Instructions:

1. There are three parts in this exam. Part I is multiple choice, Part II is True/False, and Part III consists of hand-graded problems.
2. The total number of points is 100 .
3. You may use a calculator.
4. The scantron and Part III will be collected at the end of the exam. You may take Part I and Part II with you at the end of the exam.

Taylor series:

$$
\begin{aligned}
& e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\ldots \\
& \cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\ldots \\
& \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots \\
& \cosh x=\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}=1+\frac{x^{2}}{2}+\frac{x^{4}}{4!}+\ldots \\
& \sinh x=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots \\
& \ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots \\
& \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\ldots
\end{aligned}
$$

Trigonometry:

$$
\begin{aligned}
& \cos (x+y)=\cos x \cos y-\sin x \sin y \\
& \sin (x+y)=\sin x \cos y+\sin y \cos x \\
& 2 \cos x \cos y=\cos (x-y)+\cos (x+y) \\
& 2 \sin x \sin y=\cos (x-y)-\cos (x+y) \\
& 2 \sin x \cos y=\sin (x+y)-\sin (x-y) \\
& \cos (2 x)=\cos ^{2} x-\sin ^{2} x=2 \cos ^{2} x-1=1-2 \sin ^{2} x \\
& \cosh t=\frac{e^{t}+e^{-t}}{2} \\
& \sinh t=\frac{e^{t}-e^{-t}}{2} \\
& e^{i t}=\cos t+i \sin t
\end{aligned}
$$

Laplace transforms:
$f(t)=\mathcal{L}^{-1}\{F(s)\}$
1
$e^{a t}$
$t^{n}, \quad n=$ positive integer
$t^{p}, \quad p>-1$
$\sin a t$
$\cos a t$
$\sinh a t$
$\cosh a t$
$e^{a t} \sin b t$
$e^{a t} \cos b t$
$t^{n} e^{a t}, \quad n=$ positive integer
$u_{c}(t)$
$u_{c}(t) f(t-c)$
$e^{c t} f(t)$
$f(c t)$
$\int_{0}^{t} f(t-\tau) g(\tau) d \tau$
$\delta(t-c)$
$f^{(n)}(t)$
$(-t)^{n} f(t)$
$F(s)=\mathcal{L}\{f(t)\}$
$\frac{1}{s}, \quad s>0$
$\frac{1}{s-a}, \quad s>a$
$\frac{n!}{s^{n+1}}, \quad s>0$
$\frac{\Gamma(p+1)}{s^{p+1}}, \quad s>0$
$\frac{a}{s^{2}+a^{2}}, \quad s>0$
$\frac{s}{s^{2}+a^{2}}, \quad s>0$
$\frac{a}{s^{2}-a^{2}}, \quad s>|a|$
$\frac{s}{s^{2}-a^{2}}, \quad s>|a|$
$\frac{b}{(s-a)^{2}+b^{2}}, \quad s>a$
$\frac{s-a}{(s-a)^{2}+b^{2}}, \quad s>a$
$\frac{n!}{(s-a)^{n+1}}, \quad s>a$
$\frac{e^{-c s}}{s}, \quad s>0$
$e^{-c s} F(s)$
$F(s-c)$
${ }_{c}^{1} F\left(\frac{s}{c}\right), \quad c>0$
$F(s) G(s)$
$e^{-c s}$
$s^{n} F(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\cdots-f^{(n-1)}(0)$
$F^{(n)}(s)$

Part I. Multiple Choices $5 \times 10=50$ points

1. Find the solution of the initial value problem:

$$
\begin{equation*}
(1+x) y^{\prime}+y=\cos x, \quad y(0)=1 \tag{1}
\end{equation*}
$$

A. $y=1+x$
B. $y=\frac{\cos x}{1+x}$
C. $y=\frac{\sin x}{1+x}$
D. $y=\frac{1+\sin x}{1+x}$
E. $y=\frac{e^{x}}{1+x}$
F. none of the above

D
From (1), we have

$$
\begin{aligned}
& (1+x) y^{\prime}+y=\cos x, \\
& {[(1+x) y]^{\prime}=\cos x,} \\
& (1+x) y=\int \cos x d x, \\
& (1+x) y=\sin x+C
\end{aligned}
$$

The initial condition implies that $C=1$. Therefore, the solution to (1) is

$$
y=\frac{1+\sin x}{1+x} .
$$

2. Find the (implicit) solution of the exact differential equation

$$
\begin{equation*}
(x+y) y^{\prime}=-(x+\arctan y)\left(1+y^{2}\right), \quad y(0)=0 . \tag{2}
\end{equation*}
$$

A. $\frac{x^{2}}{2}+x \arctan y=0$
B. $\frac{x^{2}}{2}+x \arctan y+\frac{1}{2} \ln \left(1+y^{2}\right)=0$
C. $y=\tan \left(-\frac{x}{2}\right)$
D. $y^{2}=e^{-x^{2}}-1$
E. $y=e^{-x^{2}}-1$
F. none of the above

B
Rewriting (2), we have

$$
(x+\arctan y)+\frac{x+y}{1+y^{2}} y^{\prime}=0,
$$

so we seek a function $F(x, y)$ such that

$$
\frac{\partial F}{\partial x}=x+\arctan y, \quad \frac{\partial F}{\partial y}=\frac{x+y}{1+y^{2}} .
$$

Integrating with respect to x, we have

$$
F(x, y)=\frac{x^{2}}{2}+x \arctan y+g(y)
$$

Integrating with respect to y, we have

$$
F(x, y)=x \arctan y+\frac{1}{2} \ln \left(1+y^{2}\right)+h(x) .
$$

It follows that

$$
F(x, y)=\frac{x^{2}}{2}+x \arctan y+\frac{1}{2} \ln \left(1+y^{2}\right) .
$$

Thus, we obtain the implicit solution

$$
\frac{x^{2}}{2}+x \arctan y+\frac{1}{2} \ln \left(1+y^{2}\right)=C
$$

Imposing the initial condition $y(0)=0$, we have $C=0$.
3. Find the solution to the initial value problem:

$$
\begin{equation*}
2 y^{\prime \prime \prime}-3 y^{\prime \prime}-2 y^{\prime}=0, \quad y(0)=1, \quad y^{\prime}(0)=-1, \quad y^{\prime \prime}(0)=3 \tag{3}
\end{equation*}
$$

A. $-\frac{7}{2}+4 e^{-\frac{1}{2} t}+\frac{1}{2} e^{2 t}$
B. $1-2 e^{-\frac{1}{2} t}+2 e^{2 t}$
C. $\cosh t+\frac{1}{2} \sinh (2 t)$
D. $\cos t+\frac{1}{2} \sin (2 t)$
E. $e^{i t}+3 e^{-i t}$
F. none of the above

A

For (3), the characterisitic equation is

$$
\begin{array}{r}
2 r^{3}-3 r^{2}-2 r=0 \\
r(2 r+1)(r-2)=0
\end{array}
$$

It follows that the general solution is

$$
y(t)=c_{1}+c_{2} e^{-\frac{1}{2} t}+c_{3} e^{2 t}
$$

and

$$
\begin{aligned}
y^{\prime}(t) & =-\frac{1}{2} c_{2} e^{-\frac{1}{2} t}+2 c_{3} e^{2 t} \\
y^{\prime \prime}(t) & =\frac{1}{4} c_{2} e^{-\frac{1}{2} t}+4 c_{3} e^{2 t}
\end{aligned}
$$

The initial condition implies that

$$
\begin{aligned}
c_{1}+c_{2}+c_{3} & =1 \\
-\frac{1}{2} c_{2}+2 c_{3} & =-1 \\
\frac{1}{4} c_{2}+4 c_{3} & =3 .
\end{aligned}
$$

Thus, we have

$$
c_{1}=-\frac{7}{2}, \quad c_{2}=4, \quad c_{3}=\frac{1}{2}
$$

4. Which of the following is NOT a solution of the following differential equation?

$$
\begin{equation*}
y^{\prime \prime}+4 y=\cos 3 t \tag{4}
\end{equation*}
$$

A. $-\frac{1}{5} \cos 3 t$
B. $\cos 2 t-\frac{1}{5} \cos 3 t$
C. $\sin 2 t-\frac{1}{5} \cos 3 t$
D. $e^{2 t i}+e^{-2 t i}-\frac{1}{5} \cos 3 t$
E. $\cos 2 t+\sin 2 t$
F. all of the above are solutions of (4)

E
Using the method of undetermined coefficients or variation of parameters, we find that

$$
Y(t)=-\frac{1}{5} \cos 3 t
$$

is a particular solution. Thus, the general solution is

$$
y(t)=c_{1} \cos 2 t+c_{2} \sin 2 t-\frac{1}{5} \cos 3 t .
$$

5. For the differential equation (5), what is the lower bound of the radius of convergence for the power series solution around 0 ?

$$
\begin{equation*}
\left(1+x^{2}\right) y^{\prime \prime}-\cos x \cdot y^{\prime}+e^{x} y=0 \tag{5}
\end{equation*}
$$

A. 0
B. 1
C. $\sqrt{2}$
D. π
E. ∞
F. none of the above

B
Rewriting (5), we have

$$
y^{\prime \prime}-\frac{\cos x}{1+x^{2}} \cdot y^{\prime}+\frac{e^{x}}{1+x^{2}} y=0 .
$$

The radius of convergence for the Taylor series around 0 of $\cos x$ and e^{x} is ∞, so we just need the denominator. If we set

$$
x^{2}+1=0,
$$

then we obtain complex roots $x= \pm i$. Thus, the radius of convergence of the Taylor series around 0 of $\frac{1}{1+x^{2}}$ is 1 , and the result follows.

You may also obtain the result using the ratio test for the Taylor series:

$$
\frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6}+\cdots
$$

6. If

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

is the Taylor series around 0 for the function

$$
\cos (1+x)+\sin (1+x)
$$

then what is the value of a_{2015} ?
A.

$$
a_{2015}=\frac{\sin 1-\cos 1}{2015}
$$

B.

$$
a_{2015}=\frac{\cos 1-\sin 1}{2015!}
$$

C.

$$
a_{2015}=\frac{\sin 1-\cos 1}{2015!}
$$

D.

$$
a_{2015}=\frac{\pi}{2015!}
$$

E.

$$
a_{2015}=\frac{\pi^{2015}}{2015!}
$$

F. none of the above

C
We have

$$
\begin{aligned}
\cos (1+x)+\sin (1+x) & =\cos 1 \cos x-\sin 1 \sin x+\sin 1 \cos x+\cos 1 \sin x \\
& =(\cos 1+\sin 1) \cos x+(\cos 1-\sin 1) \sin x \\
& =(\cos 1+\sin 1)\left(1-\frac{x^{2}}{2!}+\cdots\right)+(\cos 1-\sin 1)\left(x-\frac{x^{3}}{3!}+\cdots\right)
\end{aligned}
$$

It follows that

$$
a_{2 n}=\frac{(-1)^{n}(\cos 1+\sin 1)}{(2 n)!}, \quad a_{2 n+1}=\frac{(-1)^{n}(\cos 1-\sin 1)}{(2 n+1)!}
$$

and

$$
a_{2015}=-\frac{\cos 1-\sin 1}{2015!}=\frac{\sin 1-\cos 1}{2015!}
$$

Alternatively, you may find a_{2015} by finding

$$
y^{(2015)}(0)=\sin 1-\cos 1
$$

7. Find the inverse Laplace transform of

$$
F(s)=\frac{e^{2-2 s}\left(2 s^{2}+\pi^{2}-1\right)}{(s-1)\left(s^{2}+\pi^{2}\right)} .
$$

A.

$$
f(t)=e^{t}+e^{2} \cos (\pi t)+\frac{e^{2}}{\pi} \sin (\pi t)
$$

B.

$$
f(t)=u_{2}(t)\left[e^{t}+e^{2} \cos (\pi t)+\frac{e^{2}}{\pi} \sin (\pi t)\right]
$$

C.

$$
f(t)=u_{2}(t)\left[e^{t-2}+e^{2} \cos (\pi t)+\frac{e^{2}}{\pi} \sin (\pi t)\right]
$$

D.

$$
f(t)=u_{2}(t)\left[e^{t}+e^{2} \cos (t-2)+\frac{e^{2}}{\pi} \sin (t-2)\right]
$$

E.

$$
f(t)=u_{2}(t)\left[e^{t-2}+e^{2} \cos (t-2)+e^{2} \sin (t-2)\right]
$$

F. none of the above

B
We define

$$
H(s)=\frac{2 s^{2}+\pi^{2}-1}{(s-1)\left(s^{2}+\pi^{2}\right)}
$$

To do partial fraction of H, we begin with

$$
\begin{aligned}
\frac{2 s^{2}+\pi^{2}-1}{(s-1)\left(s^{2}+\pi^{2}\right)} & =\frac{a}{s-1}+\frac{b s+c}{s^{2}+\pi^{2}} \\
& =\frac{(a+b) s^{2}+(-b+c) s+\left(a \pi^{2}-c\right)}{(s-1)\left(s^{2}+\pi^{2}\right)}
\end{aligned}
$$

and then solving

$$
a+b=2, \quad-b+c=0, \quad a \pi^{2}-c=\pi^{2}-1,
$$

we get

$$
a=b=c=1 .
$$

The inverse Laplase transform of

$$
H(s)=\frac{2 s^{2}+\pi^{2}-1}{(s-1)\left(s^{2}+\pi^{2}\right)}=\frac{1}{s-1}+\frac{s}{s^{2}+\pi^{2}}+\frac{1}{\pi} \cdot \frac{\pi}{s^{2}+\pi^{2}}
$$

is

$$
h(t)=e^{t}+\cos (\pi t)+\frac{1}{\pi} \sin (\pi t)
$$

Since

$$
F(s)=e^{2} e^{-2 s} H(s)
$$

we get

$$
\begin{aligned}
f(t) & =e^{2} u_{2}(t) h(t-2) \\
& =u_{2}(t)\left[e^{t}+e^{2} \cos (\pi(t-2))+\frac{e^{2}}{\pi} \sin (\pi(t-2))\right] \\
& =u_{2}(t)\left[e^{t}+e^{2} \cos (\pi t)+\frac{e^{2}}{\pi} \sin (\pi t)\right] .
\end{aligned}
$$

8. Find the Laplace transform of the piecewise continuous function

$$
f(t)= \begin{cases}t & \text { if } 0 \leq t<1 \tag{6}\\ 2-t & \text { if } 1 \leq t<2 \\ 0 & \text { if } t \geq 2\end{cases}
$$

A.

$$
F(s)=\frac{1}{s^{2}}-\frac{2}{s^{2}}+\frac{1}{s^{2}}
$$

B.

$$
F(s)=1-e^{-s}+e^{-2 s}
$$

C.

$$
F(s)=1-2 e^{-s}+e^{-2 s}
$$

D.

$$
F(s)=\frac{1}{s^{2}}+\frac{2 e^{-s}}{s^{2}}+\frac{e^{-2 s}}{s^{2}}
$$

E.

$$
F(s)=\frac{1}{s^{2}}-\frac{2 e^{-s}}{s^{2}}+\frac{e^{-2 s}}{s^{2}}
$$

F. none of the above

E

Rewriting (6), we get

$$
f(t)=t-2 u_{1}(t)(t-1)+u_{2}(t)(t-2) .
$$

It follows that

$$
F(s)=\frac{1}{s^{2}}-\frac{2 e^{-s}}{s^{2}}+\frac{e^{-2 s}}{s^{2}}
$$

9. If $y(t)$ is the solution of the initial value problem:

$$
\begin{equation*}
y^{\prime \prime}+4 y=\delta(t-2014 \pi), \quad y(0)=0, \quad y^{\prime}(0)=0 \tag{7}
\end{equation*}
$$

then what is the value of $y(2015 \pi)$?
A. 0
B. -1
C. 1
D. π
E. $\frac{\pi}{2}$
F. none of the above

A
Taking Laplace transform of (7), we get

$$
\begin{aligned}
s^{2} Y(s)-s y(0)-y^{\prime}(0)+4 Y(s) & =e^{-2014 \pi s}, \\
Y(s) & =\frac{e^{-2014 \pi s}}{2} \cdot \frac{2}{s^{2}+4} .
\end{aligned}
$$

Thus, we obtain the unique solution

$$
y(t)=\frac{1}{2} u_{2014 \pi}(t) \sin [2(t-2014 \pi)],
$$

and

$$
y(2015 \pi)=\frac{1}{2} \sin (2 \pi)=0 .
$$

10. Find the inverse Laplace transform of

$$
\begin{equation*}
F(s)=\ln \left(\frac{s^{2}+1}{s^{2}+4}\right) . \tag{8}
\end{equation*}
$$

A.

$$
f(t)=e^{t^{2}+1}+e^{t^{2}+4}
$$

B.

$$
f(t)=e^{2 t}+e^{-2 t}
$$

C.

$$
f(t)=u_{1}(t) \cos t+u_{2}(t) \sin (2 t)
$$

D.

$$
f(t)=\frac{2}{t}(2 \cos t+1)(\cos t-1)
$$

E.

$$
f(t)=\frac{2}{t}(\cos t-\cos (2 t))
$$

F. none of the above

D

We use the property

$$
\mathcal{L}\{-t f(t)\}=F^{\prime}(s) .
$$

Rewriting (8), we have

$$
F(s)=\ln \left(s^{2}+1\right)-\ln \left(s^{2}+4\right) .
$$

It follows that

$$
F^{\prime}(s)=\frac{2 s}{s^{2}+1}-\frac{2 s}{s^{2}+4}
$$

and

$$
\begin{aligned}
-t f(t) & =\mathcal{L}^{-1}\left\{F^{\prime}(s)\right\} \\
& =2 \cos t-2 \cos (2 t) \\
& =2 \cos t-4 \cos ^{2} t+2 \\
& =2(2 \cos +1)(-\cos t+1) .
\end{aligned}
$$

Hence,

$$
f(t)=\frac{2}{t}(2 \cos +1)(\cos t-1) .
$$

Note that E is off by a sign.

Part II. True/False $\quad 5 \times 2=10$ points
Choose A if the statement is true; choose B if the statement is false.
11. There is a unique solution to the initial value problem:

$$
y^{\prime}-y^{\frac{1}{2}}=0, \quad y(0)=0
$$

12. If p and q are continuous functions, and y_{1} and y_{2} are solutions of the differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

then we have

$$
W\left(y_{1}, y_{2}\right)(t)=e^{-\int_{t_{0}}^{t} p(\tau) d \tau}
$$

for some constant t_{0}.
13. If p and q are continuous real-valued functions, and $u(t)+i v(t)$ are complex-valued solutions of the differential equation

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0, \tag{9}
\end{equation*}
$$

then both u and v are also solutions of (9).
14. For the power series

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

if the radius of convergence is ρ and $\left|x_{1}\right| \geq \rho$, then the series

$$
\sum_{n=0}^{\infty} a_{n}\left(x_{1}\right)^{n}
$$

does not converge.
15. If f is continuous function on $[0, \infty)$, then the Laplace transform

$$
\mathcal{L}\{f(t)\}=F(s)
$$

exists for $s>0$.

B B A B B

11. For example, both $y=\frac{t^{2}}{4}$ and $y=0$ are solutions.
12. The original statement o Abel's theorem is that

$$
W\left(y_{1}, y_{2}\right)(t)=c_{0} e^{-\int_{t_{0}}^{t} p(\tau) d \tau}
$$

where the constant

$$
c_{0}=W\left(y_{1}, y_{2}\right)\left(t_{0}\right)
$$

could be zero. As stated,

$$
W\left(y_{1}, y_{2}\right)(t)=e^{-\int_{t_{0}}^{t} p(\tau) d \tau}
$$

is never zero. If $y_{1}=y_{2}=0$, then $W\left(y_{1}, y_{2}\right)(t)=0$, which contradicts the statement.
13. See Theorem 3.2.6
14. Compare to Problem 15. in Exam 3, we have $\left|x_{1}\right| \geq \rho$ instead of $\left|x_{1}\right|>\rho$. For example, for the series

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n} x^{n}
$$

the radius of convergence is 1 . For $\left|x_{1}\right|>1$, the series

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n}\left(x_{1}\right)^{n}
$$

does not converge. However, by alternating test, you can check that the series

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n}
$$

DOES converge.
15. See Theorem 6.1.2. For an counter-example, let $f(t)=e^{t}$, then

$$
\mathcal{L}\left\{e^{t}\right\}=\frac{1}{s-1}
$$

does not exists for $0 \leq s \leq 1$.

Math 217 Final Exam Dec 11, 2015
Part III will be collected separately. Please write your NAME and your STUDENT NUMBER.

Student Number:

Name:

For graders:
$16 a+16 b .+16 c .+16 d$.

16e.
17.

Total:

Part III. Hand-graded problems $10+10+20=40$ points
16a. (4 points)
Find the general solution of the homogenous differential equation:

$$
\begin{equation*}
y^{\prime \prime}-4 y=0 . \tag{10}
\end{equation*}
$$

The characteristic equation of (10) is

$$
r^{2}-4=0
$$

with roots $r_{1}=2$ and $r_{2}=-2$. Thus, $y_{1}(t)=e^{2 t}$ and $y_{2}=e^{-2 t}$ the general solution is

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)=c_{1} e^{2 t}+c_{2} e^{-2 t} .
$$

16b. (6 points) Use the method of undetermined coefficients to find the general solution of the non-homogeneous differential equation:

$$
\begin{equation*}
y^{\prime \prime}-4 y=\sinh 2 t . \tag{11}
\end{equation*}
$$

We try a particular solution

$$
Y(t)=A t e^{2 t}+B t e^{-2 t}
$$

It follows that

$$
Y^{\prime \prime}(t)=4 A e^{2 t}-4 B e^{-2 t}+4 A t e^{2 t}+4 B t e^{-2 t} .
$$

Thus, (11) implies that

$$
4 A e^{2 t}-4 B e^{-2 t}=\frac{e^{2 t}-e^{-2 t}}{2}
$$

and so $A=B=\frac{1}{8}$. Hence, the general solution of (11) is

$$
\begin{aligned}
y(t) & =c_{1} e^{2 t}+c_{2} e^{-2 t}+\frac{t e^{2 t}}{8}+\frac{t e^{-2 t}}{8} \\
& =c_{1} e^{2 t}+c_{2} e^{-2 t}+\frac{t \cosh (2 t)}{4}
\end{aligned}
$$

This page is intentionally left blank.

16c. (6 points)
Use the method of variation of parameters to find the general solution of the non-homogeneous differential equation:

$$
\begin{equation*}
y^{\prime \prime}-4 y=\sinh 2 t \tag{12}
\end{equation*}
$$

Since $y_{1}(t)=e^{2 t}$ and $y_{2}=e^{-2 t}$, it follows that

$$
W\left(y_{1}, y_{2}\right)(t)=-4
$$

Hence, the general solution is

$$
\begin{aligned}
y(t) & =-y_{1}(t) \int \frac{y_{2}(t) \sinh (2 t)}{W\left(y_{1}, y_{2}\right)(t)} d t+y_{2}(t) \int \frac{y_{1}(t) \sinh (2 t)}{W\left(y_{1}, y_{2}\right)(t)} d t \\
& =e^{2 t} \int \frac{1}{8}\left(1-e^{-4 t}\right) d t+e^{-2 t} \int-\frac{1}{8}\left(e^{4 t}-1\right) d t \\
& =e^{2 t}\left[\frac{t}{8}+\frac{e^{-4 t}}{32}+c_{1}+\frac{1}{32}\right]+e^{-2 t}\left[-\frac{e^{4 t}}{32}+\frac{e^{t}}{8}+c_{2}-\frac{1}{32}\right] \\
& =c_{1} e^{2 t}+c_{2} e^{-2 t}+\frac{t \cosh (2 t)}{4}
\end{aligned}
$$

Note that for convenience, we have use the integration constants $c_{1}+\frac{1}{32}$ and $c_{2}-\frac{1}{32}$.

This page is intentionally left blank.

16d. (4 points)
Use the results in 16 b . or 16 c . to find the unique solution of the initial value problem:

$$
\begin{equation*}
y^{\prime \prime}-4 y=\sinh 2 t, \quad y(0)=0, \quad y^{\prime}(0)=0 \tag{13}
\end{equation*}
$$

The general solution of (11) is

$$
y(t)=c_{1} e^{2 t}+c_{2} e^{-2 t}+\frac{t \cosh (2 t)}{4}
$$

Taking direvative, we get

$$
y(t)=2 c_{1} e^{2 t}-2 c_{2} e^{-2 t}+\frac{\cosh (2 t)}{4}+\frac{t \sinh (2 t)}{4}
$$

The initial condition implies that

$$
c_{1}+c_{2}=0, \quad 2 c_{1}-2 c_{2}+\frac{1}{4}=0
$$

It follows that

$$
c_{1}=-\frac{1}{16}, \quad c_{2}=\frac{1}{16}
$$

Hence, the unique solution of (13) is

$$
\begin{aligned}
y(t) & =-\frac{1}{16} e^{2 t}+\frac{1}{16} e^{-2 t}+\frac{t \cosh (2 t)}{4} \\
& =-\frac{\sinh (2 t)}{8}+\frac{t \cosh (2 t)}{4}
\end{aligned}
$$

16e. (10 points)
Use the method of Laplace transform to find the solution of the initial value problem:

$$
\begin{equation*}
y^{\prime \prime}-4 y=\sinh 2 t, \quad y(0)=0, \quad y^{\prime}(0)=0 . \tag{14}
\end{equation*}
$$

Taking Laplace transform of (14), we get

$$
\begin{aligned}
& s^{2} Y(s)-s y(0)-y^{\prime}(0)-4 Y(s)=\frac{2}{s^{2}-4} \\
& Y(s)=\frac{2}{\left(s^{2}-4\right)^{2}}=\frac{1}{2} \cdot \frac{2}{s^{2}-4} \cdot \frac{2}{s^{2}-4}
\end{aligned}
$$

Using the convolution integral, we get

$$
\begin{aligned}
y(t) & =\frac{1}{2} \int_{0}^{t} \sinh [2(t-\tau)] \sinh (2 \tau) d \tau \\
& =\frac{1}{8} \int_{0}^{t}\left(e^{2 t-2 \tau}-e^{2 \tau-2 t}\right)\left(e^{2 \tau}-e^{-2 \tau}\right) d \tau \\
& =\frac{1}{8} \int_{0}^{t}\left(e^{2 t}+e^{-2 t}-e^{4 \tau-2 t}-e^{2 t-4 \tau}\right) d \tau \\
& =\frac{t\left(e^{2 t}+e^{-2 t}\right)}{8}-\frac{1}{4} \int_{0}^{t} \cosh (4 \tau-2 t) d \tau \\
& =\frac{t \cosh (2 t)}{4}-\left.\frac{1}{16} \sinh (4 \tau-2 t)\right|_{0} ^{t} \\
& =\frac{t \cosh (2 t)}{4}-\frac{1}{16} \sinh (2 t)+\frac{1}{16} \sinh (-2 t) \\
& =\frac{t \cosh (2 t)}{4}-\frac{\sinh (2 t)}{8}
\end{aligned}
$$

This page is intentionally left blank.
17. Find the solution of the initial value problem:

$$
\begin{equation*}
y^{\prime \prime}+y=f(t), \quad y(0)=0, \quad y^{\prime}(0)=1 \tag{15}
\end{equation*}
$$

where

$$
f(t)= \begin{cases}1 & \text { if } 0 \leq t<\pi \tag{16}\\ 0 & \text { if } t \geq \pi\end{cases}
$$

Using (16) to rewriting f, we have

$$
f(t)=1-u_{\pi}(t)
$$

Taking the Laplace transform of (15), we get

$$
\begin{aligned}
& s^{2} Y(s)-s y(0)-y^{\prime}(0)+Y(s)=\frac{1}{s}-\frac{e^{-\pi s}}{s} \\
& s^{2} Y(s)-1+Y(s)=\frac{1}{s}-\frac{e^{-\pi s}}{s}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
Y(s) & =\frac{1}{s\left(s^{2}+1\right)}+\frac{e^{-\pi s}}{s\left(s^{2}+1\right)}+\frac{1}{s^{2}+1} \\
& =\frac{1}{s}-\frac{s}{s^{2}+1}+\frac{1}{s^{2}+1}-e^{-\pi s} \cdot \frac{1}{s}+e^{-\pi s} \cdot \frac{s}{s^{2}+1} .
\end{aligned}
$$

Taking the inverse Laplace transform, we obtain the solution of (15)

$$
\begin{aligned}
y(t) & =1-\cos t+\sin t-u_{\pi}(t)[1-\cos (t-\pi)] \\
& =1-\cos t+\sin t-u_{\pi}(t)(1+\cos t)
\end{aligned}
$$

This page is intentionally left blank.

This page is intentionally left blank.

