2.1. VECTOR SPACES

and a function \(f \) belongs to \(L^2(\mathbb{R}) \) if and only if \(||f|| \) is finite. Thus the nonzero constant functions, and more generally the nonzero polynomials, are not members of \(L^2(\mathbb{R}) \). Since \(||f||^2 \) is called the energy of a function, \(L^2 \) is sometimes called the space of finite-energy signals.

\(L^2 \), like \textbf{Lip}, is infinite dimensional. Since there is no continuity assumption, we may build a simple set of basis functions from the indicator function of the unit interval \([0, 1]\):

\[
1(t) \overset{\text{def}}{=} \begin{cases}
1, & \text{if } 0 \leq t < 1; \\
0, & \text{if } t < 0 \text{ or } t \geq 1.
\end{cases}
\]

(2.25)

Given any integer \(k \), put \(e_k(t) \overset{\text{def}}{=} 1(t - k) \) to get the characteristic function of \([k, k + 1]\). The functions \(\{e_k : k \in \mathbb{Z}\} \) are clearly linearly independent in \(L^2(\mathbb{R}) \), and there are infinitely many of them. We can also introduce a scale index \(j \) and put \(e_{j,k}(t) \overset{\text{def}}{=} 2^{-j/2} 1(2^{-j}t - k) \), which is normalized to guarantee \(||e_{j,k}|| = 1 \). The set \(\{e_{j,k} : j, k \in \mathbb{Z}\} \) is dense in \(L^2 \), but it is clearly not linearly independent. However, the fixed-scale functions \(E_j = \{e_{j,k} : k \in \mathbb{Z}\} \) are linearly independent, and given a function \(f \in L^2(\mathbb{R}) \) and \(\epsilon > 0 \), we can find a scale \(J \) and a function \(f_J \in \text{span } E_J \subset L^2(\mathbb{R}) \) satisfying \(||f - f_J|| < \epsilon \).

2.1.3 Inner product spaces

An \textit{inner product space} \(X \) is a special kind of vector space in which there is also an \textit{inner product}. This is a scalar-valued function on pairs of vectors \(u, v \in X \), denoted by \(\langle u, v \rangle \), that must satisfy the following:

Inner Product Axioms

- **Hermitean symmetry**: For any \(u, v \in X \), \(\langle u, v \rangle = \overline{\langle v, u \rangle} \).
- **Positive definiteness**: If \(u \in X \) and \(u \neq 0 \), then \(\langle u, u \rangle > 0 \).
- **Linearity**: For any \(u, v, w \in X \) and any scalars \(c, d \), \(\langle cu + dv, w \rangle = c \langle u, v \rangle + d \langle u, w \rangle \).

Hermitean symmetry implies that \(\langle u, u \rangle \) is purely real. If all coordinates and scalars are real numbers, it reduces to the ordinary symmetry condition \(\langle u, v \rangle = \langle v, u \rangle \).

Positive definiteness implies \textit{nondegeneracy of the inner product}: \(\langle u, v \rangle = 0 \) for all \(v \in X \) only if \(u = 0 \). It also allows us to define a nondegenerate derived norm by the formula \(||u|| \overset{\text{df}}{=} \sqrt{\langle u, u \rangle} \geq 0 \), just as in Euclidean \(N \)-space. Linearity implies that \(||0||^2 = \langle 0, 0 \rangle = 0 \), so we have \(||u|| = 0 \) if and only if \(u = 0 \).

By linearity and Hermitean symmetry, \(\langle cv + dw, u \rangle = c \langle v, u \rangle + d \langle w, u \rangle \). Thus \(\langle cu, cu \rangle = ||c||^2 ||u||^2 \), so the derived norm satisfies \(||cu|| = ||c|| ||u|| \). We will see in Lemma 2.4 that the other sublinearity condition also holds, so a derived norm indeed satisfies the norm axioms.

If all scalars and coordinates are real numbers, the inner product is real-valued and linear in the first factor as well: \(\langle cv + dw, u \rangle = c \langle v, u \rangle + d \langle w, u \rangle \).
Mallat algorithm, 157
mantissa, 13
matrix, 42
coefficients, 44
representation, 136
mean, 291
Mean Value Theorem, 282
measurement density, 124
memory, 275
message, 180
encoding function, 181
instance, 180
meta-characters, 273
Minkowski inequality, 37
mip (), 59
mod-2 polynomial, 209
mod2polychecksum (), 217
mod2polydegree (), 211
mod2polydivision (), 212
mod2polygcd (), 213
mod2polyint (), 210
mod2polyproduct (), 211
mod2polysum (), 210
moments, 291
mother function, 133
MRA, 147
multipliers, 276
multiresolution analysis, 147

N, natural numbers, 2
Newton form, 110
newtonpoly (), 111
noise, 126
nondegeneracy, 29, 35
norm axioms, 29
normal density, 126
normal distribution, 289
normalization, 151
periodic, 176
normalizers, 276

O, 197
occurrence probability, 180
onormalize (), 261
operator norm, 49
orthogonal, 24
basis, 38
complement, 38
CQF, 151
MRA, 148
orthonormal basis, 38
outputs, 275
overflow, 12

parity, 197
Parseval's formula, 67, 84
partial sums, 283
pcqfilter (), 162
pdf, 289
pdwt (), 163
pdwt0 (), 163
%, remainder operator, 2
periodic, 70
extension, 75
filter transform, 160
periodization, 70
smooth local, 82
permutation matrix, 63
piecewise function, 115
Plancherel's theorem, 292
pointwise convergence, 283
polarization, 26

Poly, 33
polynomial, 108
positive definiteness, 35
power spectrum, 85
precision, 123
prediction, 171
prefix code, 182
prime, 5
factorization, 5
mod-2 polynomials, 214
probability density function, 289
probability space, 288
projection, 51
pseudocode, 275
pwconstant (), 115
pwllinear (), 116
pyramid algorithm, 157
INDEX

Q, rational numbers, 12
quadrature filter, 146
quantization, 123
quasi-inverse, 6
quaternary, or quadtree, 185

R, real numbers, 13
r1(), 78
random variable, 290
rapid decrease, 284
relatively prime, 5
 mod-2 polynomials, 214
remainder operator (%), 2
representation, 137
return, 277
Riemann integral, 287
right invariant integral, 251
right invariant measure, 174
right sided limit, 280
rigid motion, 56
rising cut-off function, 78, 294
rotation, 56
round-off error, 14

sampling theorem, 121
scalars, 26
scale invariance, 117
scaling function, 145, 148
Schauder basis, 32
 unconditional, 33
scientific notation, 13
self-orthonormality, 151
 periodic, 176
selfadjoint, 48
sequence, 282
side-effect, 277
sign-and-magnitude, 11
signal to noise ratio, 126
sine function, 92
 Gaussian, 122
size preserving, 162
smooth, 76
source, 180
span, 27
spectral density, 120

splice(), 80
splicing, 79
spreading in support, 159
sqrt, 277
square-integrable, 287
square-summable, 283
sslu(), 61
sublinearity, 29
submultiplicativity, 49
subspace, 27
summable, 283
support, 73
symmetric functions, 117
symmetry, HS or WS, 168

trace, 50
transformation, 42
translation, 56
tree
 binary, 184
 canonical Huffman, 196
d-ary, 185
 Huffman, 193
 quaternary, 185
truncation error, 14
two-scale relation, 146
twos complement, 11

unconditional basis, 33
underflow, 12
Unicode, 275
uniform convergence, 283
unique factorization, 5
uniquely decipherable code, 181
unitary, 56
 representation, 139
 transformation, 138
updating, 171
upper triangular, 56

Vandermonde matrix, 95
variance, 291
vector, 26
vertex, 185
Vol (Hamming sphere), 203

301
wavelet expansion, 157
wavelet transform, 140
 inverse, 143
weighted depth, 191
well-conditioned, 18
while loop, 277
white noise, 126
whole-sample symmetry, 168
wide characters, 275
\texttt{ws142dwt()}, 173
\texttt{ws142filter()}, 172, 173
\texttt{ws142idwt()}, 173
\texttt{ws142ifilter()}, 172
\texttt{ws197dwt()}, 260
\texttt{ws197idwt()}, 260
\texttt{ws197ifilter()}, 260
\texttt{wslpredict()}, 171
\texttt{wslupdate()}, 171
\texttt{wsp()}, 169
\texttt{Z}, integers, 2
zero-one matrix, 63