1. Let \(f_n(x) = [x^n(1 - x^n)] \) for \(n = 1, 2, 3, \ldots \). Does the sequence \(\{f_n(x)\} \) converge uniformly on \(0 < x < 1 \)?

2. Use Cauchy’s Inequalities to deduce Liouville’s Theorem.

3. Let \(D \subset \mathbb{C} \) be the closed diamond-shaped region with vertices \(1, i, -1, -i \). Suppose that \(f = f(z) \) is analytic on \(D \) and satisfies \(|f(z)| \leq M \) for all \(z \in D \). Prove that \(|f'(0)| \leq M\sqrt{2} \) and \(|f''(0)| \leq 4M \).

4. Suppose that \(f(z) \) is analytic on \(|z| < 2 \). Define \(F_0(z) = f(z) \) and \(F_{n+1}(z) = \int_0^z F_n(w) \, dw \) for \(n \geq 0 \). Prove that if \(\{F_n(z)\} \) converges uniformly on \(|z| < 1 \), then \(f(z) = ce^z \) for some constant \(c \).

5. Recall that \(\lim_{n \to \infty} \left(1 + \frac{z}{n}\right)^n = e^z \) for all real \(x \). Show that

\[
\lim_{n \to \infty} \left(1 + \frac{z}{n}\right)^n = e^z,
\]

for all complex \(z \). (Hint: use the uniform convergence theorem and the coincidence principle.)

6. Compute \(\Gamma(3/2) \) and \(\Gamma(-1/2) \).