Please do Exercises 2, 3, 5*, 6, 10*, 11, 12, 15, 16*, 17.
Exercises marked with (*) are especially important and you may wish to focus extra attention on those.
You are encouraged to try the other problems in this list as well.
Note: “textbook” refers to “Real Analysis for Graduate Students,” version 2.1, by Richard F. Bass. Some of these exercises originate from that source.

1. Let \(\langle f, g \rangle \overset{\text{def}}{=} \int_0^1 f(x)g(x)\,dx \) be the usual inner product in \(L^2([0, 1]) \). Prove that \(C([0, 1]) \) is not a Hilbert space with respect to this inner product and its derived norm.

2. Suppose that \(\{x_n\} \) is a sequence in a Hilbert space \(H \). Suppose \(\|x_n\| \to \|x\| \) and \((\forall y \in H) \langle x_n, y \rangle \to \langle x, y \rangle \) as \(n \to \infty \). Prove that \(\|x_n - x\| \to 0 \) as \(n \to \infty \).

3. Suppose \(M \) is a subspace of a Hilbert space \(H \).
 a. Prove that if \(M \) is closed, then \((M^\perp)^\perp = M \).
 b. Find a counterexample where \(M \) is not closed and \((M^\perp)^\perp \neq M \).

4. Prove that if \(H \) is infinite-dimensional, namely there are linearly independent subsets \(\{x_1, \ldots, x_n\} \) for all \(n = 1, 2, \ldots \), then the closed unit ball in \(H \) is not compact.

5. Suppose \(\{a_n : n = 1, 2, \ldots\} \) is a sequence of real numbers such that
\[
\sum_{n=1}^{\infty} a_n b_n < \infty
\]
whenever \(\sum_{n=1}^{\infty} b_n^2 < \infty \). Prove that \(\sum_{n=1}^{\infty} a_n^2 < \infty \).

6. Say that \(x_n \to x \) weakly in a Hilbert space \(H \) if \(\langle x_n, y \rangle \to \langle x, y \rangle \) for every \(y \in H \). Prove that if \(x_n \) is a sequence in \(H \) bounded by \(\sup_n \|x_n\| \leq 1 \), then there is a subsequence \(n_j \) and an element \(x \in H \) with \(\|x\| \leq 1 \) such that \(x_{n_j} \to x \) weakly as \(j \to \infty \).
7. If \(A \) is a Lebesgue measurable subset of \([0, 2\pi]\), prove that
\[
\lim_{n \to \infty} \int_A e^{inx} \, dx = 0.
\]
(This is a special case of the Riemann-Lebesgue lemma.)

8. Suppose that \(\mu, \nu \) are finite measures on a measurable space \((X, \mathcal{A})\), with \(\nu \ll \mu \). Assume that \(\nu(A) \leq \mu(A) \) for all measurable \(A \).

For real-valued \(f \in L^2(X, \mu) \), define \(L(f) \overset{\text{def}}{=} \int_X f \, d\mu \).

a. Show that \(L \) is a bounded linear functional on \(L^2(X, \mu) \).

b. Show that there exists a real-valued measurable function \(g \in L^2(X, \mu) \) such that \(L(f) = \int_X fg \, d\mu \) for all \(f \in L^2(X, \mu) \). (Hint: use theorem 19.10 on textbook p.188.)

c. Show that \(g \) from part b is the Radon-Nikodym derivative \(d\nu/d\mu \).

Note: by exercise 13.6 on textbook p.105, the assumption \(\nu(A) \leq \mu(A) \) imposes no restriction as one may replace \(\mu \) with \(\mu + \nu \). Hence, this is an alternate proof of the Radon-Nikodym theorem as a corollary of theorem 19.10.

9. Suppose \(f : \mathbb{R} \to \mathbb{R} \) is continuous and 1-periodic, namely \(f(x+1) = f(x) \) for all \(x \in \mathbb{R} \). Prove that if \(\gamma \in \mathbb{R} \) is irrational, then
\[
\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} f(j\gamma) = \int_0^1 f(x) \, dx.
\]
(This is a special case of the Birkhoff ergodic theorem.)

10. Suppose that \(M \) is a closed subspace of a Hilbert space \(H \). Fix \(x \in H \) and define \(x + M \overset{\text{def}}{=} \{ x + y : y \in M \} \).

a. Prove that \(x + M \) is a closed convex subset of \(H \).

b. Let \(Qx \) be the (unique) point of \(x + M \) with smallest norm and let \(Px = x - Qx \). (\(P \) is called the orthogonal projection of \(x \) onto \(M \).) Prove that \(P \) and \(Q \) are surjective from \(H \) to \(M \) and \(M^\perp \), respectively.

c. Prove that \(P \) and \(Q \) are linear mappings.

d. Prove that if \(y \in M \) then \(Py = y \) and \(Qy = 0 \).

e. Prove that if \(z \in M^\perp \) then \(Pz = 0 \) and \(Qz = z \).

f. Prove that \(\|w\|^2 = \|Pw\|^2 + \|Qw\|^2 \) for any \(w \in H \).
11. Suppose \(\{e_n\} \) is a countable orthonormal basis for a Hilbert space \(H \) and \(\{f_n\} \) is a countable orthonormal set such that
\[
\sum_n \|e_n - f_n\|^2 < 1.
\]
Prove that \(\{f_n\} \) is a basis.

12. Suppose that \(\{e_n\} \) and \(\{f_n\} \) are countable orthonormal bases for a Hilbert space \(H \). Define a linear transformation \(T : H \rightarrow H \) by
\[
T(\sum_n c_n e_n) = \sum_n c_n f_n.
\]
\begin{enumerate}
 \item Prove that \(T \) is continuous and compute the operator norm of \(T \).
 \item Prove that \(\langle Tx, Ty \rangle = \langle x, y \rangle \) for all \(x, y \in H \).
\end{enumerate}

13. Let \(H, G \) be Hilbert spaces. Say that a linear function \(T : H \rightarrow G \) is an isometry if \(\langle Tx, Ty \rangle_G = \langle x, y \rangle_H \) for every \(x, y \in H \).
\begin{enumerate}
 \item Prove that an isometry \(T \) is continuous and compute the operator norm of \(T \).
 \item Prove that if \(T \) is an isometry then it is injective.
 \item Must an isometry be surjective? Supply a proof or a counterexample.
 \item Suppose \(T_1 \) and \(T_2 \) are isometries. Must \(T_1 + T_2 \) be an isometry?
\end{enumerate}

14. Let \(H \) be a Hilbert spaces. Say that a linear function \(T : H \rightarrow H \) is selfadjoint if \(\langle Tx, y \rangle = \langle x, Ty \rangle \) for every \(x \in H \).
\begin{enumerate}
 \item Prove that if \(T \) is selfadjoint, then \(\langle Tx, x \rangle \) is real-valued for all \(x \in H \).
 \item Say that selfadjoint \(T \) is positive definite if \(\langle Tx, x \rangle > 0 \) for all \(x \neq 0 \). Prove that such \(T \) must be injective.
 \item Give an example of a positive definite \(T \) that is not surjective.
\end{enumerate}

15. Let \(X, Y \) be Hilbert spaces. Suppose that \(T : X \rightarrow Y \) is a bounded linear function. Prove that there exists a unique bounded linear function \(T^* : Y \rightarrow X \) satisfying
\[
\langle \forall x \in X \rangle (\forall y \in Y) \ \langle Tx, y \rangle_Y = \langle x, T^* y \rangle_X.
\]
(Such \(T^* \) is called the adjoint of \(T \).)

16. Suppose \(X, Y \) are Hilbert spaces, and write \(T^* : Y \rightarrow X \) for the adjoint of bounded linear function \(T : X \rightarrow Y \) as in exercise 15.
\begin{enumerate}
 \item Prove that \((T^*)^* = T \). Conclude that \(\|T\| = \|T^*\| \).
\end{enumerate}
b. Show that \((T_1 + cT_2)^* = T_1^* + cT_2^*\) for any \(T_1, T_2\) and \(c \in \mathbb{C}\).

c. Prove that \(T^*T : X \to X\) is selfadjoint and, if \(T\) is injective, also positive definite.

d. Suppose that \(T\) is an isometry (see exercise 13). Prove that \(T^*T : X \to X\) is the identity, and \(TT^* : Y \to Y\) is an orthogonal projection.

e. Suppose that \(T\) is a surjective isometry. Prove that \(TT^* : Y \to Y\) is the identity.

17. Suppose that \(H\) is a separable Hilbert space and write \(\ell^2\) for the Hilbert space of square-summable sequences in \(\mathbb{C}\). Prove that there is a bijective linear isometry \(T : \ell^2 \to H\). (Hint: see exercise 12.)

18. Define the Haar function \(h : \mathbb{R} \to \mathbb{R}\) by

\[
h \overset{\text{def}}{=} \chi_{[0,1/2)} - \chi_{[1/2,1)}; \quad h(t) \overset{\text{def}}{=} \begin{cases} 0, & \text{if } t < 0 \text{ or } t \geq 1; \\ 1, & \text{if } 0 \leq t < 1/2; \\ -1, & \text{if } 1/2 \leq t < 1. \end{cases}
\]

For integers \(j, k\), define

\[
h_{j,k}(t) \overset{\text{def}}{=} 2^{j/2}h(2^jt - k).
\]

Prove that

\[
H \overset{\text{def}}{=} \{h_{j,k} : j, k \in \mathbb{Z}\}
\]

is an orthonormal basis for \(L^2(\mathbb{R})\).

Note: \(H\) is called the Haar basis. It is defined by the mother function \(h_{0,0} = h\), and its elements satisfy

\[
\text{supp } h_{j,k} = \left[\frac{k}{2^j}, \frac{k+1}{2^j} \right].
\]