Math 217 Exam 3 Nov 17, 2015

Instructions:

1.

There are three parts in this exam. Part I is multiple choice, Part II is True/False, and Part
IIT consists of hand-graded problems.

2. The total number of points is 100.

3. You may use a calculator.

4. The scantron and Part III will be collected at the end of the exam. You may take Part I and

Part II with you at the end of the exam.

Here are some Taylor series that might be useful:
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Part I. Multiple Choices 5 x 10 = 50 points

1. Consider power series
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From the power series below, choose the one that is different from the above.
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F. none of the above



2. For initial value problem:
(= 1)y + (z+ 1)y — 26932_13/ =0, y(0) =0,
if y =>"7° jana™ is the power series solution about 0, then we have...

A.aqg=0and a1 = -2
B.ag=—-2and a; =0
C.aU:Oandalz—%
D.aozf%andalzo
E.ap=—-2and a1 = -2

F. none of the above



3. For differential equation:
(2 = 1)y + (z+ 1)y — 262’2_13/ =0, (1)

ify =372, a,x™ is the general power series solution about 0, then without calculating it explicitly,
what is the lower bound of the radius of convergence?
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4. If we write cos[In(1 + x)] as a power series about 0, that is,

cos[In(1+ )] = Z anx”,
n=0

then what is the value of a4?
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5. Which one of the following functions is NOT a solution of the differential equation

4z — 8xy' + 9y = 0, x # 0. (2)
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y(z) = [e—ln(|az| )] a3

F. all of the above are solutions of (2)



6.

For the intial value problem:

2x2y” — bxy’ + 5y =0,

find z¢ where y/(z9) = 0.
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Find the solution for the intial value problem:

2y’ —zy +2y=0,  y(1)

Lx+1
. zcos(lnx)
.z cos(Inx) + zsin(ln x)

.zcos(lnz) — rsin(lnz)

x1+i

. none of the above



8. For the differential equation

3
(1= cosz) -y + (e = 1)/ + 5y =0,

0 is a regular singular point. Find the indicial equation about 0.

A. r2—r+%:0
B.724+2r—3=0
C.r24r—-3=0
D.r2—4r+4=0
E.r2-3r+2=0
F

. none of the above
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. Consider the power series
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10. Consider the differential equation

22y + (6 + :cz)y/ +ay =0, (5)

for which 0 is regular singular point. To solve (5) by power series, we should begin by finding
the coefficients of a Frobenius series. Of the Frobenius series below, which one is the correct trial

solution?
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F. none of the above
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Part II. True/False 5 x 2 =10 points
Choose ’A’ if the statement is true; choose B’ if the statement is false.

11. For a second order linear homogeneous ordinary differential equation with constant coeffi-
cients, there is no singular points.

12. For two convergent power series

o oo
Y1 = g anx", Yo = E bpx",
n=0 n=0

the Wronskian W (y1,y2) is never zero.

13. For a second order linear homogeneous ordinary differential equation, we can always find
two linearly independent power series solutions about an ordinary point.

14. If xg is a regular singular point of the differential equation
y" +p(x)y +q(z)y = 0,

and the indicial equation has real roots, then the equation has at least one Frobenius series solution
about xg.

15. For the power series
oo
D> ana",
n=0

if the radius of convergence is p and |z1| > p, then the series

Z an(z1)"
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does not converge.
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Part IIT will be collected separately. Please write your NAME and your STUDENT NUMBER.
Student Number:

Name:

For graders:

16.

17.

18

19.

Total:

Here are some Taylor series that might be useful:
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Part III. Hand-graded problems 10 4+ 10 + 20 = 40 points

16. (10 points)
For the initial value problem:

v =y +y, y0)=0, y(0)=1,

where {f,}22, is the Fibonacci numbers defined by fo =0, fi =1, fuy2 = fuy1 + fn for n > 0.
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17. (10 points)
The Hermite function

Ho(w) = (—1)me” L (e*ﬁ)

dx™
is a polynomial of degree n. Compute Hy explicitly.

Hint: It is difficult to expend e® as a power series and to calculate it term by term. Try
something else.
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18. (5 + 5 + 5 + 5 = 20 points)
For the differential equation

222" + 3ay’ — (22 + 1)y =0,

the point 0 is a regular singular point.

(a) Show that the roots of the indicial equation are r; =

18

1

2

and ro = —1.



(b) Consider the Frobenius series solution

(e,
y(x) = |z|” Z anx".
n=0

Show that the recurrence relation is

an—2

2n+r)24+(n+r) -1

Ay =

and agpy1 = 0.
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(c) For r; = %, compute the Frobenius solution y; up to ]x\%xﬁ.
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(d) For 73 = —1, compute the Frobenius solution 3, up to |z|~!a5.
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