16(b).

Let A=the set of all limits of sequences of points of S that converge in E

First, to show that any element in A is also an element in \overline{S}

 \overline{S} is the intersection of closed sets => \widetilde{S} is closed.

Using Theorem, because \overline{S} is closed, the limit of any sequence of points of \overline{S} that converges in E is in \overline{S} .

Since $S \subset \overline{S}$, any sequence of points in S is also a sequence of points of \overline{S} .

=> the limit of any sequence of points of S that converges in E is also in \overline{S}

=> A⊂Ŝ

2

Next, to show that any element in \overline{S} is also in A

Proof by contradiction: Assume $p \in \overline{S}$ s.t. p is not limit of any sequence of points of S

Then, $\exists \epsilon > 0 \ \forall s \in S \ s.t. \ d(p,s) > \epsilon$

Then $\overline{S}\text{-B}_p(\varepsilon)$ is also a closed subset of E that contains S

Need to Say PESCS By (E) But, \widetilde{S} is in all closed subset of E that contains S, which is an contradiction

=> Š⊂A

Thus, S=A

Additional Problems:

1. Suppose that $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ are sequences in \mathbb{R} . Suppose that $a_n \to L$, $c_n \to L$ and there exists an integer N such that if $n \ge N$, then

$$a_n \leq b_n \leq c_n$$
.

Show that $b_n \to L$.

Given $\epsilon > 0$, $\exists M, n \geq M$ s.t.

$$L - \epsilon < a_n < L + \epsilon$$
.

Given $\epsilon > 0, \exists K, n \geq K$ s.t.

$$L - \epsilon < c_n < L + \epsilon$$
.

2

Take $Y = max\{M, K, N\}$. Then for a given $\epsilon > 0, \exists Y, n \geq Y$ s.t.

$$L - \epsilon < a_n \le b_n \le c_n < L + \epsilon$$
.

$$L - \epsilon < b_n < L + \epsilon.$$

$$|b_n - L| < \epsilon$$

Therefore, $b_n \to L$.

2) Suppose that $\{s_n\}$ is a sequence in \mathbb{R}^n . Show that if $s_n \to s$, then $||s_n|| \to ||s||$. Is the converse true? $s_n \to s$ implies that $\exists N$ such that $d(s_n, s) < \epsilon$ for all n > N. For the same N, we have $|||s_n|| - ||s||| \le ||s_n - s||$ (normed case of triangle inequality).

But $||s_n - s|| = d(s_n, s)$, which we have above that $d(s_n, s) < \epsilon$, thus $||s_n|| - ||s||| < \epsilon$ for all n > N. This proves the statement. The converse is not necessarily. Take s_n to be the n-tuple ||s|| with $|s| = (-1)^n$, $(-1)^n$, ..., $(-1)^n$). We have $||s_n|| = \sqrt{n}$ for all n thus it converges to \sqrt{n} , but s_n itself can't possibly converge (it just oscillates between (-1, -1, ..., -1) and (1, 1, ..., 1)).

4.

Let $\{a_n\}$ be a Cauchy sequence.

Let $\{a_{f(n)}\}\$ be a subsequence of $\{a_n\}$, then we have $f(n) \ge n$ for all n

By definition of Cauchy sequence, $\forall \epsilon > 0 \exists N \text{ s.t } \forall m, n \geq N, d(a_m, a_n) < \epsilon$

Since $f(m) \ge m$ and $f(n) \ge n \Rightarrow f(m)$, $f(n) \ge N \Rightarrow d(a_{f(m)}, a_{f(n)}) \le c$

- => $\forall \epsilon$ >0 ∃N s.t \forall m,n≥N, $d(a_{f(m)},a_{f(n)})<\epsilon$
- => {a_{f(n)}} is a Cauchy sequence

2

If Sn > S + hen for every E 15n-5/< E if n 2 N. Weed to slow: 155n - 55 | EE - G som n 2 N. (ar 1: 570 1. Note + hat 15n-s1= 1(Jsn-Js) (Jsn+Js)/ SO 155n-55 = 15n-51 155n+5s/ Suppose ne chose E as EJS 15n-51 / 15n-51

[JSn+JS] 1 JS]. Now sype NZN s.t. ISN-SICEJS

 $\frac{15n-s}{15s} \ge \frac{\varepsilon 5s}{|5s|} = \varepsilon$

155n-55/cE for som n3/V

(axe 2: 5=0 The sree Sn->S 15n-5/ce2 for some $= |S_{n-0}| < \varepsilon^2$ = 15n/c E² then JSn CE in patrila 155n-50/KE = 155n-0/cE which show that JSn > JS 5. Two metrics d_1 and d_2 on a set X are uniformly equivalent if there exist constants A > 0 and B > 0 such that

$$d_1(x,y) \le Ad_2(x,y) \ \forall x,y \in X$$

and

e de la companya de l

$$d_2(x,y) \leq Bd_1(x,y) \ \forall x,y \in X$$

Show that the metric space (X, d_1) is complete if and only if (X, d_2) is complete.

Answer:

Since the problem statement contains an "if and only if" statement, we must show two logical directions. First, let us show that (X, d_1) complete implies that (X, d_2) is complete.

Consider a Cauchy sequence $\{p_n\} \subset (X,d_2)$. We would like to show that $\{p_n\}$ is Cauchy in (X,d_1) which tells us that $\{p_n\}$ converges in (X,d_1) and we would then like to relate this convergence back to (X,d_2) . To show that $\{p_n\}$ is Cauchy in (X,d_1) , given any $\epsilon > 0$, we must find some N such that $m,n \geq N \Rightarrow d_1(p_m,p_n) < \epsilon$. To do this, we can use the fact that $\{p_n\}$ is Cauchy in (X,d_2) . Here, find N such that $m,n \geq N$ implies that $d_2(p_m,p_n) < \frac{\epsilon}{A}$, where ϵ is given. Since we are given that $d_1(x,y) \leq Ad_2(x,y)$, we know that $\frac{d_1(p_m,p_n)}{A} \leq d_2(p_m,p_n)$ which here means that $\frac{d_1(p_m,p_n)}{A} < \frac{\epsilon}{A}$ which in turn means that $d_1(p_m,p_n) < \epsilon$, $\forall m,n \geq N$. This means that $\{p_n\}$ is Cauchy in (X,d_1) , and, since (X,d_1) is complete, that it converges in (X,d_1) . This means that given any $\epsilon > 0$, $\exists N \ s.t. \ n \geq N \Rightarrow d_1(p_n,p) < \epsilon$ where p is the limit point of $\{p_n\}$.

Now let us relative this convergence back to (X,d_2) . Given some $\epsilon > 0$, find N such that $n \geq N$ implies $d_1(p,p_n) < \frac{\epsilon}{B}$. Since $d_2(x,y) \leq Bd_1(x,y)$ we know that $\frac{d_2(p,p_n)}{B} \leq d_1(p,p_n)$ so that $\frac{d_2(p,p_n)}{B} < \frac{\epsilon}{B}$ which implies that $d_2(p,p_n) < \epsilon \ \forall n \geq N$. Thus we see that when (X,d_1) is complete, every Cauchy sequence in (X,d_2) converges, so that (X,d_1) complete $\Rightarrow (X,d_2)$ complete.

Now let us show that (X,d_2) complete implies that (X,d_1) is complete. Consider a Cauchy sequence $\{p_n\}\subset (X,d_1)$. We would like to show that $\{p_n\}$ is Cauchy in (X,d_2) which tells us that $\{p_n\}$ converges in (X,d_2) and we would then like to relate this convergence back to (X,d_1) . To show that $\{p_n\}$ is Cauchy in (X,d_2) , given any $\epsilon>0$, we must find some N such that $m,n\geq N\Rightarrow d_2(p_m,p_n)<\epsilon$. To do this, we can use the fact that $\{p_n\}$ is Cauchy in (X,d_1) . Here, find N such that $m,n\geq N$ implies that $d_1(p_m,p_n)<\frac{\epsilon}{B}$. Since we are given that $d_2(x,y)\leq Bd_1(x,y)$, we know that $\frac{d_2(p_m,p_n)}{B}\leq d_1(p_m,p_n)$ which here means that $\frac{d_2(p_m,p_n)}{B}<\frac{\epsilon}{B}$ which in turn means that $d_2(p_m,p_n)<\epsilon$, $\forall m,n\geq N$. This means that $\{p_n\}$ is Cauchy in (X,d_2) , and, since (X,d_2) is complete, that it converges in (X,d_2) . This means that given any $\epsilon>0$, $\exists N \ s.t. \ n\geq N\Rightarrow d_2(p_n,p)<\epsilon$ where p is the limit point of $\{p_n\}$.

Now let us relative this convergence back to (X,d_1) . Given some $\epsilon > 0$, find N such that $n \geq N$ implies $d_2(p,p_n) < \frac{\epsilon}{A}$. Since $d_1(x,y) \leq Ad_2(x,y)$ we know that $\frac{d_1(p,p_n)}{A} \leq d_2(p,p_n)$ so that $\frac{d_1(p,p_n)}{A} < \frac{\epsilon}{A}$ which implies that $d_1(p,p_n) < \epsilon \ \forall n \geq N$. Thus we see that when (X,d_2) is complete, every Cauchy sequence in (X,d_1) converges, so that (X,d_2) complete $\Rightarrow (X,d_1)$

With both directions shown, the proof is complete.

6. Let (X,d) be a metric space, and let $\{q_n\} \subset X$ be a convergent sequence with limit q. Let $p \in X$ and then show that $d(p,q) = \lim_{n \to \infty} d(p,q_n)$.

To show that $d(p,q) = \lim_{n\to\infty} d(p,q_n)$, need to show that $\forall \epsilon > 0$ there exists an $N(\epsilon) > 0$ such that $\forall n \geq N(\epsilon), |d(p,q) - d(p,q_n)| < \epsilon$.

First, $|d(p,q)-d(p,q_n)| = |d(q,p)-d(p,q_n)|$, then by the reverse triangle inequality $|d(q,p)-d(p,q_n)| \le d(q,q_n)$.

Since $q_n \to q$, $\forall \epsilon > 0$, $\exists N(\epsilon)$ s.t. $\forall n \geq N(\epsilon)$, $d(q, q_n) < \epsilon$); therefore $|d(p, q) - d(p, q_n)| \leq d(q, q_n) < \epsilon$.

We have $\forall \epsilon > 0$, $\exists N(\epsilon)$ s.t. $\forall n \geq N(\epsilon)$, $|d(p,q) - d(p,q_n)| < \epsilon$; therefore $d(p,q) = \lim_{n \to \infty} d(p,q_n)$.