Math 217 Exam 3 Nov 17, 2015

Instructions:

- 1. There are three parts in this exam. Part I is multiple choice, Part II is True/False, and Part III consists of hand-graded problems.
- 2. The total number of points is 100.
- 3. You may use a calculator.
- 4. The scantron and Part III will be collected at the end of the exam. You may take Part I and Part II with you at the end of the exam.

Here are some Taylor series that might be useful:

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{3!} + \dots$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n}}{(2n)!} = 1 - \frac{x^{2}}{2} + \frac{x^{4}}{4!} - \dots$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{(2n+1)!} = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots$$

$$\cosh x = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} = 1 + \frac{x^{2}}{2} + \frac{x^{4}}{4!} + \dots$$

$$\sinh x = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} = x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots$$

$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{n} = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \dots$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^{n} = 1 + x + x^{2} + x^{3} + \dots$$

.

Part I. Multiple Choices $5 \times 10 = 50$ points

1. Consider power series

$$\sum_{n=0}^{\infty} \frac{n(n-1)}{2} x^n.$$

From the power series below, choose the one that is different from the above.

A.
$$\sum_{n=1}^{\infty} \frac{n(n-1)}{2} x^n$$

В.

$$\sum_{n=2}^{\infty} \frac{n(n-1)}{2} x^n$$

С.

$$\frac{1}{2}\sum_{n=0}^{\infty}(n-1)^2x^n + \frac{1}{2}\sum_{n=1}^{\infty}(n-1)x^n$$

D. $\frac{1}{2}\sum_{n=0}^{\infty}n^2x^{n+1} + \frac{1}{2}\sum_{n=1}^{\infty}(n-1)x^n$

Е.

$$\frac{1}{2}\sum_{n=0}^{\infty}(n+2)^2x^{n+2} - \frac{1}{2}\sum_{n=1}^{\infty}(n+1)x^{n+1}$$

F. none of the above

2. For initial value problem:

$$(x^{2} - 1)y'' + (x + 1)y' - 2e^{x^{2} - 1}y = 0, \qquad y(0) = 0, \quad y'(0) = -2,$$

if $y = \sum_{n=0}^{\infty} a_n x^n$ is the power series solution about 0, then we have...

A. $a_0 = 0$ and $a_1 = -2$ B. $a_0 = -2$ and $a_1 = 0$ C. $a_0 = 0$ and $a_1 = -\frac{1}{2}$ D. $a_0 = -\frac{1}{2}$ and $a_1 = 0$ E. $a_0 = -2$ and $a_1 = -2$ F. none of the above

3. For differential equation:

$$(x^{2}-1)y'' + (x+1)y' - 2e^{x^{2}-1}y = 0,$$
(1)

if $y = \sum_{n=0}^{\infty} a_n x^n$ is the general power series solution about 0, then without calculating it explicitly, what is the lower bound of the radius of convergence?

A. 0

- B. 1
- C. $\frac{\pi}{2}$
- D. 2π
- E. ∞
- F. none of the above

4. If we write $\cos[\ln(1+x)]$ as a power series about 0, that is,

$$\cos[\ln(1+x)] = \sum_{n=0}^{\infty} a_n x^n,$$

then what is the value of a_4 ?

A. 0
B.
$$-\frac{1}{3}$$

C. $-\frac{1}{8}$
D. $\frac{1}{24}$
E. $-\frac{5}{12}$
F. none of the above

5. Which one of the following functions is NOT a solution of the differential equation

$$4x^2y'' - 8xy' + 9y = 0, \qquad x \neq 0.$$
⁽²⁾

A. $y(x) = e^{\frac{3}{2} \ln |x|}$ B. $y(x) = |x|^{\frac{3}{2}} \ln |x|$ C. $y(x) = e^{1+\frac{3}{2} \ln |x| + \ln(\ln |x|)}$ D. $y(x) = \ln(\frac{3}{2}|x|) \cdot |x|^{\frac{3}{2}}$ E. $y(x) = \left[e - \ln(|x|^{\frac{3}{2}})\right] \cdot |x|^{\frac{3}{2}}$ F. all of the above are solutions of (2) 6. For the initial value problem:

$$2x^{2}y'' - 5xy' + 5y = 0, \qquad y(1) = 0, \quad y'(1) = \frac{3}{2},$$

find x_0 where $y'(x_0) = 0$.

- A. 1 B. $\left(\frac{4}{25}\right)^{\frac{1}{3}}$ C. $\frac{5}{2}$ D. $\frac{3}{2}$ E. $\ln 5 - \ln 2$
- F. none of the above

7. Find the solution for the initial value problem:

$$x^{2}y'' - xy' + 2y = 0,$$
 $y(1) = 1,$ $y'(1) = 1.$

A. x + 1B. $x \cos(\ln x)$ C. $x \cos(\ln x) + x \sin(\ln x)$ D. $x \cos(\ln x) - x \sin(\ln x)$ E. x^{1+i} F. none of the above 8. For the differential equation

$$(1 - \cos x) \cdot y'' + (e^x - 1) \cdot y' + \frac{3}{2}y = 0,$$
(3)

0 is a regular singular point. Find the indicial equation about 0.

A. $r^2 - r + \frac{3}{2} = 0$ B. $r^2 + 2r - 3 = 0$ C. $r^2 + r - 3 = 0$ D. $r^2 - 4r + 4 = 0$ E. $r^2 - 3r + 2 = 0$ F. none of the above 9. Consider the power series

$$y_1(x) = \sum_{n=0}^{\infty} \frac{a_n}{n!} x^n,$$

$$y_2(x) = \sum_{n=0}^{\infty} \frac{b_n}{n!} x^n.$$
(4)

What is the Wronskian at 0? That is, what is $W(y_1, y_2)(0)$?

A.
$$a_0b_1 - a_1b_0$$

B. $a_1b_0 - a_0b_1$
C. $\frac{a_0b_0}{2} - \frac{a_1b_1}{2}$
D. $\frac{a_0b_0}{2} - \frac{a_1b_1}{2}$
E. $\sum_{n=0}^{\infty} a_nb_{n+1} - a_{n+1}b_n$
F. none of the above

10. Consider the differential equation

$$x^{2}y'' + (6x + x^{2})y' + xy = 0, (5)$$

for which 0 is regular singular point. To solve (5) by power series, we should begin by finding the coefficients of a Frobenius series. Of the Frobenius series below, which one is the correct trial solution?

A.

$$\sum_{n=1}^{\infty} a_n x^n$$
B.

$$1 + \sum_{n=1}^{\infty} a_n x^n$$
C.

$$\sum_{n=1}^{\infty} a_n x^{n-5}$$
D.

$$|x|^{-5} \left(1 + \sum_{n=1}^{\infty} a_n x^n\right)$$
E.

$$|x|^{-5} \ln |x| \left(1 + \sum_{n=1}^{\infty} a_n x^n\right)$$

F. none of the above

Part II. True/False $5 \times 2 = 10$ points

Choose 'A' if the statement is true; choose 'B' if the statement is false.

11. For a second order linear homogeneous ordinary differential equation with constant coefficients, there is no singular points.

12. For two convergent power series

$$y_1 = \sum_{n=0}^{\infty} a_n x^n, \qquad y_2 = \sum_{n=0}^{\infty} b_n x^n,$$

the Wronskian $W(y_1, y_2)$ is never zero.

13. For a second order linear homogeneous ordinary differential equation, we can always find two linearly independent power series solutions about an ordinary point.

14. If x_0 is a regular singular point of the differential equation

$$y'' + p(x)y' + q(x)y = 0,$$

and the indicial equation has real roots, then the equation has at least one Frobenius series solution about x_0 .

15. For the power series

$$\sum_{n=0}^{\infty} a_n x^n,$$

if the radius of convergence is ρ and $|x_1| > \rho$, then the series

$$\sum_{n=0}^{\infty} a_n (x_1)^n$$

does not converge.

Math 217 Exam 3 Nov 17, 2015

Part III will be collected separately. Please write your NAME and your STUDENT NUMBER. Student Number:

Name:

For graders:	
16.	
17.	
18	

19.

Total:

Here are some Taylor series that might be useful:

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{3!} + \dots$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n}}{(2n)!} = 1 - \frac{x^{2}}{2} + \frac{x^{4}}{4!} - \dots$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{(2n+1)!} = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots$$

$$\cosh x = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} = 1 + \frac{x^{2}}{2} + \frac{x^{4}}{4!} + \dots$$

$$\sinh x = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} = x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots$$

$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{n} = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \dots$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^{n} = 1 + x + x^{2} + x^{3} + \dots$$

Part III. Hand-graded problems 10 + 10 + 20 = 40 points

16. (10 points) For the initial value problem:

$$y'' = y' + y,$$
 $y(0) = 0,$ $y'(0) = 1,$

the point 0 is an ordianary point. Show that the power series solution about 0 is given by

$$y = \sum_{n=0}^{\infty} \frac{f_n}{n!} x^n,$$

where ${f_n}_{n=0}^{\infty}$ is the Fibonacci numbers defined by $f_0 = 0$, $f_1 = 1$, $f_{n+2} = f_{n+1} + f_n$ for $n \ge 0$.

17. (10 points) The Hermite function

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} \left(e^{-x^2}\right)$$

is a polynomial of degree n. Compute H_4 explicitly.

Hint: It is difficult to expend e^x as a power series and to calculate it term by term. Try something else.

18. (5 + 5 + 5 + 5 = 20 points)For the differential equation

$$2x^2y'' + 3xy' - (x^2 + 1)y = 0, (6)$$

the point 0 is a regular singular point.

(a) Show that the roots of the indicial equation are $r_1 = \frac{1}{2}$ and $r_2 = -1$.

(b) Consider the Frobenius series solution

$$y(x) = |x|^r \sum_{n=0}^{\infty} a_n x^n.$$

Show that the recurrence relation is

$$a_n = \frac{a_{n-2}}{2(n+r)^2 + (n+r) - 1}, \qquad n \ge 2,$$

and $a_{2n+1} = 0$.

(c) For $r_1 = \frac{1}{2}$, compute the Frobenius solution y_1 up to $|x|^{\frac{1}{2}}x^6$.

(d) For $r_2 = -1$, compute the Frobenius solution y_2 up to $|x|^{-1}x^6$.