Instructions:

1. There are three parts in this exam. Part I is multiple choice, Part II is True/False, and Part III consists of hand-graded problems.
2. The total number of points is 100 .
3. You may use a calculator.
4. The scantron and Part III will be collected at the end of the exam. You may take Part I and Part II with you at the end of the exam.

Here are some Taylor series that might be useful:

$$
\begin{aligned}
& e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\ldots \\
& \cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\ldots \\
& \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots \\
& \cosh x=\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}=1+\frac{x^{2}}{2}+\frac{x^{4}}{4!}+\ldots \\
& \sinh x=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots \\
& \ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots \\
& \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\ldots
\end{aligned}
$$

Part I. Multiple Choices

$$
5 \times 10=50 \text { points }
$$

1. Consider power series

$$
\sum_{n=0}^{\infty} \frac{n(n-1)}{2} x^{n} .
$$

From the power series below, choose the one that is different from the above.
A.

$$
\sum_{n=1}^{\infty} \frac{n(n-1)}{2} x^{n}
$$

B.

$$
\sum_{n=2}^{\infty} \frac{n(n-1)}{2} x^{n}
$$

C.

$$
\frac{1}{2} \sum_{n=0}^{\infty}(n-1)^{2} x^{n}+\frac{1}{2} \sum_{n=1}^{\infty}(n-1) x^{n}
$$

D.

$$
\frac{1}{2} \sum_{n=0}^{\infty} n^{2} x^{n+1}+\frac{1}{2} \sum_{n=1}^{\infty}(n-1) x^{n}
$$

E.

$$
\frac{1}{2} \sum_{n=0}^{\infty}(n+2)^{2} x^{n+2}-\frac{1}{2} \sum_{n=1}^{\infty}(n+1) x^{n+1}
$$

F. none of the above

C

The power series in C has an extra $\frac{1}{2}$ from the first sum.
Clearly, A and B are the same as the original sum. For C, D and E, we rewrite the original sum as follows:

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{n(n-1)}{2} x^{n} & =\sum_{n=0}^{\infty} \frac{(n-1)^{2}}{2} x^{n}+\sum_{n=0}^{\infty} \frac{n-1}{2} x^{n} \\
& =\sum_{n=0}^{\infty} \frac{n^{2}}{2} x^{n}-\sum_{n=0}^{\infty} \frac{n}{2} x^{n} .
\end{aligned}
$$

Now we may shift the indices to obtain the forms in C, D and E. It turns out that the first sum in C should begin with $n=1$, which means that the answer in C has an extra $\frac{1}{2}$.
2. For initial value problem:

$$
\left(x^{2}-1\right) y^{\prime \prime}+(x+1) y^{\prime}-2 e^{x^{2}-1} y=0, \quad y(0)=0, \quad y^{\prime}(0)=-2,
$$

if $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ is the power series solution about 0 , then we have...
A. $a_{0}=0$ and $a_{1}=-2$
B. $a_{0}=-2$ and $a_{1}=0$
C. $a_{0}=0$ and $a_{1}=-\frac{1}{2}$
D. $a_{0}=-\frac{1}{2}$ and $a_{1}=0$
E. $a_{0}=-2$ and $a_{1}=-2$
F. none of the above

A
If $y=\sum_{n=0}^{\infty} a_{n} x^{n}$, then

$$
y(0)=a_{0}=0
$$

and

$$
y^{\prime}(0)=a_{1}=-2 .
$$

3. For differential equation:

$$
\begin{equation*}
\left(x^{2}-1\right) y^{\prime \prime}+(x+1) y^{\prime}-2 e^{x^{2}-1} y=0, \tag{1}
\end{equation*}
$$

if $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ is the general power series solution about 0 , then without calculating it explicitly, what is the lower bound of the radius of convergence?
A. 0
B. 1
C. $\frac{\pi}{2}$
D. 2π
E. ∞
F. none of the above

B
Rewriting (1), we obtain

$$
y^{\prime \prime}+\frac{1}{x-1} y^{\prime}-\frac{2 e^{x^{2}-1}}{x^{2}-1} y=0,
$$

Since $\frac{1}{x-1}$ is analytic for $x<1$ and $\frac{2 e^{x^{2}-1}}{x^{2}-1}$ is analytic for $-1<x<1$, it follows that the general power series solution about 0 has radius of convergence at least 1 .
4. If we write $\cos [\ln (1+x)]$ as a power series about 0 , that is,

$$
\cos [\ln (1+x)]=\sum_{n=0}^{\infty} a_{n} x^{n},
$$

then what is the value of a_{4} ?
A. 0
B. $-\frac{1}{3}$
C. $-\frac{1}{8}$
D. $\frac{1}{24}$
E. $-\frac{5}{12}$
F. none of the above

E

$$
\begin{aligned}
\cos [\ln (1+x)] & =1-\frac{\ln ^{2}(1+x)}{2!}+\frac{\ln ^{4}(1+x)}{4!}-\ldots \\
& =1-\frac{1}{2}\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots\right)^{2}+\frac{1}{24}(x-\ldots)^{4}-\ldots \\
& =1+\ldots-\frac{1}{2}\left(-\frac{x^{2}}{2}\right)^{2}-\frac{1}{2} \cdot 2 x \cdot \frac{x^{3}}{3}+\frac{1}{24} x^{4}+\ldots \\
& =1+\ldots+\left(-\frac{1}{8}-\frac{1}{3}+\frac{1}{24}\right) x^{4}+\ldots \\
& =1+\ldots-\frac{5}{12} x^{4}+\ldots
\end{aligned}
$$

5. Which one of the following functions is NOT a solution of the differential equation

$$
\begin{equation*}
4 x^{2} y^{\prime \prime}-8 x y^{\prime}+9 y=0, \quad x \neq 0 . \tag{2}
\end{equation*}
$$

A. $y(x)=e^{\frac{3}{2} \ln |x|}$
B. $y(x)=|x|^{\frac{3}{2}} \ln |x|$
C. $y(x)=e^{1+\frac{3}{2} \ln |x|+\ln (\ln |x|)}$
D. $y(x)=\ln \left(\frac{3}{2}|x|\right) \cdot|x|^{\frac{3}{2}}$
E. $y(x)=\left[e-\ln \left(|x|^{\frac{3}{2}}\right)\right] \cdot|x|^{\frac{3}{2}}$
F. all of the above are solutions of (2)

F

The indicial equation of (2) is

$$
\begin{array}{r}
4 r(r-1)-8 r+9=0, \\
4 r^{2}-12 r+9=0 .
\end{array}
$$

We have repeated roots

$$
r_{1}=r_{2}=\frac{3}{2}
$$

Hence the general solution is

$$
y(x)=\left(c_{1}+c_{2} \ln |x|\right)|x|^{\frac{3}{2}} .
$$

Now you can verify that all of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E are solutions.
6. For the intial value problem:

$$
2 x^{2} y^{\prime \prime}-5 x y^{\prime}+5 y=0, \quad y(1)=0, \quad y^{\prime}(1)=\frac{3}{2},
$$

find x_{0} where $y^{\prime}\left(x_{0}\right)=0$.
A. 1
B. $\left(\frac{4}{25}\right)^{\frac{1}{3}}$
C. $\frac{5}{2}$
D. $\frac{3}{2}$
E. $\ln 5-\ln 2$
F. none of the above

B
The indicial equation of (2) is

$$
\begin{array}{r}
2 r(r-1)-5 r+5=0, \\
2 r^{2}-7 r+5=0 .
\end{array}
$$

We have the roots

$$
r_{1}=1, \quad r_{2}=\frac{5}{2},
$$

and the general solution

$$
y(x)=c_{1} x+c_{2} x^{\frac{5}{2}} .
$$

The initial condition implies

$$
c_{1}+c_{2}=0, \quad c_{1}+\frac{5}{2} c_{2}=\frac{3}{2}
$$

so we have $c_{1}=-1, c_{2}=1$, and

$$
y(x)=-x+x^{\frac{5}{2}} .
$$

Taking derivative, we get

$$
y^{\prime}(x)=-1+\frac{5}{2} x^{\frac{3}{2}},
$$

so it follows that $x_{0}=\left(\frac{4}{25}\right)^{\frac{1}{3}}$.
7. Find the solution for the intial value problem:

$$
x^{2} y^{\prime \prime}-x y^{\prime}+2 y=0, \quad y(1)=1, \quad y^{\prime}(1)=1 .
$$

A. $x+1$
B. $x \cos (\ln x)$
C. $x \cos (\ln x)+x \sin (\ln x)$
D. $x \cos (\ln x)-x \sin (\ln x)$
E. x^{1+i}
F. none of the above

B
The indicial equation of (2) is

$$
\begin{array}{r}
r(r-1)-r+2=0, \\
r^{2}-2 r+2=0 .
\end{array}
$$

We have the roots

$$
r_{1,2}=1 \pm i
$$

and the general solution

$$
y(x)=x\left[c_{1} \cos (\ln x)+c_{2} \sin (\ln x)\right] .
$$

Taking derivative, we get

$$
\begin{aligned}
y^{\prime}(x) & =c_{1} \cos (\ln x)+c_{2} \sin (\ln x)-c_{1} \sin (\ln x)+c_{2} \cos (\ln x) \\
& =\left(c_{1}+c_{2}\right) \cos (\ln x)+\left(-c_{1}+c_{2}\right) \sin (\ln x) .
\end{aligned}
$$

The initial condition implies

$$
c_{1}=1, \quad c_{1}+c_{2}=1,
$$

so we have $c_{1}=1$ and $c_{2}=0$.
8. For the differential equation

$$
\begin{equation*}
(1-\cos x) \cdot y^{\prime \prime}+\left(e^{x}-1\right) \cdot y^{\prime}+\frac{3}{2} y=0, \tag{3}
\end{equation*}
$$

0 is a regular singular point. Find the indicial equation about 0 .
A. $r^{2}-r+\frac{3}{2}=0$
B. $r^{2}+2 r-3=0$
C. $r^{2}+r-3=0$
D. $r^{2}-4 r+4=0$
E. $r^{2}-3 r+2=0$
F. none of the above

F

Rewriting (3), we get

$$
y^{\prime \prime}+\frac{e^{x}-1}{1-\cos x} \cdot y^{\prime}-\frac{3}{2-2 \cos x} \cdot y=0 .
$$

It follows that

$$
\begin{aligned}
p_{0} & =\lim _{x \rightarrow 0} \frac{x\left(e^{x}-1\right)}{1-\cos x} \\
& =\lim _{x \rightarrow 0} \frac{e^{x}-1+x e^{x}}{\sin x} \\
& =\lim _{x \rightarrow 0} \frac{e^{x}+e^{x}+x e^{x}}{\cos x} \\
& =2,
\end{aligned}
$$

and

$$
\begin{aligned}
q_{0} & =\lim _{x \rightarrow 0} \frac{3 x^{2}}{2-2 \cos x} \\
& =\lim _{x \rightarrow 0} \frac{6 x}{2 \sin x} \\
& =\lim _{x \rightarrow 0} \frac{6}{2 \cos x} \\
& =3 .
\end{aligned}
$$

Thus, the indicial equation is

$$
\begin{array}{r}
r(r-1)+2 r+3=0 \\
r^{2}+r+3=0
\end{array}
$$

9. Consider the power series

$$
\begin{align*}
& y_{1}(x)=\sum_{n=0}^{\infty} \frac{a_{n}}{n!} x^{n}, \\
& y_{2}(x)=\sum_{n=0}^{\infty} \frac{b_{n}}{n!} x^{n} . \tag{4}
\end{align*}
$$

What is the Wronskian at 0 ? That is, what is $W\left(y_{1}, y_{2}\right)(0)$?
A. $a_{0} b_{1}-a_{1} b_{0}$
B. $a_{1} b_{0}-a_{0} b_{1}$
C. $\frac{a_{0} b_{0}}{2}-\frac{a_{1} b_{1}}{2}$
D. $\frac{a_{0} b_{0}}{2}-\frac{a_{1} b_{1}}{2}$
E. $\sum_{n=0}^{\infty} a_{n} b_{n+1}-a_{n+1} b_{n}$
F. none of the above

A

In fact, we just need the first two terms of (4):

$$
\begin{gathered}
y_{1}(x)=a_{0}+a_{1} x+\ldots, \\
y_{2}(x)=b_{0}+b_{1} x+\ldots,
\end{gathered}
$$

which implies that

$$
\begin{array}{cc}
y_{1}(0)=a_{0}, & y_{1}^{\prime}(0)=a_{1}, \\
y_{2}(0)=b_{0}, & y_{2}^{\prime}(0)=b_{1} .
\end{array}
$$

Thus,

$$
W\left(y_{1}, y_{2}\right)(0)=\left|\begin{array}{ll}
a_{0} & b_{0} \\
a_{1} & b_{1}
\end{array}\right|=a_{0} b_{1}-a_{1} b_{0}
$$

10. Consider the differential equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}+\left(6 x+x^{2}\right) y^{\prime}+x y=0, \tag{5}
\end{equation*}
$$

for which 0 is regular singular point. To solve (5) by power series, we should begin by finding the coefficients of a Frobenius series. Of the Frobenius series below, which one is the correct trial solution?
A.

$$
\sum_{n=1}^{\infty} a_{n} x^{n}
$$

B.

$$
1+\sum_{n=1}^{\infty} a_{n} x^{n}
$$

C.

$$
\sum_{n=1}^{\infty} a_{n} x^{n-5}
$$

D.

$$
|x|^{-5}\left(1+\sum_{n=1}^{\infty} a_{n} x^{n}\right)
$$

E.

$$
|x|^{-5} \ln |x|\left(1+\sum_{n=1}^{\infty} a_{n} x^{n}\right)
$$

F. none of the above

B
It is easy to see that $p_{0}=6$ and $q_{0}=0$, so the indicial equation is

$$
r(r-1)+6 r=r^{2}+5 r=0
$$

The two roots are $r_{1}=0$ and $r_{2}=-5$, where 0 is the bigger root. Now, we follow the recipe outlined in Theorem 5.6.1 of Boyce-DiPrima.

Part II. True/False $\quad 5 \times 2=10$ points
Choose ' A ' if the statement is true; choose ' B ' if the statement is false.
11. For a second order linear homogeneous ordinary differential equation with constant coefficients, there is no singular points.
12. For two convergent power series

$$
y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n}, \quad y_{2}=\sum_{n=0}^{\infty} b_{n} x^{n},
$$

the Wronskian $W\left(y_{1}, y_{2}\right)$ is never zero.
13. For a second order linear homogeneous ordinary differential equation, we can always find two linearly independent power series solutions about an ordinary point.
14. If x_{0} is a regular singular point of the differential equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0,
$$

and the indicial equation has real roots, then the equation has at least one Frobenius series solution about x_{0}.
15. For the power series

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

if the radius of convergence is ρ and $\left|x_{1}\right|>\rho$, then the series

$$
\sum_{n=0}^{\infty} a_{n}\left(x_{1}\right)^{n}
$$

does not converge.

ABAAA

Part III will be collected separately. Please write your NAME and your STUDENT NUMBER. Student Number:

Name:

For graders:
16.
17.

18
19.

Total:

Here are some Taylor series that might be useful:

$$
\begin{aligned}
& e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\ldots \\
& \cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\ldots \\
& \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots \\
& \cosh x=\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}=1+\frac{x^{2}}{2}+\frac{x^{4}}{4!}+\ldots \\
& \sinh x=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots \\
& \ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots \\
& \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\ldots
\end{aligned}
$$

Part III. Hand-graded problems $10+10+20=40$ points
16. (10 points)

For the initial value problem:

$$
y^{\prime \prime}=y^{\prime}+y, \quad y(0)=0, \quad y^{\prime}(0)=1
$$

the point 0 is an ordianary point. Show that the power series solution about 0 is given by

$$
y=\sum_{n=0}^{\infty} \frac{f_{n}}{n!} x^{n}
$$

where $\left\{f_{n}\right\}_{n=0}^{\infty}$ is the Fibonacci numbers defined by $f_{0}=0, f_{1}=1, f_{n+2}=f_{n+1}+f_{n}$ for $n \geq 0$.

Writing

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

we have

$$
y^{\prime}=\sum_{n=1}^{\infty} a_{n} n x^{n-1}, \quad y^{\prime \prime}=\sum_{n=2}^{\infty} a_{n} n(n-1) x^{n-2}
$$

Substituting these back into the differential equation, we get

$$
\begin{aligned}
\sum_{n=2}^{\infty} a_{n} n(n-1) x^{n-2} & =\sum_{n=1}^{\infty} a_{n} n x^{n-1}+\sum_{n=0}^{\infty} a_{n} x^{n} \\
\sum_{n=0}^{\infty} a_{n+2}(n+2)(n+1) x^{n} & =\sum_{n=0}^{\infty} a_{n+1}(n+1) x^{n}+\sum_{n=0}^{\infty} a_{n} x^{n}
\end{aligned}
$$

which implies

$$
a_{n+2}=\frac{a_{n}}{(n+2)(n+1)}+\frac{a_{n+1}}{n+2}
$$

The initial condition implies

$$
\begin{aligned}
& a_{0}=0=\frac{f_{0}}{0!} \\
& a_{1}=1=\frac{f_{1}}{1!}
\end{aligned}
$$

Assuming $a_{m}=\frac{f_{m}}{m!}$ for $m \leq n+1$, we get that

$$
\begin{aligned}
a_{n+2} & =\frac{a_{n}}{(n+2)(n+1)}+\frac{a_{n+1}}{n+2} \\
& =\frac{f_{n}}{n!} \frac{1}{(n+2)(n+1)}+\frac{f_{n+1}}{(n+1)!} \frac{1}{n+2} \\
& =\frac{f_{n}+f_{n+1}}{(n+2)!} \\
& =\frac{f_{n+2}}{(n+2)!}
\end{aligned}
$$

This page is intentionally left blank.
17. (10 points)

The Hermite function

$$
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}}\left(e^{-x^{2}}\right)
$$

is a polynomial of degree n . Compute H_{4} explicitly.
Hint: It is difficult to expend e^{x} as a power series and to calculate it term by term. Try something else.

$$
\begin{aligned}
H_{4}(x) & =e^{x^{2}} \frac{d^{4}}{d x^{4}}\left(e^{-x^{2}}\right) \\
& =e^{x^{2}} \frac{d^{3}}{d x^{3}}\left(-2 x e^{-x^{2}}\right) \\
& =e^{x^{2}} \frac{d^{2}}{d x^{2}}\left(\left(4 x^{2}-2\right) e^{-x^{2}}\right) \\
& =e^{x^{2}} \frac{d}{d x}\left[\left(\left(4 x^{2}-2\right)(-2 x)+8 x\right) e^{-x^{2}}\right] \\
& =e^{x^{2}} \frac{d}{d x}\left(\left(-8 x^{3}+12 x\right) e^{-x^{2}}\right) \\
& =e^{x^{2}}\left[\left(-8 x^{3}+12 x\right)(-2 x)-24 x^{2}+12\right] e^{-x^{2}} \\
& =16 x^{4}-48 x^{2}+12
\end{aligned}
$$

This page is intentionally left blank.
18. $(5+5+5+5=20$ points $)$

For the differential equation

$$
\begin{equation*}
2 x^{2} y^{\prime \prime}+3 x y^{\prime}-\left(x^{2}+1\right) y=0 \tag{6}
\end{equation*}
$$

the point 0 is a regular singular point.
(a) Show that the roots of the indicial equation are $r_{1}=\frac{1}{2}$ and $r_{2}=-1$.

Rewriting (6), we get

$$
y^{\prime \prime}+\frac{3}{2 x} \cdot y^{\prime}-\frac{x^{2}+1}{2 x^{2}} \cdot y=0 .
$$

It follows that

$$
\begin{aligned}
& x p(x)=x \cdot \frac{3}{2 x}=\frac{3}{2}, \\
& x q(x)=x^{2} \cdot\left(-\frac{x^{2}+1}{2 x^{2}}\right)=-\frac{1}{2}-\frac{x^{2}}{2} .
\end{aligned}
$$

Thus, the indicial equation is

$$
\begin{array}{r}
r(r-1)+\frac{3}{2} r-\frac{1}{2}=0, \\
2 r^{2}+r-1=0
\end{array}
$$

where the roots are $r_{1}=\frac{1}{2}$ and $r_{2}=-1$.
(b) Consider the Frobenius series solution

$$
y(x)=|x|^{r} \sum_{n=0}^{\infty} a_{n} x^{n} .
$$

Show that the recurrence relation is

$$
a_{n}=\frac{a_{n-2}}{2(n+r)^{2}+(n+r)-1}, \quad n \geq 2
$$

and $a_{2 n+1}=0$.
For simplicity, we assume $x>0$ to drop the absolute value. We begin with

$$
\begin{aligned}
y(x) & =\sum_{n=0}^{\infty} a_{n} x^{n+r} \\
y^{\prime}(x) & =\sum_{n=0}^{\infty} a_{n}(n+r) x^{n+r-1}, \\
y^{\prime \prime}(x) & =\sum_{n=0}^{\infty} a_{n}(n+r)(n+r-1) x^{n+r-2} .
\end{aligned}
$$

Substituting into (6), we get

$$
\begin{array}{r}
2 \sum_{n=0}^{\infty} a_{n}(n+r)(n+r-1) x^{n+r}+3 \sum_{n=0}^{\infty} a_{n}(n+r) x^{n+r}-\sum_{n=0}^{\infty} a_{n} x^{n+r+2}-\sum_{n=0}^{\infty} a_{n} x^{n+r}=0, \\
2 \sum_{n=0}^{\infty} a_{n}(n+r)(n+r-1) x^{n+r}+3 \sum_{n=0}^{\infty} a_{n}(n+r) x^{n+r}-\sum_{n=2}^{\infty} a_{n-2} x^{n+r}-\sum_{n=0}^{\infty} a_{n} x^{n+r}=0, \\
{[2 r(r-1)+3 r-1] a_{0} x^{r}+[2(r+1) r+3(r+1)-1] a_{1} x^{r+1}} \\
+\sum_{n=0}^{\infty}\left\{[2(n+r)(n+r-1)+3(n+r)-1] a_{n}-a_{n-2}\right\} x^{n+r}=0, \\
\left(2 r^{2}+r-1\right) a_{0} x^{r}+\left(2 r^{2}+5 r+2\right) a_{1} x^{r+1}+\sum_{n=0}^{\infty}\left\{\left[2(n+r)^{2}+(n+r)-1\right] a_{n}-a_{n-2}\right\} x^{n+r}=0 .
\end{array}
$$

Thus,

$$
\begin{aligned}
\left(2 r^{2}+r-1\right) a_{0}=0 \\
\left(2 r^{2}+5 r+2\right) a_{1}=0 \\
{\left[2(n+r)^{2}+(n+r)-1\right] a_{n}-a_{n-2}=0, \quad n \geq 2 }
\end{aligned}
$$

and the recurrence relation

$$
a_{n}=\frac{a_{n-2}}{2(n+r)^{2}+(n+r)-1}, \quad n \geq 2
$$

follows. Since $a_{0} \neq 0$, we have the indicial equation $2 r^{2}+r-1=0$. For both $r_{1}=\frac{1}{2}$ and $r_{2}=-1$, we have

$$
2 r^{2}+5 r+2 \neq 0
$$

It follows that $a_{1}=0$, and therefore $a_{2 n+1}=0$.

This page is intentionally left blank.
(c) For $r_{1}=\frac{1}{2}$, compute the Frobenius solution y_{1} up to $|x|^{\frac{1}{2}} x^{6}$.

For $r_{1}=\frac{1}{2}$, the recurrence relation is

$$
a_{n}=\frac{a_{n-2}}{2\left(n+\frac{1}{2}\right)^{2}+\left(n+\frac{1}{2}\right)-1}=\frac{a_{n-2}}{n(2 n+3)}, \quad n \geq 2 .
$$

Thus,

$$
\begin{aligned}
& a_{2}=\frac{a_{0}}{2 \cdot 7}=\frac{a_{0}}{14}, \\
& a_{4}=\frac{a_{2}}{4 \cdot 11}=\frac{a_{0}}{616}, \\
& a_{6}=\frac{a_{4}}{6 \cdot 15}=\frac{a_{0}}{55440},
\end{aligned}
$$

and it follows that

$$
y_{1}(x)=a_{0}|x|^{\frac{1}{2}}\left(1+\frac{x^{2}}{14}+\frac{x^{4}}{616}+\frac{x^{6}}{55440}+\ldots\right) .
$$

(d) For $r_{2}=-1$, compute the Frobenius solution y_{2} up to $|x|^{-1} x^{6}$.

For $r_{2}=-1$, to distinguish from the case $r_{1}=\frac{1}{2}$, we write b_{n} in place of a_{n}, so the recurrence relation is

$$
b_{n}=\frac{b_{n-2}}{2(n-1)^{2}+(n-1)-1}=\frac{b_{n-2}}{n(2 n-3)}, \quad n \geq 2 .
$$

Thus,

$$
\begin{aligned}
& b_{2}=\frac{b_{0}}{2 \cdot 1}=\frac{b_{0}}{2}, \\
& b_{4}=\frac{b_{2}}{4 \cdot 5}=\frac{b_{0}}{40}, \\
& b_{6}=\frac{b_{4}}{6 \cdot 9}=\frac{b_{0}}{2160},
\end{aligned}
$$

and it follows that

$$
y_{2}(x)=b_{0}|x|^{-1}\left(1+\frac{x^{2}}{2}+\frac{x^{4}}{40}+\frac{x^{6}}{2160}+\ldots\right) .
$$

