WELL ADAPTED NON DYADIC LOCAL SPECTRUM FOR SOME ACOUSTIC SIGNALS

E. Wesfreid, V. Wickerhauser * and R. Bouguerra.

LMA, Université du Littoral. Calais - France.
Department of Mathematics, Washington University in St. Louis - USA.
Hôpital Laennec, Paris, France.

ABSTRACT
We show that the Fang’s segmentation algorithm[1] of nearly constant instantaneous frequency is well adapted to some noisy vocal command signals and that the orthonormal trigonometric basis of $l^2(Z)$ [2] defined over this segmentation offers an optimal, non dyadic time-frequency tiling. We use this basis in speech processing to compute a local spectrum nearly phonemes and in biomedical applications to timing velopharyngeal closure for swallowing sound.

1. INTRODUCTION
Given a time axis segmentation into intervals of arbitrary length, a smooth local spectrum can be computed using an orthonormal trigonometric basis of $l^2(Z)$ [3] defined over this segmentation.

On one hand, the Best Basis [2] of Coifman and Wickerhauser offers a local spectrum defined over dyadic segments which can be obtained in $O(N \log N)$ operations.

On the other hand, the orthonormal basis defined over a Fang’s segmented signal provides a well adapted spectrum defined over non dyadic segments which can be obtained in $O(N^2)$ operations.

We use Fang’s segmentation in speech processing to compute local spectrum nearly phonemes and in biomedical applications to timing velopharyngeal closure.

2. SMOOTH LOCAL TRIGONOMETRIC TRANSFORM[6]
Let us consider

- the raising function

$$ r(t) = \begin{cases}
0 & t \in]-\infty, -1[\\
\sin \left(\frac{\pi}{2} (1 + \sin \left(\frac{\pi}{2} t \right) \right) & t \in [-1, 1[\\
1 & t \in [1, \infty[
\end{cases} $$

• the following orthonormal window over $I_j = [a_j, a_{j+1}]$

$$ \omega_j(t) = r(t) r \left(\frac{t - a_j}{\eta} \right) r \left(\frac{a_{j+1} - t}{\eta} \right) $$

with $\ell_j = (a_{j+1} - a_j)$, $t \in \mathbb{Z} + 1/2$, $j \in \mathbb{Z}$ and $0 < \eta < \ell_j/2$ (n_j is the adjacent window overlap).

• $b_j(t) = \frac{r(t - a_j)}{\eta}$.

• A sampled signal $\{f(j)\}_{0 \leq j < N}$.

The folding operator defined in a neighbour of a_j:

$$ U_j f(t) = \begin{cases}
b_j(t) f(t) + b_j(2a_j - t) f(2a_j - t) & \text{if } a_j < t < a_j + \eta \\
b_j(2a_j - t) f(t) - b_j(t) f(2a_j - t) & \text{if } a_j - \eta < t < a_j \end{cases} $$

and its adjoint, the unfolding operator:

$$ U_j^* f(t) = \begin{cases}
b_j(t) f(t) - b_j(2a_j - t) f(2a_j - t) & \text{if } a_j < t < a_j + \eta \\
b_j(2a_j - t) f(t) + b_j(t) f(2a_j - t) & \text{if } a_j - \eta < t < a_j \end{cases} $$

• The folded function over $I_j = [a_j, a_{j+1}]$

$$ F_{a_j, a_{j+1}} = \chi_{I_j} U_j U_{j+1} f $$

where $\chi_{I_j}(t)$ is equal to 1 when $t \in I_j$ and null elsewhere.

The given orthogonal window (1) can also be written as follows

$$ \omega_j(t) = U_j^* U_{j+1}^* \chi_{I_j}. $$

Given a time axis segmentation into intervals

$$ I_j = [a_j, a_{j+1}] $$

of arbitrary length, the associated orthonormal trigonometric basis of $l^2(Z)$ [3][4]

$$ \Psi_{j,k}(t) = w_j(t) g_{j,k}(t) $$

Research supported in part by AFOSR, NSF, and the Southwestern Bell Telephone Company.
consists of orthonormal windows \(w_j(t) \) modulated by trigonometric functions

\[
g_{j,k}(t) = \frac{\sqrt{T}}{\sqrt{|I_j|}} \cos \frac{\pi}{|I_j|} (k + \frac{1}{2})(t - a_j). \tag{3}
\]

The smooth spectrum of \(f \) over \(I = [a_j, a_{j+1}] \) is the following set

\[
C_j = \{ c_{j,k} : 0 \leq k < \ell_j \} \tag{4}
\]

where

\[
c_{j,k} = < f, \Psi_{j,k} >= < f, \omega_j g_{j,k} >
\]

and

\[
c_{j,k} = < f, U_j^* U_{j+1} \chi_{I_j} g_{j,k} >= < F_{a_{j-1}, a_{j+1}}, g_{j,k} >. \tag{5}
\]

Therefore the \(dct4 \) transform of the folded signal \(F_{a_{j-1}, a_{j+1}} \) is the smooth \(dct4 \) transform of \(f \) over \(I_j \).

3. FANG’S SEGMENTATION ALGORITHM\(^1\)

A segmentation of a sampled signal is a strictly increasing sequence of integers which are the initial indices of each segment. The Fang’s segmentation is obtained computing the local maxima of a frequency change function, which is the average of an instantaneous frequency change function.

3.1. Instantaneous frequency change function

This function is the difference between the flatness of the spectrum over \([j - \ell, j + \ell] \) with \(\ell > 0 \) and the flatness of the combined spectra over \([j - \ell, j] \) and \([j, j + \ell] \). This flatness can be measured with the following cost function of \(x = (x_0, x_1, \ldots, x_n) \)

\[
\lambda(x) = \sum_{k=0}^{n-1} |x_k| \tag{6}
\]

or

\[
\lambda(x) = \sum_{k=0}^{n-1} |x_k|^2 \log(|x_k|^2). \tag{7}
\]

Let \(A_j, B_j \) and \(C_j \) denote the smooth \(dct4 \) transform over \([j - \ell, j], [j, j + \ell] \) and \([j - \ell, j + \ell] \), then

\[
IFJ(j) = \lambda(C_j) - (\lambda(A_j) + \lambda(B_j)) \tag{8}
\]

with \(j \in \{ \eta + \ell, \ldots, N - \eta - \ell \} \) is the Instantaneous Frequency Change function. This function oscillates, even when the signal is periodic as it is shown in Fig.1.

Figure 1: IFC and AFC frequency change functions

3.2. Segmentation algorithm

This algorithm consists of the following four steps:

1. Compute IFC(\(j \)) for \(j \in [\ell + \eta, N - \ell - \eta] = I \) as follows:

 Let consider IFC(\(j \)) = 0 \(\forall j \in I \) and compute \(C_j \), the \(dct4 \) transform of \(F_{j-\ell, j+\ell} \) and \(B_j \), the \(dct4 \) transform of \(F_{j+\ell} \), then

 \[
 IFC(j) = IFC(j) + \lambda(C_j) - \lambda(B_j)
 \]

 and

 \[
 IFC(j + \ell) = IFC(j + \ell) - \lambda(B_j)
 \]

 because \(A_{j+\ell} = B_j \).

2. Filter IFC(\(j \))\(j \in I \) to obtain an averaged frequency change function AFG(\(j \))\(j \in I \) as follows:

 If \(H \) and \(G \) denote a biorthogonal loupase filter and its dual then

 \[
 AFC = GH^d(IFC)
 \]

 where \(H^d = HHH \ldots H \).

3. Find the local maxima by detecting zero crossings of the adjacent differences of AFC(\(j \))\(j \in I \).

4. Squelch the local maxima above some threshold.

There are three parameters to set:
1) the adjacent window overlap \(\eta \)
2) the window size \(\ell \)
3) the number \(d \) of iterations of the loupase filter \(H \).

In particular, we use this algorithm with \(\eta = 16, \ell = 256 \) and \(d = 9 \) to obtain a nearly phoneme segmentation of noisy vocal signals recorded in fly.
Fig 2 and Fig 3 show the signal at the top, the IFC function at the bottom, the AFC function at the middle and the segmentation, with vertical lines at the AFC local maxima:

$$0 = a_0 < a_1 < \ldots < a_s = N.$$

This is a non dyadic segmentation nearly phonemes.

4. OPTIMAL SPECTRUM

In a previous paper\cite{7} the speech signal segmentation was realized using an orthonormal trigonometric Best Basis followed by a split and merge\cite{8} algorithm. Fig 4 and Fig 5 show a local spectrum, in absolute value, computed using the orthonormal trigonometric bases defined over the Fang's segmented signal. The coefficients of this spectrum are defined in (4) and (5) over each interval $[a_j, a_{j+1}]$.

The Fang's segmentation algorithm was also applied in biomedicine to timing velopharyngeal closure for swallowing sound. The described algorithm was used with $\eta = 16$, $\ell = 128$ and $d = 7$, the local spectrum was computed over each interval $[a_j, a_{j+1}]$ of this segmentation

$$0 = a_0 < a_1 < \ldots < a_s = N$$

using (4) and (5). We searched a time interval $[T_0, T_1]$ with $T_0 = a_s$ and $T_1 = a_p$ such that the absolute value of the local spectrum over $[T_0, T_1]$ has their maxima greater than some preallocated threshold (Fig 6).

References

