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The goal is to generate random samples of a variable X with probability density function
π = π(x) = Kf(x), where f is a given nonnegative integrable function but K is an unknown
positive normalization constant. This problem arises in Bayesian analysis when the posterior
pdf π is known to be proportional to the product of a nonnegative likelihood and a prior pdf,
but the normalization constant is unknown so that neither inverse cdf sampling nor rejection
sampling can be used.

Information about π may be extracted by randomly sampling X. For example, by the
Law of Large Numbers, if X has finite expectation µ = E(X), then averages

X̄N
def
=

1

N

N∑
i=1

Xi

of N random samples {X1, . . . , XN} will converge to µ as N → ∞. If, in addition, E(X2) is
finite and the samples are independent, then the Central Limit Theorem gives a good rate
of convergencevia the squared-error estimate

E(|µ− X̄N |2) = O(1/N),

as N → ∞. Additionally, sampling π often enough to approximate it with a fine histogram
is one way to locate a maximum likelihood estimator (MLE) within the most populated bin.

The MCMC method achieves this goal by finding a transition function

P (y|x) = Prob (xn+1 = y | xn = x),

not dependent on the time step n ∈ {0, 1, 2, . . .}, for a Markov chain {X0, X1, X2, . . .} that
has a stationary distribution π. This is to be done given only f where π = Kf and the
normalization constant K is unknown.
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This problem is underdetermined so we will add the additional condition that P (y|x)
defines a reversible Markov chain, namely one satisfying the detailed balance equations

(∀x, y) P (x|y)π(y) = P (y|x)π(x).

Note that any such P will have pdf π as a stationary distribution: compute its action on π
by summing over all states x to get

(∀y)
∫
x
P (y|x)π(x) dx =

∫
x
P (x|y)π(y) dx = π(y)

∫
x
P (x|y) dx = π(y),

since the conditional pdf P (x|y), for any y, is a pdf in x whose integral must equal 1.
In addition, we will assume that P (y|x) > 0 for all x, y. This implies that P is ergodic

and guarantees that it has a unique stationary distribution, which is π, so that we need not
fear convergence to something else. It also guarantees that π is positive and justifies the
algebra performed below.

Now we adapt an idea from rejection sampling: factor the transition probability into
the product of a conditional proposal or jumping probability g and a joint acceptance
probability A:

P (y|x) def
= g(y|x)A(y, x).

There is considerable freedom in choosing g, but then A must be adjusted to get P with
the desired target pdf π = Kf . Combining this factorization with the detailed balance
equation, we deduce that

(∀x, y) f(y)

f(x)
=

π(y)

π(x)
=

P (y|x)
P (x|y)

=
g(y|x)A(y, x)
g(x|y)A(x, y)

,

which is equivalent to

(∀x, y) A(y, x)

A(x, y)
=

g(x|y)f(y)
g(y|x)f(x)

.

It is easily checked that the last equation holds if we take

A(y, x)
def
= min

{
1,

g(x|y)f(y)
g(y|x)f(x)

}
.

We may now implement a transition x → y with probability P (y|x) as follows:
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Metropolis-Hastings Sampling for MCMC

0. Let x = Xn be given

1. Generate a random sample y from the conditional pdf g(y|x).

2. Compute the ratio

r
def
=

g(x|y)f(y)
g(y|x)f(x)

using the given function f and the chosen jumping pdf g.

3. Generate a random sample u ∈ [0, 1] with distribution Uniform([0,1]).

4. If u < r then jump to y by taking Xn+1 = y. Otherwise, remain at x taking Xn+1 = x.

This algorithm, starting at n = 0 with any initial value X0, produces a sequence of samples
{X1, X2, . . .} for a Markov chain with stationary pdf π.

Some computation may be avoided if the jumping pdf is symmetric, which means

(∀x, y) g(x|y) = g(y|x).

This is true, for example, if g is the uniform conditional pdf since then both sides are the
same constant. It is also true if g(y|x) is a normal pdf for y with mean x, since then g(x|y)
is a normal pdf for x with mean y and the same variance, and the two will be equal at all
pairs x, y.

In this “symmetric” case, the acceptance rule simplifies by cancellation:

A(y, x)
def
= min

{
1,

f(y)

f(x)

}
.

The simplified implementation of transition x → y with probability P (y|x) is the following:
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Metropolis Sampling for MCMC

0. Let x = Xn be given

1. Generate a random sample y from the symmetric conditional pdf g(y|x).

2. Compute the ratio

r
def
=

f(y)

g(x)

using the known f and the chosen jumping pdf g.

3. Generate a random sample u ∈ [0, 1] with distribution Uniform([0,1]).

4. If u < r then jump to y by taking Xn+1 = y. Otherwise, remain at x taking Xn+1 = x.
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