Instructions:

1. There are three parts in this exam. Part I is multiple choice, Part II is True/False, and Part III consists of hand-graded problems.
2. The total number of points is 100 .
3. You may use a calculator.
4. The scantron and Part III will be collected at the end of the exam. You may take Part I and Part II with you at the end of the exam.

Here are some Taylor series that might be useful:

$$
\begin{aligned}
& e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\ldots \\
& \cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\ldots \\
& \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots \\
& \cosh x=\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}=1+\frac{x^{2}}{2}+\frac{x^{4}}{4!}+\ldots \\
& \sinh x=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots \\
& \ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots \\
& \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\ldots
\end{aligned}
$$

Part I. Multiple Choices

$$
5 \times 10=50 \text { points }
$$

1. Consider power series

$$
\sum_{n=0}^{\infty} \frac{n(n-1)}{2} x^{n} .
$$

From the power series below, choose the one that is different from the above.
A.

$$
\sum_{n=1}^{\infty} \frac{n(n-1)}{2} x^{n}
$$

B.

$$
\sum_{n=2}^{\infty} \frac{n(n-1)}{2} x^{n}
$$

C.

$$
\frac{1}{2} \sum_{n=0}^{\infty}(n-1)^{2} x^{n}+\frac{1}{2} \sum_{n=1}^{\infty}(n-1) x^{n}
$$

D.

$$
\frac{1}{2} \sum_{n=0}^{\infty} n^{2} x^{n+1}+\frac{1}{2} \sum_{n=1}^{\infty}(n-1) x^{n}
$$

E.

$$
\frac{1}{2} \sum_{n=0}^{\infty}(n+2)^{2} x^{n+2}-\frac{1}{2} \sum_{n=1}^{\infty}(n+1) x^{n+1}
$$

F. none of the above
2. For initial value problem:

$$
\left(x^{2}-1\right) y^{\prime \prime}+(x+1) y^{\prime}-2 e^{x^{2}-1} y=0, \quad y(0)=0, \quad y^{\prime}(0)=-2,
$$

if $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ is the power series solution about 0 , then we have...
A. $a_{0}=0$ and $a_{1}=-2$
B. $a_{0}=-2$ and $a_{1}=0$
C. $a_{0}=0$ and $a_{1}=-\frac{1}{2}$
D. $a_{0}=-\frac{1}{2}$ and $a_{1}=0$
E. $a_{0}=-2$ and $a_{1}=-2$
F. none of the above
3. For differential equation:

$$
\begin{equation*}
\left(x^{2}-1\right) y^{\prime \prime}+(x+1) y^{\prime}-2 e^{x^{2}-1} y=0, \tag{1}
\end{equation*}
$$

if $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ is the general power series solution about 0 , then without calculating it explicitly, what is the lower bound of the radius of convergence?
A. 0
B. 1
C. $\frac{\pi}{2}$
D. 2π
E. ∞
F. none of the above
4. If we write $\cos [\ln (1+x)]$ as a power series about 0 , that is,

$$
\cos [\ln (1+x)]=\sum_{n=0}^{\infty} a_{n} x^{n},
$$

then what is the value of a_{4} ?
A. 0
B. $-\frac{1}{3}$
C. $-\frac{1}{8}$
D. $\frac{1}{24}$
E. $-\frac{5}{12}$
F. none of the above
5. Which one of the following functions is NOT a solution of the differential equation

$$
\begin{equation*}
4 x^{2} y^{\prime \prime}-8 x y^{\prime}+9 y=0, \quad x \neq 0 . \tag{2}
\end{equation*}
$$

A. $y(x)=e^{\frac{3}{2} \ln |x|}$
B. $y(x)=|x|^{\frac{3}{2}} \ln |x|$
C. $y(x)=e^{1+\frac{3}{2} \ln |x|+\ln (\ln |x|)}$
D. $y(x)=\ln \left(\frac{3}{2}|x|\right) \cdot|x|^{\frac{3}{2}}$
E. $y(x)=\left[e-\ln \left(|x|^{\frac{3}{2}}\right)\right] \cdot|x|^{\frac{3}{2}}$
F. all of the above are solutions of (2)
6. For the intial value problem:

$$
2 x^{2} y^{\prime \prime}-5 x y^{\prime}+5 y=0, \quad y(1)=0, \quad y^{\prime}(1)=\frac{3}{2},
$$

find x_{0} where $y^{\prime}\left(x_{0}\right)=0$.
A. 1
B. $\left(\frac{4}{25}\right)^{\frac{1}{3}}$
C. $\frac{5}{2}$
D. $\frac{3}{2}$
E. $\ln 5-\ln 2$
F. none of the above
7. Find the solution for the intial value problem:

$$
x^{2} y^{\prime \prime}-x y^{\prime}+2 y=0, \quad y(1)=1, \quad y^{\prime}(1)=1 .
$$

A. $x+1$
B. $x \cos (\ln x)$
C. $x \cos (\ln x)+x \sin (\ln x)$
D. $x \cos (\ln x)-x \sin (\ln x)$
E. x^{1+i}
F. none of the above
8. For the differential equation

$$
\begin{equation*}
(1-\cos x) \cdot y^{\prime \prime}+\left(e^{x}-1\right) \cdot y^{\prime}+\frac{3}{2} y=0 \tag{3}
\end{equation*}
$$

0 is a regular singular point. Find the indicial equation about 0 .
A. $r^{2}-r+\frac{3}{2}=0$
B. $r^{2}+2 r-3=0$
C. $r^{2}+r-3=0$
D. $r^{2}-4 r+4=0$
E. $r^{2}-3 r+2=0$
F. none of the above
9. Consider the power series

$$
\begin{align*}
& y_{1}(x)=\sum_{n=0}^{\infty} \frac{a_{n}}{n!} x^{n}, \\
& y_{2}(x)=\sum_{n=0}^{\infty} \frac{b_{n}}{n!} x^{n} . \tag{4}
\end{align*}
$$

What is the Wronskian at 0 ? That is, what is $W\left(y_{1}, y_{2}\right)(0)$?
A. $a_{0} b_{1}-a_{1} b_{0}$
B. $a_{1} b_{0}-a_{0} b_{1}$
C. $\frac{a_{0} b_{0}}{2}-\frac{a_{1} b_{1}}{2}$
D. $\frac{a_{0} b_{0}}{2}-\frac{a_{1} b_{1}}{2}$
E. $\sum_{n=0}^{\infty} a_{n} b_{n+1}-a_{n+1} b_{n}$
F. none of the above
10. Consider the differential equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}+\left(6 x+x^{2}\right) y^{\prime}+x y=0, \tag{5}
\end{equation*}
$$

for which 0 is regular singular point. To solve (5) by power series, we should begin by finding the coefficients of a Frobenius series. Of the Frobenius series below, which one is the correct trial solution?
A.

$$
\sum_{n=1}^{\infty} a_{n} x^{n}
$$

B.

$$
1+\sum_{n=1}^{\infty} a_{n} x^{n}
$$

C.

$$
\sum_{n=1}^{\infty} a_{n} x^{n-5}
$$

D.

$$
|x|^{-5}\left(1+\sum_{n=1}^{\infty} a_{n} x^{n}\right)
$$

E.

$$
|x|^{-5} \ln |x|\left(1+\sum_{n=1}^{\infty} a_{n} x^{n}\right)
$$

F. none of the above

Part II. True/False $\quad 5 \times 2=10$ points
Choose ' A ' if the statement is true; choose ' B ' if the statement is false.
11. For a second order linear homogeneous ordinary differential equation with constant coefficients, there is no singular points.
12. For two convergent power series

$$
y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n}, \quad y_{2}=\sum_{n=0}^{\infty} b_{n} x^{n},
$$

the Wronskian $W\left(y_{1}, y_{2}\right)$ is never zero.
13. For a second order linear homogeneous ordinary differential equation, we can always find two linearly independent power series solutions about an ordinary point.
14. If x_{0} is a regular singular point of the differential equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0,
$$

and the indicial equation has real roots, then the equation has at least one Frobenius series solution about x_{0}.
15. For the power series

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

if the radius of convergence is ρ and $\left|x_{1}\right|>\rho$, then the series

$$
\sum_{n=0}^{\infty} a_{n}\left(x_{1}\right)^{n}
$$

does not converge.

Part III will be collected separately. Please write your NAME and your STUDENT NUMBER. Student Number:

Name:

For graders:
16.
17.

18
19.

Total:

Here are some Taylor series that might be useful:

$$
\begin{aligned}
& e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\ldots \\
& \cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\ldots \\
& \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots \\
& \cosh x=\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}=1+\frac{x^{2}}{2}+\frac{x^{4}}{4!}+\ldots \\
& \sinh x=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots \\
& \ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots \\
& \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\ldots
\end{aligned}
$$

Part III. Hand-graded problems $\quad 10+10+20=40$ points
16. (10 points)

For the initial value problem:

$$
y^{\prime \prime}=y^{\prime}+y, \quad y(0)=0, \quad y^{\prime}(0)=1
$$

the point 0 is an ordianary point. Show that the power series solution about 0 is given by

$$
y=\sum_{n=0}^{\infty} \frac{f_{n}}{n!} x^{n}
$$

where $\left\{f_{n}\right\}_{n=0}^{\infty}$ is the Fibonacci numbers defined by $f_{0}=0, f_{1}=1, f_{n+2}=f_{n+1}+f_{n}$ for $n \geq 0$.

This page is intentionally left blank.
17. (10 points)

The Hermite function

$$
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}}\left(e^{-x^{2}}\right)
$$

is a polynomial of degree n . Compute H_{4} explicitly.
Hint: It is difficult to expend e^{x} as a power series and to calculate it term by term. Try something else.

This page is intentionally left blank.
18. $(5+5+5+5=20$ points $)$

For the differential equation

$$
\begin{equation*}
2 x^{2} y^{\prime \prime}+3 x y^{\prime}-\left(x^{2}+1\right) y=0 \tag{6}
\end{equation*}
$$

the point 0 is a regular singular point.
(a) Show that the roots of the indicial equation are $r_{1}=\frac{1}{2}$ and $r_{2}=-1$.
(b) Consider the Frobenius series solution

$$
y(x)=|x|^{r} \sum_{n=0}^{\infty} a_{n} x^{n} .
$$

Show that the recurrence relation is

$$
a_{n}=\frac{a_{n-2}}{2(n+r)^{2}+(n+r)-1}, \quad n \geq 2,
$$

and $a_{2 n+1}=0$.

This page is intentionally left blank.
(c) For $r_{1}=\frac{1}{2}$, compute the Frobenius solution y_{1} up to $|x|^{\frac{1}{2}} x^{6}$.
(d) For $r_{2}=-1$, compute the Frobenius solution y_{2} up to $|x|^{-1} x^{6}$.

This page is intentionally left blank.

This page is intentionally left blank.

