
c_{1}=5, \quad-c_{1}+c_{2}=-3,
$$

so it follows that

$$
c_{1}=5, \quad c_{2}=2 .
$$

7. Compute the Wronskian $W\left(y_{1}, y_{2}\right)(t)$ for $t>0$ where

$$
y_{1}(t)=t \ln t, \quad y_{2}(t)=t^{2} .
$$

A. $t^{2}(\ln t+1)$
B. $t^{2}(\ln t-1)$
C. $t^{2} \ln t$
D. $t \ln t+t^{2}$
E. 0
F. none of the above

B

$$
\begin{aligned}
W\left(y_{1}, y_{2}\right)(t) & =\left|\begin{array}{cc}
t \ln t & t^{2} \\
\ln t+1 & 2 t
\end{array}\right| \\
& =2 t^{2} \ln t-t^{2}(\ln t+1) \\
& =t^{2}(\ln t-1)
\end{aligned}
$$

8. Consider the differential equation

$$
\begin{equation*}
3 y^{\prime \prime}+y^{\prime}-2 y=2 \cos t \tag{3}
\end{equation*}
$$

Which of the following is the general solution of (3)?
A. $c_{1} e^{\frac{2}{3} t}+c_{2} e^{-t}-\frac{5}{13} \cos t+\frac{1}{13} \sin t$
B. $c_{1} e^{\frac{2}{3} t}+c_{2} e^{-t}-\frac{5}{13} \cosh t+\frac{1}{13} \sinh t$
C. $c_{1} e^{\frac{2}{3} t}+c_{2} e^{t}+\frac{5}{26} e^{i t}+\frac{1}{26} e^{-i t}$
D. $c_{1} e^{\frac{2}{3} t}+c_{2} e^{t}-\frac{5}{13} \cos t+\frac{1}{13} \sin t$
E. $c_{1} e^{\frac{2}{3} t}+c_{2} e^{t}-\frac{5}{13} e^{t}+\frac{1}{13} e^{-t}$
F. none of the above

A

The general solution of the corresponding homogeneous equation is

$$
y_{c}(t)=c_{1} e^{\frac{2}{3} t}+c_{2} e^{-t} .
$$

To find a particular solution, we try

$$
Y(t)=A \cos t+B \sin t .
$$

Substituting into the original equation, we obtain

$$
\begin{aligned}
& 3(-A \cos t-B \sin t)+(-A \sin t+B \cos t)-2(A \cos t+B \sin t)=2 \cos t \\
& (-5 A+B) \cos t+(-A-5 B) \sin t=2 \cos t
\end{aligned}
$$

Thus, we have

$$
-5 A+B=2 \quad-A-5 B=0
$$

and

$$
A=-\frac{5}{13}, \quad B=\frac{1}{13} .
$$

9. Consider the differential equation

$$
\begin{equation*}
t^{2} y^{\prime \prime}-t(t+2) y^{\prime}+(t+2) y=0, \quad t>0 \tag{4}
\end{equation*}
$$

The function $y_{1}(t)=t$ is a solution of (4). Choose the function y_{2} such that y_{1} and y_{2} form a fundamental set of solutions to (4).
A. $y_{2}(t)=t^{2}$
B. $y_{2}(t)=e^{t}$
C. $y_{2}(t)=t e^{t}$
D. $y_{2}(t)=t^{2} e^{t}$
E. $y_{2}(t)=\ln t$
F. none of the above

C
To obtain the general solution, we try

$$
y(t)=t v(t)
$$

Substituting into the original equation, we obtain

$$
v^{\prime \prime}-v^{\prime}=0 .
$$

Writing $w=v^{\prime}$, we obtain

$$
w^{\prime}-w=0,
$$

which means $v^{\prime}=w=c_{2} e^{t}$, and so it follows that

$$
v(t)=c_{2} e^{t}+c_{1},
$$

and

$$
y(t)=t v(t)=c_{2} t e^{t}+c_{1} t .
$$

10. Consider the differential equation

$$
\begin{equation*}
y^{\prime \prime \prime}+y^{\prime \prime}=3 e^{t}+4 t^{2} \tag{5}
\end{equation*}
$$

Which of the following is NOT a solution of (5)?
A. $\frac{3}{2} e^{t}+4 t^{2}-\frac{4}{3} t^{3}+\frac{1}{3} t^{4}$
B. $\frac{3}{2} e^{t}+1+4 t^{2}-\frac{4}{3} t^{3}+\frac{1}{3} t^{4}$
C. $\frac{3}{2} e^{t}+1+t+4 t^{2}-\frac{4}{3} t^{3}+\frac{1}{3} t^{4}$
D. $\frac{3}{2} e^{t}+2015 t+4 t^{2}-\frac{4}{3} t^{3}+\frac{1}{3} t^{4}$
E. $2 \cosh t+1+t+4 t^{2}-\frac{4}{3} t^{3}+\frac{1}{3} t^{4}$
F. all of the above are solutions of (5)

E
From the format of the problem, we know that at most one of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E , is not a solution of the equation.

The characterisitic equation of the corresponding homogeneous equation is

$$
r^{3}+r^{2}=r^{2}(r+1)=0,
$$

so the general solution of the corresponding homogeneous equation is

$$
y_{c}(t)=c_{1} e^{-t}+c_{2}+c_{3} t .
$$

Examing the solution, we see that A, B, C and D differ by a solution of the corresponding homogeneous equation. So if only one of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E is not a a solution of (5), then it must be E.

The following is not strictly necessary.

To verify that

$$
y(t)=\frac{3}{2} e^{t}+4 t^{2}-\frac{4}{3} t^{3}+\frac{1}{3} t^{4}
$$

is a solution of (5), we use the undetermined coefficients and try

$$
Y(t)=a e^{t}+b t^{2}+c t^{3}+d t^{4} .
$$

Substituting it back into (5) and solve for a, b, c and d, we obtain

$$
a=\frac{3}{2}, \quad b=4, \quad c=-\frac{4}{3}, \quad d=\frac{1}{3} .
$$

Part II. True/False $\quad 5 \times 2=10$ points
Choose ' A ' if the statement is true; choose ' B ' if the statement is false.
11. For a second order linear homogeneous ordinary differential equation with constant coefficients, if the characteristic equation has no real roots, then we cannot solve the equation.
12. Let p and q be continuous functions, and let y_{1} and y_{2} be solutions of the differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 .
$$

If $W\left(y_{1}, y_{2}\right)(0) \neq 0$, then $W\left(y_{1}, y_{2}\right)(t) \neq 0$ for all t.
13. The functions $y_{1}, y_{2}, \ldots, y_{n}$ are linearly independent, if and only if

$$
W\left(y_{1}, y_{2}, \ldots, y_{n}\right)\left(t_{0}\right) \neq 0
$$

for some t_{0}.
14. The quasi-frenquency of the dampened spring is always smaller than the natural frequency.
15. There are continuous functions p and q such that

$$
y_{1}(t)=t \ln t, \quad y_{2}(t)=t^{2}
$$

form a fundamental set of solutions of the second order homogeneous differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0, \quad t>0 .
$$

Hint: You may use your result in 7.

B A B A B

13. This is only true if $y_{1}, y_{2}, \ldots, y_{n}$ are solutions of the homogeneous equation

$$
y^{(n)}+p_{1}(t) y^{(n-1)}+\ldots+p_{n-1}(t) y^{\prime}+p_{n}(t) y=0 .
$$

See Theorem 4.1.2 in Boyce-DiPrima.
15. If y_{1} and y_{2} form a fundamental set of solutions for the given equation, then by Abel's theorem, the Wronskian $W\left(y_{1}, y_{2}\right)$ is either always zero or never zero for $t>0$. This is not the case, since from 7, we know

$$
W\left(y_{1}, y_{2}\right)(t)=t^{2}(\ln t-1)
$$

Math 217 Exam $1 \quad$ Sept 17, 2015
Part III will be collected separately. Please write down your name and your student number. Student No.

Name:

For graders:
16.
17.

18
19.

Total:

Part III. Hand-graded problems $10+10+20=40$ points
16. $(5+5=10$ points $)$

Let m, γ and k be positive constant. Find the general solution of equation

$$
m u^{\prime \prime}(t)+\gamma u^{\prime}(t)+k u(t)=0
$$

in each of the two cases below:
(a) $\gamma^{2}-4 k m<0$
(b) $\gamma^{2}-4 k m>0$

The characteristic equation is

$$
m r^{2}+\gamma r+k=0
$$

The roots are

$$
r=\frac{-\gamma \pm \sqrt{\gamma^{2}-4 k m}}{2 m}
$$

If $\gamma^{2}-4 k m<0$, then the roots are

$$
r=-\frac{\gamma}{2 m} \pm i \frac{\sqrt{4 k m-\gamma^{2}}}{2 m}=-\frac{\gamma}{2 m} \pm i \mu
$$

where $\mu=\frac{\sqrt{4 k m-\gamma^{2}}}{2 m}$. The general solution is

$$
y(t)=e^{-\frac{\gamma t}{2 m}}(A \cos (\mu t)+B \sin (\mu t)) .
$$

If $\gamma^{2}-4 k m>0$, then the roots are

$$
r_{1}=\frac{-\gamma+\sqrt{\gamma^{2}-4 k m}}{2 m}, \quad r_{1}=\frac{-\gamma-\sqrt{\gamma^{2}-4 k m}}{2 m} .
$$

The general solution is

$$
y(t)=A e^{r_{1} t}+B e^{r_{2} t} .
$$

17. (10 points)

Find the general solution of the equation

$$
\begin{equation*}
t^{2} y^{\prime \prime}+2 t y^{\prime}-12 y=0, \quad t>0 \tag{6}
\end{equation*}
$$

We make the substituion $x=\ln t$.

- The following is not strictly necessary

Then we have

$$
\begin{aligned}
& \frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}=\frac{1}{t} \frac{d y}{d x} \\
& \frac{d^{2} y}{d t^{2}}=\frac{d \frac{d y}{d t}}{d x} \frac{d x}{d t}=\left(\frac{1}{t} \frac{d^{2} y}{d x^{2}}-\frac{1}{t^{2}} \frac{d t}{d x} \frac{d y}{d x}\right) \frac{1}{t}=\frac{1}{t^{2}} \frac{d^{2} y}{d x^{2}}-\frac{1}{t^{2}} \frac{d y}{d x}
\end{aligned}
$$

——The above is not strictly necessary
It follows that

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-12 y=0 \tag{7}
\end{equation*}
$$

The characteristic equation $r^{2}+r-12=0$ has roots

$$
r_{1}=3, \quad r_{2}=-4
$$

Thus, the general solution of (7) is

$$
y(x)=c_{1} e^{3 x}+c_{2} e^{-4 x}
$$

Hence, the general solution of (6) is

$$
y(t)=c_{1} t^{3}+c_{2} t^{-4}
$$

18. (10 points)

Find the general solution of the equation

$$
y^{(3)}+y^{\prime}-10 y=0
$$

The characeteristic equation is

$$
r^{3}+r-10=0
$$

The possible rational roots are $\pm 1, \pm 2, \pm 5, \pm 10$. Indeed, 2 is a root. Thus, we have

$$
r^{3}+r-10=(r-2)\left(r^{2}+2 r+5\right)=0
$$

The roots are

$$
r_{1}=2, \quad r_{2}=-1+2 i, \quad r_{2}=-1-2 i
$$

Hence, the general solution is

$$
y(t)=c_{1} e^{2 t}+e^{-t}\left(c_{2} \cos 2 t+c_{3} \sin 2 t\right)
$$

19. (10 points)

Find the general solution of the equation

$$
y^{\prime \prime}+y=\tan t
$$

For the corresponding homogeneous equation $y^{\prime \prime}+y=0$,

$$
y_{1}(t)=\cos t, \quad y_{2}(t)=\sin t
$$

form a fundamental set of solutions. Indeed, we have

$$
W\left(y_{1}, y_{2}\right)(t)=\left|\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right|=1 \neq 0
$$

We use the variation of parameters:

$$
y(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)
$$

Computing u_{1} and u_{2}, we obtain

$$
\begin{aligned}
u_{1}(t) & =-\int \sin t \tan t d t \\
& =\int \cos t-\sec t d t \\
& =\sin t-\ln |\sec t+\tan t|+c_{1}
\end{aligned}
$$

and

$$
\begin{aligned}
u_{2}(t) & =\int \cos t \tan t d t \\
& =\int \sin t d t \\
& =-\cos t+c_{2}
\end{aligned}
$$

Hence, the general solution is

$$
\begin{aligned}
y(t) & =\left(\sin t-\ln |\sec t+\tan t|+c_{1}\right) \cos t+\left(-\cos t+c_{2}\right) \sin t \\
& =c_{1} \cos t+c_{2} \sin t-(\cos t) \ln |\sec t+\tan t|
\end{aligned}
$$

