Please do Exercises 1, 4*, 7, 9*, 11, 12, 13, 16, 21*, 26, 28, 31, 32, 33, 36, 37.

Exercises marked with (*) are especially important and you may wish to focus extra attention on those.

You are encouraged to try the other problems in this list as well.

Note: “textbook” refers to “Real Analysis for Graduate Students,” version 2.1, by Richard F. Bass. These exercises originate from that source.

1. Suppose \((X, \mathcal{A})\) is a measurable space, \(f : X \to \mathbb{R}\) is a function, and \(\{ x : f(x) > r \} \in \mathcal{A}\) for all \(r \in \mathbb{Q}\). Prove that \(f\) is measurable.

2. Let \(f : (0, 1) \to \mathbb{R}\) be such that for every \(x \in (0, 1)\) there exist \(r > 0\) and a Borel measurable function \(g\), both depending on \(x\), such that \(f\) and \(g\) agree on \((x - r, x + r) \cap (0, 1)\). Prove that \(f\) is Borel measurable.

3. Suppose \(f_n\) is a sequence of measurable functions. Prove that

\[A = \{ x : \lim_{n \to \infty} f_n(x) \text{ exists} \} \]

is a measurable set.

4. If \(f : \mathbb{R} \to \mathbb{R}\) is Lebesgue measurable, prove that there exists a Borel measurable function \(g\) such that \(f = g\) a.e.

5. Give an example of a collection of measurable non-negative functions \(\{f_\alpha\}_{\alpha \in A}\) such that if \(g\) is defined by \(g(x) = \sup_{\alpha \in A} f_\alpha(x)\), then \(g\) is finite for all \(x\) but \(g\) is non-measurable. (Hint: \(A\) is allowed to be uncountable.)
6. Suppose \(f : \mathbb{R} \to \mathbb{R} \) is Lebesgue measurable and \(g : \mathbb{R} \to \mathbb{R} \) is continuous. Prove that \(g \circ f \) is Lebesgue measurable. Is this true if \(g \) is Borel measurable instead of continuous? Is this true if \(g \) is Lebesgue measurable instead of continuous?

7. Suppose \(f : \mathbb{R} \to \mathbb{R} \) is Borel measurable. Define \(A \) to be the smallest \(\sigma \)-algebra containing the sets \(\{ x : f(x) > a \} \) for every \(a \in \mathbb{R} \). Suppose \(g \) is measurable with respect to \(A \), namely that \((\forall a \in \mathbb{R})\{ x : g(x) > a \} \in A\). Prove that there exists a Borel measurable function \(h : \mathbb{R} \to \mathbb{R} \) such that \(g = h \circ f \).

8. It is known that there exist discontinuous real-valued functions \(f \) such that
\[
(\forall x, y \in \mathbb{R}) \ f(x + y) = f(x) + f(y).
\]
(An example may be constructed using Zorn’s lemma.) Prove that if \(f \) satisfies (1) and in addition \(f \) is Lebesgue measurable, then \(f \) is continuous.

9. Verify Equation (6.5) on textbook p.48. Namely, for measure space \((X, \mathcal{A}, \mu)\), show that if \(\sum_{i=1}^{n} a_i \chi_{A_i} = \sum_{j=1}^{m} b_j \chi_{B_j} \) for \(A_i, B_j \in \mathcal{A} \) and \(a_i, b_j \in \mathbb{R} \), then
\[
\sum_{i=1}^{n} a_i \mu(A_i) = \sum_{j=1}^{m} b_j \mu(B_j).
\]

10. Suppose \(f \) is non-negative and measurable and \(\mu \) is \(\sigma \)-finite. Show there exist simple functions \(s_n \) increasing to \(f \) at each point such that \(\mu(\{ x : s_n(x) \neq 0 \}) < \infty \) for each \(n \).

11. Let \(f \) be a non-negative measurable function. Prove that
\[
\lim_{n \to \infty} \int \min(f, n) = \int f.
\]

12. Let \((X, \mathcal{A}, \mu)\) be a measure space and suppose \(\mu \) is \(\sigma \)-finite. Suppose \(f \) is integrable. Prove that given \(\epsilon > 0 \) there exists \(\delta > 0 \) such that
\[
\int_{A} |f(x)| \mu(dx) < \epsilon
\]
whenever \(\mu(A) < \delta \).

13. Suppose \(\mu(X) < \infty \) and \(f_n \) is a sequence of bounded real-valued measurable functions that converge to \(f \) uniformly. Prove that
\[
\int f_n \, d\mu \to \int f \, d\mu.
\]
This is sometimes called the *bounded convergence theorem*. (Hint: prove this with or without the dominated convergence theorem.)

14. If f_n is a sequence of non-negative integrable functions such that $f_n(x)$ decreases to $f(x)$ for every x, prove that $\int f_n \, d\mu \to \int f \, d\mu$.

15. Let (X, \mathcal{A}, μ) be a finite measure space and suppose f is a non-negative, measurable function that is finite at each point of X, but is not necessarily integrable. Prove that there exists a continuous increasing function $g : [0, \infty) \to [0, \infty)$ such that $\lim_{x \to \infty} g(x) = \infty$ and $g \circ f$ is integrable.

16. State and prove a version of the Dominated Convergence Theorem for complex-valued functions. (Hint: prove this as a corollary to the dominated convergence theorem for real-valued functions.)

17. Suppose f_n, g_n, f, g are integrable, $f_n \to f$ a.e., $g_n \to g$ a.e., $|f_n| \leq g_n$ for each n, and $\int g_n \to \int g$. Prove that $\int f_n \to \int f$. (Hint: use the dominated convergence theorem.)

18. Give an example of a sequence of non-negative functions f_n tending to 0 pointwise such that $\int f_n \to 0$ but there is no integrable function g such that $f_n \leq g$ for all n.

19. Suppose (X, \mathcal{A}, μ) is a measure space, f and each f_n is integrable and non-negative, $f_n \to f$ a.e, and $\int f_n \to \int f$. Prove that for each $A \in \mathcal{A}$,

$$\int_A f_n \, d\mu \to \int_A f \, d\mu.$$
23. Find the limit
\[\lim_{n \to \infty} \int_0^n \left(1 + \frac{x}{n} \right)^{-n} \log(2 + \cos(x/n)) \, dx \]
and justify your reasoning.

24. Find the limit
\[\lim_{n \to \infty} \int_0^n \left(1 - \frac{x}{n} \right)^n \log(2 + \cos(x/n)) \, dx \]
and justify your reasoning.

25. Prove that the limit exists and find its value:
\[\lim_{n \to \infty} \int_0^1 \frac{1 + nx^2}{(1 + x^2)^n} \log(2 + \cos(x/n)) \, dx \]

26. Prove that the limit exists and determine its value:
\[\lim_{n \to \infty} \int_0^\infty ne^{nx} \sin(1/x) \, dx \]

27. Let \(g : \mathbb{R} \to \mathbb{R} \) be integrable and let \(f : \mathbb{R} \to \mathbb{R} \) be bounded, measurable, and continuous at 1. Prove that
\[\lim_{n \to \infty} \int_{-n}^n f \left(1 + \frac{x}{n^2} \right) g(x) \, dx \]
evaluates and determine its value.

28. Suppose \(\mu(X) < \infty \), \(f_n \) converges to \(f \) uniformly, and each \(f_n \) is integrable. Prove that \(f \) is integrable and \(\int f_n \to \int f \). Is the condition \(\mu(X) < \infty \) necessary?

29. Prove that
\[\sum_{k=1}^{\infty} \frac{1}{(p+k)^2} = -\int_0^1 \frac{x^p}{1-x} \log x \, dx \]
for \(p > 0 \). (Hint: use the fundamental theorem of calculus, to be proved in textbook Chapter 8, namely if \(f \) is continuous on \([a,b]\) and \(F \) is differentiable on \([a,b]\) with derivative \(f \), then \(\int_a^b f(x) \, dx = F(b) - F(a) \).)

30. Let \(f_n \) be a sequence of measurable real-valued functions on \([0,1]\) that is uniformly bounded.
 a. Show that if \(A \) is a Borel subset of \([0,1]\), then there exists a subsequence \(n_j \) such that \(\int_A f_{n_j}(x) \, dx \) converges.
b. Show that if \(\{A_i\} \) is a countable collection of Borel subsets of \([0, 1]\), then there exists a subsequence \(n_j \) such that \(\int_{A_i} f_{n_j}(x) \,dx \) converges for each \(i \).

c. Show that there exists a subsequence \(n_j \) such that \(\int_A f_{n_j}(x) \,dx \) converges for each Borel subset \(A \) of \([0, 1]\).

31. Let \((X, \mathcal{A}, \mu)\) be a measure space. A sequence of measurable functions \(\{f_n\} \) is uniformly integrable if, given \(\epsilon > 0 \), there exists \(M \) such that
\[
\int_{\{x: |f_n(x)| > M\}} |f_n(x)| \,d\mu < \epsilon
\]
for each \(n \). The sequence is uniformly absolutely continuous if, given \(\epsilon > 0 \), there exists \(\delta > 0 \) such that
\[
\left| \int_A f_n \,d\mu \right| < \epsilon
\]
for each \(n \) and each \(A \in \mathcal{A} \) with \(\mu(A) < \delta \).

Suppose that \(\mu \) is a finite measure. Prove that \(\{f_n\} \) is uniformly integrable if and only if \(\sup_n \int |f_n| \,d\mu < \infty \) and \(\{f_n\} \) is uniformly absolutely continuous.

32. Suppose \(\mu \) is a finite measure, \(f_n \to f \) a.e., and \(\{f_n\} \) is uniformly integrable (see Exercise 31). Prove that \(\int |f_n - f| \to 0 \). (This is known as the Vitali convergence theorem.)

33. Suppose \(\mu \) is a finite measure, \(f_n \to f \) a.e., each \(f_n \) is integrable, and \(\int |f_n - f| \to 0 \). Prove that \(\{f_n\} \) is uniformly integrable (see Exercise 31).

34. Suppose \(\mu \) is a finite measure and for some \(\epsilon > 0 \),
\[
\sup_n \int |f_n|^{1+\epsilon} \,d\mu < \infty.
\]
Prove that \(\{f_n\} \) is uniformly integrable (see Exercise 31).

35. Suppose \(\{f_n\} \) is a uniformly integrable sequence of functions defined on \([0, 1]\). Prove that there is a subsequence \(n_j \) such that \(\int_0^1 f_{n_j} g \,dx \) converges whenever \(g \) is a real-valued bounded measurable function.

36. Suppose \(\mu_n \) is a sequence of measures on \((X, \mathcal{A})\) such that \(\mu_n(X) = 1 \) for all \(n \) and \(\mu_n(A) \) converges as \(n \to \infty \) for each \(A \in \mathcal{A} \). Call the limit \(\mu(A) \).

a. Prove that \(\mu \) is a measure.

b. Prove that \(\int f \,d\mu_n \to \int f \,d\mu \) whenever \(f \) is bounded and measurable.
c. Prove that
\[\int f \, d\mu \leq \liminf_{n \to \infty} \int f \, d\mu_n \]
whenever \(f \) is non-negative and measurable.

37. Let \((X, \mathcal{A}, \mu)\) be a measure space and let \(f\) be non-negative and integrable. Define \(\nu\) on \(\mathcal{A}\) by
\[\nu(A) \overset{\text{def}}{=} \int_A f \, d\mu. \]

a. Prove that \(\nu\) is a measure.

b. Prove that if \(g\) is integrable with respect to \(\nu\), then \(fg\) is integrable with respect to \(\mu\) and
\[\int g \, d\nu = \int fg \, d\mu. \]

38. Suppose \(\mu\) and \(\nu\) are finite positive measures on the Borel \(\sigma\)-algebra on \([0,1]\) such that
\[\int f \, d\mu = \int f \, d\nu \]
whenever \(f\) is real-valued and continuous on \([0,1]\). Prove that \(\mu = \nu\).

39. Let \(\mathcal{B}\) be the Borel \(\sigma\)-algebra on \([0,1]\). Let \(\mu_n\) be a sequence of finite measures on \(([0,1], \mathcal{B})\) and let \(\mu\) be another finite measure on \(([0,1], \mathcal{B})\). Suppose \(\mu_n([0,1]) \to \mu([0,1])\). Prove that the following are equivalent:

a. \(\int f \, d\mu_n \to \int f \, d\mu\) whenever \(f\) is a continuous real-valued function on \([0,1]\);

b. \(\limsup_{n \to \infty} \mu_n(F) \leq \mu(F)\) for all closed \(F \subset [0,1]\);

c. \(\liminf_{n \to \infty} \mu_n(G) \geq \mu(G)\) for all open \(G \subset [0,1]\);

d. \(\lim_{n \to \infty} \mu_n(A) = \mu(A)\) for all \(A \in \mathcal{B}\) such that \(\mu(\partial A) = 0\), where \(\partial A \overset{\text{def}}{=} \overline{A} - A^o\) is the boundary of \(A\);

e. \(\lim_{n \to \infty} \mu_n([0, x]) = \mu([0, x])\) for all \(x \in [0,1]\) such that \(\mu(\{x\}) = 0\).

40. Let \(\mathcal{B}\) be the Borel \(\sigma\)-algebra on \([0,1]\). Suppose \(\mu_n\) are finite measures on \(([0,1], \mathcal{B})\) such that \(\int f \, d\mu_n \to \int_0^1 f(x) \, dx\) whenever \(f\) is a real-valued continuous function on \([0,1]\). Suppose that \(g\) is a bounded measurable function such that the set of discontinuities of \(g\) has measure 0. prove that
\[\int g \, d\mu_n \to \int_0^1 g(x) \, dx. \]

41. Let \(\mathcal{B}\) be the Borel \(\sigma\)-algebra on \([0,1]\). Let \(\mu_n\) be a sequence of finite measures on \(([0,1], \mathcal{B})\) such that \(\sup_n \mu_n([0,1]) < \infty\). Define \(\alpha_n(x) = \mu_n([0, x])\).
a. If \(r \in [0, 1] \) is rational, prove that there exists a subsequence \(\{n_j\} \) such that \(\alpha_{n_j}(r) \) converges.

b. Prove that there exists a subsequence \(\{n_j\} \) such that \(\alpha_{n_j}(r) \) converges for every rational in \([0, 1]\).

c. Let \(\tilde{\alpha}(r) \overset{\text{def}}{=} \lim_{n \to \infty} \alpha_n(r) \) for rational \(r \in [0, 1] \). Prove that \(r > s \) with \(r, s \in \mathbb{Q} \cap [0, 1] \) implies \(\tilde{\alpha}(r) \leq \tilde{\alpha}(s) \).

d. Define

\[
\alpha(x) = \lim_{r \to x^+, r \in \mathbb{Q}} \tilde{\alpha}(r).
\]

Prove that

\[
\alpha(x) = \inf \{ \tilde{\alpha}(r) : r > x, r \in \mathbb{Q} \cap [0, 1] \}.
\]

e. Let \(\mu \) be the Lebesgue-Stieltjes measure associated with \(\alpha \). Prove that

\[
\int f \, d\mu_n \to \int f \, d\mu
\]

whenever \(f \) is a continuous real-valued function on \([0, 1]\).