1. Fix an integer \(q > 0 \), let \(N = 2^q > 1 \) and consider a graph with vertices labeled \(0, 1, \ldots, N-1 \). Suppose that vertex \(i \) is connected by an edge to vertex \(j \) if and only if the base-two expansions for \(i \) and \(j \) differ by exactly one bitflip. Compute the total number of edges.

2. Construct a prefix code for the alphabet \(A = \{a, b, c, d, e, f\} \) with codeword lengths 1,2,2,3,3,3 or prove that none exists.

3. Construct a prefix code for the 24-letter Greek alphabet \(A = \{\alpha, \beta, \gamma, \ldots, \omega\} \) with longest codeword 5, or prove that none exists.

4. Suppose we have two prefix codes, \(c_0(a,b) = (1,0) \) and \(c_1(a,b) = (0,1) \), for the alphabet \(A = \{a,b\} \). Show that the following dynamic encoding is uniquely decipherable by finding a decoding algorithm:

 Simple Dynamic Encoding Example

   ```
   dynamicencoding0( msg[], M ):
   [0] Initialize n=0
   [2] Transmit msg[m] using code n
   [3] If msg[m]=='b', then toggle n = 1-n
   ```

 (This encoding is called dynamic because the codeword for a letter might change as a message is encoded, in contrast with the static encodings studied in this chapter. It gives an example of a uniquely decipherable and instantaneous code which is nevertheless not a prefix code.)

5. Suppose that \(A \) is a finite set, \(s \) is a fixed positive integer, and \(p_k : A \rightarrow [0,1] \) is a probability function on \(A \) for each \(k = 1, \ldots, s \).

 (a) Show that the function \(p : A^s \rightarrow [0,1] \) defined by

 \[
 p(x_1, x_2, \ldots, x_s) \overset{\text{def}}{=} p_1(x_1)p_2(x_2)\cdots p_s(x_s)
 \]

 is a probability function on \(A^s \).

 (b) Compute the entropy \(H(p) \) in terms of \(H(p_1), \ldots, H(p_s) \).
6. A k-ary tree is called extended if every interior, or non-leaf, vertex has all \(k \) children. Count, with proof, the extended \(k \)-ary trees of depth 3 or less.

7. Fix a positive integer \(n \) and consider the alphabet \(A = \{ a_1, \ldots, a_n, a_{n+1} \} \) with occurrence probabilities \(p(a_i) = 2^{-i} \) for \(i = 1, \ldots, n \), and \(p(a_{n+1}) = 2^{-n} \). (a) Construct a Huffman code for the alphabet and compare its bit rate with \(H(p) \).
(b) Construct a canonical Huffman code for this alphabet, with the property that no letter has a codeword consisting of just 1-bits. Compute its bit rate.

8. What is the probability of an undetected error in 8 data bits in a \(2 \times 2 \times 2 \) array with crossed parity checks if the data bits each have an independent probability \(p \) of being flipped, but the 12 top, front, and left face parity bits are known to be correct?

9. Find a binary code with two 10-bit or shorter codewords, wherein restoration to the nearest codeword corrects any three or fewer bit flips.

10. Prove that casting out seventeens will detect all one-digit errors in hexadecimal arithmetic. Find an example one-hexadecimal-digit error undetected by casting out fifteens.

11. Will the combination of checksums \(c_9 \) and \(c_{11} \) distinguish all nonequal 2-decimal-digit positive integers?

12. Find a mod-2 polynomial of degree 3 that is relatively prime to \(p(t) = t^7 + t^5 + t^3 + t \). (Hint: use Euclid’s algorithm for mod-2 polynomials.)

13. Suppose that \(b \) is a prime number. Write \(b = \ldots b_2 b_1 b_0 \) (base 2) and let \(p(t) = b_0 + b_1 t + b_2 t^2 + \cdots \) be the associated mod-2 polynomial. Prove or find a counterexample to the claim that \(p \) must be irreducible.

14. Suppose that \(s > 0 \) and \(a > 1 \) are integers with \(\gcd(a, s) = 1 \). Prove that there is some integer \(N > 0 \) such that \(a^N - 1 \) is divisible by \(s \), but \(s \) does not divide \(a^k - 1 \) for any positive integer \(k < N \). (This is Theorem 6.19 for integers rather than mod-2 polynomials.)

15. Find integers \(j, k, 0 < k < j < 32 \), such that \(s(t) = t^{32} + t^j + t^k + 1 \) is an irreducible mod-2 polynomial, or prove that none exists. (Hint: try dividing one such \(s(t) \) by \(t + 1 \).)