Ma 416: Complex Variables
Homework Assignment 7

Prof. Wickerhauser

Due Thursday, October 27, 2005

1. Use the argument principle to count the zeros of \(P(z) = z^4 + z^3 + 6z^2 + 3z + 5 \) in the left half-plane \(\{ \Re z < 0 \} \) and right half-plane \(\{ \Re z > 0 \} \) of the complex plane.

2. Use Rouché's theorem to determine the number of zeros of \(3e^{z/2} + z \) satisfying \(|z| < 1 \).

3. Suppose \(\{ f_n : n = 1, 2, \ldots \} \) is an infinite sequence of analytic functions that converges uniformly in all compact subsets of a region \(D \) containing 0.
 (a) Show that \(\{ \exp(f_n) : n = 1, 2, \ldots \} \) is also an infinite sequence of analytic functions that converges uniformly in each compact subset of \(D \).
 (b) Show that if \(\lim_{n \to \infty} \exp(f_n(0)) = 0 \), then \(\lim_{n \to \infty} \exp(f_n(z)) = 0 \) for all \(z \in D \).

4. Is it possible for a function \(f = f(z) \) which takes only purely imaginary values to be analytic on \(\{|z| < 1\} \)?

5. Show that \(f(z) = z/(1 - z)^2 \) is univalent in \(|z| < 1 \).

6. Prove that the converse to Darboux's theorem is false: Find a simple closed curve \(S \) and an analytic function \(f = f(z) \) such that \(f \) is univalent inside \(S \) but not univalent on \(S \).