Instructions:

1. There are three parts in this exam. Part I is multiple choice, Part II is True/False, and Part III consists of hand-graded problems.
2. The total number of points is 100 .
3. You may use a calculator.
4. The scantron and Part III will be collected at the end of the exam. You may take Part I and Part II with you at the end of the exam.

Taylor series:

$$
\begin{aligned}
& e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\ldots \\
& \cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\ldots \\
& \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots \\
& \cosh x=\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}=1+\frac{x^{2}}{2}+\frac{x^{4}}{4!}+\ldots \\
& \sinh x=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots \\
& \ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots \\
& \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\ldots
\end{aligned}
$$

Trigonometry:

$$
\begin{aligned}
& \cos (x+y)=\cos x \cos y-\sin x \sin y \\
& \sin (x+y)=\sin x \cos y+\sin y \cos x \\
& 2 \cos x \cos y=\cos (x-y)+\cos (x+y) \\
& 2 \sin x \sin y=\cos (x-y)-\cos (x+y) \\
& 2 \sin x \cos y=\sin (x+y)-\sin (x-y) \\
& \cos (2 x)=\cos ^{2} x-\sin ^{2} x=2 \cos ^{2} x-1=1-2 \sin ^{2} x \\
& \cosh t=\frac{e^{t}+e^{-t}}{2} \\
& \sinh t=\frac{e^{t}-e^{-t}}{2} \\
& e^{i t}=\cos t+i \sin t
\end{aligned}
$$

Laplace transforms:
$f(t)=\mathcal{L}^{-1}\{F(s)\}$
1
$e^{a t}$
$t^{n}, \quad n=$ positive integer
$t^{p}, \quad p>-1$
$\sin a t$
$\cos a t$
$\sinh a t$
$\cosh a t$
$e^{a t} \sin b t$
$e^{a t} \cos b t$
$t^{n} e^{a t}, \quad n=$ positive integer
$u_{c}(t)$
$u_{c}(t) f(t-c)$
$e^{c t} f(t)$
$f(c t)$
$\int_{0}^{t} f(t-\tau) g(\tau) d \tau$
$\delta(t-c)$
$f^{(n)}(t)$
$(-t)^{n} f(t)$
$F(s)=\mathcal{L}\{f(t)\}$
$\frac{1}{s}, \quad s>0$
$\frac{1}{s-a}, \quad s>a$
$\frac{n!}{s^{n+1}}, \quad s>0$
$\frac{\Gamma(p+1)}{s^{p+1}}, \quad s>0$
$\frac{a}{s^{2}+a^{2}}, \quad s>0$
$\frac{s}{s^{2}+a^{2}}, \quad s>0$
$\frac{a}{s^{2}-a^{2}}, \quad s>|a|$
$\frac{s}{s^{2}-a^{2}}, \quad s>|a|$
$\frac{b}{(s-a)^{2}+b^{2}}, \quad s>a$
$\frac{s-a}{(s-a)^{2}+b^{2}}, \quad s>a$
$\frac{n!}{(s-a)^{n+1}}, \quad s>a$
$\frac{e^{-c s}}{s}, \quad s>0$
$e^{-c s} F(s)$
$F(s-c)$
${ }_{c}^{1} F\left(\frac{s}{c}\right), \quad c>0$
$F(s) G(s)$
$e^{-c s}$
$s^{n} F(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\cdots-f^{(n-1)}(0)$
$F^{(n)}(s)$

Part I. Multiple Choices $5 \times 10=50$ points

1. Find the solution of the initial value problem:

$$
\begin{equation*}
(1+x) y^{\prime}+y=\cos x, \quad y(0)=1 \tag{1}
\end{equation*}
$$

A. $y=1+x$
B. $y=\frac{\cos x}{1+x}$
C. $y=\frac{\sin x}{1+x}$
D. $y=\frac{1+\sin x}{1+x}$
E. $y=\frac{e^{x}}{1+x}$
F. none of the above
2. Find the (implicit) solution of the exact differential equation

$$
\begin{equation*}
(x+y) y^{\prime}=-(x+\arctan y)\left(1+y^{2}\right), \quad y(0)=0 . \tag{2}
\end{equation*}
$$

A. $\frac{x^{2}}{2}+x \arctan y=0$
B. $\frac{x^{2}}{2}+x \arctan y+\frac{1}{2} \ln \left(1+y^{2}\right)=0$
C. $y=\tan \left(-\frac{x}{2}\right)$
D. $y^{2}=e^{-x^{2}}-1$
E. $y=e^{-x^{2}}-1$
F. none of the above
3. Find the solution to the initial value problem:

$$
\begin{equation*}
2 y^{\prime \prime \prime}-3 y^{\prime \prime}-2 y^{\prime}=0, \quad y(0)=1, \quad y^{\prime}(0)=-1, \quad y^{\prime \prime}(0)=3 . \tag{3}
\end{equation*}
$$

A. $-\frac{7}{2}+4 e^{-\frac{1}{2} t}+\frac{1}{2} e^{2 t}$
B. $1-2 e^{-\frac{1}{2} t}+2 e^{2 t}$
C. $\cosh t+\frac{1}{2} \sinh (2 t)$
D. $\cos t+\frac{1}{2} \sin (2 t)$
E. $e^{i t}+3 e^{-i t}$
F. none of the above
4. Which of the following is NOT a solution of the following differential equation?

$$
\begin{equation*}
y^{\prime \prime}+4 y=\cos 3 t \tag{4}
\end{equation*}
$$

A. $-\frac{1}{5} \cos 3 t$
B. $\cos 2 t-\frac{1}{5} \cos 3 t$
C. $\sin 2 t-\frac{1}{5} \cos 3 t$
D. $e^{2 t i}+e^{-2 t i}-\frac{1}{5} \cos 3 t$
E. $\cos 2 t+\sin 2 t$
F. all of the above are solutions of (4)
5. For the differential equation (5), what is the lower bound of the radius of convergence for the power series solution around 0 ?

$$
\begin{equation*}
\left(1+x^{2}\right) y^{\prime \prime}-\cos x \cdot y^{\prime}+e^{x} y=0 \tag{5}
\end{equation*}
$$

A. 0
B. 1
C. $\sqrt{2}$
D. π
E. ∞
F. none of the above
6. If

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

is the Taylor series around 0 for the function

$$
\cos (1+x)+\sin (1+x)
$$

then what is the value of a_{2015} ?
A.

$$
a_{2015}=\frac{\sin 1-\cos 1}{2015}
$$

B.

$$
a_{2015}=\frac{\cos 1-\sin 1}{2015!}
$$

C.

$$
a_{2015}=\frac{\sin 1-\cos 1}{2015!}
$$

D.

$$
a_{2015}=\frac{\pi}{2015!}
$$

E.

$$
a_{2015}=\frac{\pi^{2015}}{2015!}
$$

F. none of the above
7. Find the inverse Laplace transform of

$$
F(s)=\frac{e^{2-2 s}\left(2 s^{2}+\pi^{2}-1\right)}{(s-1)\left(s^{2}+\pi^{2}\right)} .
$$

A.

$$
f(t)=e^{t}+e^{2} \cos (\pi t)+\frac{e^{2}}{\pi} \sin (\pi t)
$$

B.

$$
f(t)=u_{2}(t)\left[e^{t}+e^{2} \cos (\pi t)+\frac{e^{2}}{\pi} \sin (\pi t)\right]
$$

C.

$$
f(t)=u_{2}(t)\left[e^{t-2}+e^{2} \cos (\pi t)+\frac{e^{2}}{\pi} \sin (\pi t)\right]
$$

D.

$$
f(t)=u_{2}(t)\left[e^{t}+e^{2} \cos (t-2)+\frac{e^{2}}{\pi} \sin (t-2)\right]
$$

E.

$$
f(t)=u_{2}(t)\left[e^{t-2}+e^{2} \cos (t-2)+e^{2} \sin (t-2)\right]
$$

F. none of the above
8. Find the Laplace transform of the piecewise continuous function

$$
f(t)= \begin{cases}t & \text { if } 0 \leq t<1 \tag{6}\\ 2-t & \text { if } 1 \leq t<2 \\ 0 & \text { if } t \geq 2\end{cases}
$$

A.

$$
F(s)=\frac{1}{s^{2}}-\frac{2}{s^{2}}+\frac{1}{s^{2}}
$$

B.

$$
F(s)=1-e^{-s}+e^{-2 s}
$$

C.

$$
F(s)=1-2 e^{-s}+e^{-2 s}
$$

D.

$$
F(s)=\frac{1}{s^{2}}+\frac{2 e^{-s}}{s^{2}}+\frac{e^{-2 s}}{s^{2}}
$$

E.

$$
F(s)=\frac{1}{s^{2}}-\frac{2 e^{-s}}{s^{2}}+\frac{e^{-2 s}}{s^{2}}
$$

F. none of the above
9. If $y(t)$ is the solution of the initial value problem:

$$
\begin{equation*}
y^{\prime \prime}+4 y=\delta(t-2014 \pi), \quad y(0)=0, \quad y^{\prime}(0)=0 \tag{7}
\end{equation*}
$$

then what is the value of $y(2015 \pi)$?
A. 0
B. -1
C. 1
D. π
E. $\frac{\pi}{2}$
F. none of the above
10. Find the inverse Laplace transform of

$$
\begin{equation*}
F(s)=\ln \left(\frac{s^{2}+1}{s^{2}+4}\right) . \tag{8}
\end{equation*}
$$

A.

$$
f(t)=e^{t^{2}+1}+e^{t^{2}+4}
$$

B.

$$
f(t)=e^{2 t}+e^{-2 t}
$$

C.

$$
f(t)=u_{1}(t) \cos t+u_{2}(t) \sin (2 t)
$$

D.

$$
f(t)=\frac{2}{t}(2 \cos t+1)(\cos t-1)
$$

E.

$$
f(t)=\frac{2}{t}(\cos t-\cos (2 t))
$$

F. none of the above

Part II. True/False $\quad 5 \times 2=10$ points
Choose A if the statement is true; choose B if the statement is false.
11. There is a unique solution to the initial value problem:

$$
y^{\prime}-y^{\frac{1}{2}}=0, \quad y(0)=0
$$

12. If p and q are continuous functions, and y_{1} and y_{2} are solutions of the differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

then we have

$$
W\left(y_{1}, y_{2}\right)(t)=e^{-\int_{t_{0}}^{t} p(\tau) d \tau}
$$

for some constant t_{0}.
13. If p and q are continuous real-valued functions, and $u(t)+i v(t)$ are complex-valued solutions of the differential equation

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0, \tag{9}
\end{equation*}
$$

then both u and v are also solutions of (9).
14. For the power series

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

if the radius of convergence is ρ and $\left|x_{1}\right| \geq \rho$, then the series

$$
\sum_{n=0}^{\infty} a_{n}\left(x_{1}\right)^{n}
$$

does not converge.
15. If f is continuous function on $[0, \infty)$, then the Laplace transform

$$
\mathcal{L}\{f(t)\}=F(s)
$$

exists for $s>0$.

Math 217 Final Exam Dec 11, 2015
Part III will be collected separately. Please write your NAME and your STUDENT NUMBER.

Student Number:

Name:

For graders:
$16 a+16 b .+16 c .+16 d$.

16e.
17.

Total:

Part III. Hand-graded problems $10+10+20=40$ points
16a. (4 points)
Find the general solution of the homogenous differential equation:

$$
\begin{equation*}
y^{\prime \prime}-4 y=0 . \tag{10}
\end{equation*}
$$

16b. (6 points) Use the method of undetermined coefficients to find the general solution of the non-homogeneous differential equation:

$$
\begin{equation*}
y^{\prime \prime}-4 y=\sinh 2 t . \tag{11}
\end{equation*}
$$

This page is intentionally left blank.

16c. (6 points)
Use the method of variation of parameters to find the general solution of the non-homogeneous differential equation:

$$
\begin{equation*}
y^{\prime \prime}-4 y=\sinh 2 t \tag{12}
\end{equation*}
$$

This page is intentionally left blank.

16d. (4 points)
Use the results in 16 b . or 16 c . to find the unique solution of the initial value problem:

$$
\begin{equation*}
y^{\prime \prime}-4 y=\sinh 2 t, \quad y(0)=0, \quad y^{\prime}(0)=0 . \tag{13}
\end{equation*}
$$

16e. (10 points)
Use the method of Laplace transform to find the solution of the initial value problem:

$$
\begin{equation*}
y^{\prime \prime}-4 y=\sinh 2 t, \quad y(0)=0, \quad y^{\prime}(0)=0 . \tag{14}
\end{equation*}
$$

This page is intentionally left blank.
17. Find the solution of the initial value problem:

$$
\begin{equation*}
y^{\prime \prime}+y=f(t), \quad y(0)=0, \quad y^{\prime}(0)=1 \tag{15}
\end{equation*}
$$

where

$$
f(t)= \begin{cases}1 & \text { if } 0 \leq t<\pi \tag{16}\\ 0 & \text { if } t \geq \pi\end{cases}
$$

This page is intentionally left blank.

This page is intentionally left blank.

