Math	2605
Exam	3

Name:	

By signing my name below I pledge that I have neither given nor received help on this exam.

Pledged:____

Problem 1	Possible 15	Earned
2	15	
3	15	
4	15	
Total	60	

1. (15 pts) Diagonalize the matrix

$$A = \left(\begin{array}{cc} 2 & 1 \\ 1 & -2 \end{array}\right)$$

$$M_{\pm} = \frac{2-2}{2} \pm \sqrt{1 + \left(\frac{2-(-2)}{2}\right)^2}$$

$$= \pm \sqrt{1 + 2^2} = \pm \sqrt{5}$$

Consider
$$A-M_4I_2=\begin{pmatrix} 2-\sqrt{5}&1\\1&-2-\sqrt{5}\end{pmatrix}$$

$$\hat{\Gamma}_{1} = (2-\sqrt{5}, 1)$$
 $\hat{\Gamma}_{1}^{1} = (-1, 2-\sqrt{5})$

Set
$$\hat{U}_1 = \frac{(-1, 2-\sqrt{5'})}{\sqrt{1+2!-4\sqrt{5'}+5'}} = \frac{(-1, 2-\sqrt{5'})}{\sqrt{10-4\sqrt{5'}}}$$

Set
$$\hat{U}_2 = \frac{1}{\sqrt{10.4J5'}} (2-\sqrt{5'}, 1)$$

- 4. (15 pts) Prove the following statements:
 - (a) Suppose that $A = A^T$. Suppose that \mathbf{u} and \mathbf{v} are eigenvectors of A that correspond to eigenvalues μ and λ . Suppose that $\lambda \neq \mu$ and show that \mathbf{u} is perpendicular to \mathbf{v} .
 - (b) Suppose that B is a $n \times m$ matrix. Prove that the eigenvalues of the matrix B^TB are always non-negative.
 - (c) Suppose that $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is a collection of orthonormal vectors. Show that the collection $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is linearly independent.

(a) If
$$\hat{u},\hat{v}$$
 as e-vectors of A then

 $A\hat{u} = \lambda \hat{u}$ $A\hat{v} = \lambda \hat{v}$.

 $\mu(\hat{u},\hat{v}) = \langle \mu \hat{u},\hat{v} \rangle = \langle A\hat{u},\hat{v} \rangle = \langle \hat{u},A\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\lambda\hat{v} \rangle = \langle \hat{u},A\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\lambda\hat{v} \rangle = \langle \hat{u},A\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\lambda\hat{v} \rangle = \langle \hat{u},A\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},A\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{u}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{u}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle \hat{u},\hat{v} \rangle = \langle \hat{u},\hat{v} \rangle$
 $\lambda(\hat{u},\hat{v}) = \langle$