Math 309.02

Wednesday, Sept. 30-12pm

See 2.2. INVERSES..
SQUARE MATRICES. $\binom{n \times n}{$ Size ${ }^{i} n}$

* Identity Maths $I_{n}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 1\end{array}\right]$

$$
I_{n} A=A \quad B I_{n}=B
$$

Def:- Guise a Square matisse (s) size n), A, we say if is INVERTIBLE if there eras a matrix B (of size ${ }^{n}$) such that $A B=B A=I_{n}$
(Sometimes these are also called NON-SINGULAR NON-INVERTIBLE = SINGULAR)

If $n=1$.

$$
A=[a] .
$$

A invertible $a \neq 0$

$$
B=\left[\frac{1}{a}\right]
$$

Def:- Given a square matin (sf size n), A, we say if is INVERTIBLE if there easts a matrix B (of size n) such that $A B=B A=I_{n}$.
(Sometimes these are also called IVON-SINGUCAR

$$
\text { NON-I AVERTIBLE }=\text { SINGULAR) }
$$

$$
\left.\begin{array}{l}
S_{n=2}^{2} \\
A=\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right] \text { TMUEASERER } \\
D=a d-b c\binom{n \times n}{D} \\
\text { (DETERMINANT }
\end{array}\right)
$$

$$
\begin{aligned}
& \text { Dif } D \neq 0, S A \text { is wivertible } \\
& \begin{array}{l}
\text { we. } A^{-1}=\frac{1}{D}\left[\begin{array}{l}
d V-b \\
-c
\end{array}\right]=a \cdot\left[\begin{array}{cc}
\frac{d}{D} & -\frac{b}{D} \\
\left.-\frac{c}{D}\right) & \frac{a}{D}
\end{array}\right] \text {. }
\end{array} \\
& A^{\prime} A=\left[\begin{array}{cc}
\frac{d}{D} & -\frac{b}{D} \\
-\frac{c}{D} & \frac{a}{d}
\end{array}\right]\left[\begin{array}{ll}
a & b \\
= & 1 \\
c & d
\end{array}\right]=\left[\begin{array}{ccc}
\frac{d}{D} \times \frac{a-\frac{b}{D}}{D} \times c & \frac{a}{D} & \frac{d}{D} \times b-\frac{b}{D} \times d \\
-\frac{c}{D} \times a+\frac{a}{D} \times c & -\frac{c}{D}+\frac{a}{D} \times d
\end{array}\right]=I_{2}
\end{aligned}
$$

Ex: Let A be an invertible A matrix.
SOLVE: $A \vec{x}=\vec{b}$

$$
\begin{aligned}
& A x=b \\
& \vec{A} A \vec{x}=\vec{A} \vec{b} \Rightarrow \vec{x}=\vec{A} \vec{b}+ \\
& I_{n}
\end{aligned}
$$

Algorithm for inverse wortitio

$$
B=\left[\begin{array}{ll}
A & I_{n}
\end{array}\right] \quad \text { Thisis an } n \times 2 n \text { matrix. }
$$

Attempt to make B into yow-redueed echelon form. If the vow reduced echelon form looks like $\left[\begin{array}{ll}I_{n} & ? \\ I_{n} & 1\end{array}\right]$. then ? $=A^{-1}$.

Elementary Matrices
A swart Asmatrix E is called ELEMENTARY * $\neq 0$

$$
A E^{\prime}=\left[\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right] \frac{1}{4}=\left[\begin{array}{ll}
1 & -a \\
0 & 1
\end{array}\right]
$$

Find the inverse

$$
\left[\begin{array}{cccc}
1 & a & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 0 & 1 & -a \\
0 & 1 & 1 & 0
\end{array}\right]
$$

Elementany Matrices.

$$
\begin{aligned}
& E=\left[\begin{array}{llll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right] \\
& {\left[\begin{array}{llllll}
1 & a & b & 1 & 0 & 0 \\
0 & 1 & c & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{llllll}
1 & a & b & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & -c \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

The: A is mivertible If and only if its columns are linearly independent.

- For any equation $A \vec{x}=\vec{b}$

The has a UNIQUE soluncis if A viventiol.
namely $\vec{x}=A^{\prime}{ }^{y}$.

If the columns of A are linearly dep nears, there is a non-zers vector \vec{V}, Such that $\overrightarrow{A v}=\overrightarrow{0}$. $\vec{V}=\vec{A} 0$ if A is nivaridle

$$
\begin{aligned}
& \left.A=\left[\vec{u}_{1}, \ldots . \vec{u}_{n}\right] \left\lvert\, \begin{array}{l}
\vec{v}=\left[\begin{array}{l}
a_{1} \\
a_{n}
\end{array}\right] . \\
A \vec{v}=\overrightarrow{0} \\
\text { Find } a_{1}, \ldots a_{n} \text { not ALL } 0
\end{array}\right.\right] \\
& \text { sit. } \quad a_{1} \vec{u}_{1}+\ldots+a_{n} \vec{u}_{n}=\overrightarrow{0}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (30) Find he mivense of } \\
& {\left[\begin{array}{cccc}
5 & 10 \\
4 & 7
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
5 & 10 & 1 & 0 \\
4 & 7 & 0 & 1
\end{array}\right]} \\
& \Rightarrow\left[\begin{array}{llll}
1 & 2 & \frac{1}{5} & 0 \\
4 & 7 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{llll}
1 & 2 & \frac{1}{5} & 0 \\
0 & -1 & -\frac{4}{5} & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{cccc}
1 & 2 & \frac{9}{5} & 0 \\
0 & 1 & \frac{4}{5} & -1
\end{array}\right] \\
& \propto\left[\begin{array}{cccc}
1 & 0 & -7 / 5 & 2 \\
0 & 1 & \frac{4}{5} & -1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
5 & 10 \\
4 & 7
\end{array}\right]\left[\begin{array}{cc}
-7 / 5 & 2 \\
\frac{4}{5} & -1
\end{array}\right]} \\
& =\left[\begin{array}{cc}
-7+8 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

