2

III.18 Prove that $\underline{\lim}_{n\to\infty} a_n \leq \overline{\lim}_{n\to\infty} a_n$, with equality holding if and only if the sequence converges.

Show that $\underline{\lim}_{n\to\infty} a_n \leq \overline{\lim}_{n\to\infty} a_n$.

By the definition, $\underline{\lim}_{n\to\infty}a_n=\lim_{N\to\infty}\inf\{a_n: n\geq N\}$ and $\overline{\lim}_{n\to\infty}a_n=\lim_{N\to\infty}\sup\{a_n: n\geq N\}$. So for any fixed N, $\inf\{a_n: n\geq N\}\leq \sup\{a_n: n\geq N\}$ by the definition of infimum and supremum of a set. Therefore, it is true for all N and $\underline{\lim}_{n\to\infty}a_n\leq \overline{\lim}_{n\to\infty}a_n$.

Show that $\lim_{n\to\infty} a_n = \overline{\lim}_{n\to\infty} a_n$ if and only if the sequence converges. \Leftarrow If the sequence converges, show that $\underline{\lim}_{n\to\infty} a_n = \overline{\lim}_{n\to\infty} a_n$. There are three cases to consider: $\lim a_n = +\infty$, $\lim a_n = -\infty$, and $\lim a_n = a$.

Suppose $\lim a_n = +\infty$, it suffices to show that $\lim_{n\to\infty} a_n = +\infty$. If $\lim a_n = +\infty$, then $\forall M>0$, $\exists N \text{ s.t. } \forall n>N$, $a_n>M$. This implies that $\inf\{a_n:n\geq N\}>M$, and we have $\inf\{a_n:n\geq k\}\geq \inf\{a_n:n\geq N\}>M$, $\forall k>N$. Therefore, $\lim_{k\to\infty}\inf\{a_n:n\geq k\}=+\infty$, and $+\infty=\underline{\lim}_{n\to\infty}a_n\leq \overline{\lim}_{n\to\infty}a_n=+\infty$.

Suppose $\lim a_n = -\infty$, it suffices to show that $\overline{\lim}_{n\to\infty} a_n = -\infty$. If $\lim a_n = -\infty$, then $\forall M < 0$, $\exists N$ s.t. $\forall n > N$, $a_n < M$. This implies that $\sup\{a_n : n \ge N\} < M$, and we have $\sup\{a_n : n \ge k\} \le \sup\{a_n : n \ge N\} < M$, $\forall k > N$. Therefore, $\lim_{k\to\infty} \sup\{a_n : n \ge k\} = -\infty$, and $-\infty = \underline{\lim}_{n\to\infty} a_n \le \overline{\lim}_{n\to\infty} a_n = -\infty$.

Suppose that $\lim a_n = a$, want to show that $\lim a_n \leq \underline{\lim}_{n \to \infty} a_n \leq \overline{\lim}_{n \to \infty} a_n \leq \lim a_n$. First show that $\overline{\lim}_{n \to \infty} a_n \leq \lim a_n$. Since $a_n \to a$, $\forall \epsilon > 0$, $\exists N$ s.t. $\forall n \geq N$, $|a_n - a| < \epsilon$. This implies that $-\epsilon < a_n - a < \epsilon$ and $a_n < a + \epsilon$. Then $\sup\{a_n : n \geq N\} \leq a + \epsilon$ and $\sup\{a_n : n \geq k\} \leq a + \epsilon$, $\forall k \geq N$. Therefore, $\lim_{k \to \infty} \sup\{a_n : n \geq k\} \leq a + \epsilon$, and $\lim_{n \to \infty} a_n \leq \lim a_n$.

Next show that $\lim a_n \leq \underline{\lim}_{n \to \infty} a_n$. Since $a_n \to a$, $\forall \epsilon > 0$, $\exists N$ s.t. $\forall n \geq N$, $|a_n - a| < \epsilon$. This implies that $-\epsilon < a_n - a < \epsilon$ and $a - \epsilon < a_n$. Then $a - \epsilon \leq \inf\{a_n : n \geq N\}$ and $a - \epsilon \leq \inf\{a_n : n \geq k\}$, $\forall k \geq N$. Therefore, $a - \epsilon \leq \lim_{k \to \infty} \inf\{a_n : n \geq k\}$, and $\lim a_n \leq \underline{\lim}_{n \to \infty} a_n$.

Therefore $\lim a_n \leq \underline{\lim}_{n \to \infty} a_n \leq \overline{\lim}_{n \to \infty} a_n \leq \lim a_n$ and $\lim a_n = \underline{\lim}_{n \to \infty} a_n = \overline{\lim}_{n \to \infty} a_n$.

 $\Rightarrow \text{ If } \underline{\lim}_{n \to \infty} a_n = \overline{\lim}_{n \to \infty} a_n, \text{ show that the sequence converges.}$ There are three cases to consider: $\underline{\lim}_{n \to \infty} a_n = \overline{\lim}_{n \to \infty} a_n = \overline{\lim$

Suppose $\varliminf_{n\to\infty} a_n = \varlimsup_{n\to\infty} a_n = +\infty$, then $\forall M>0$, $\exists N \text{ s.t. inf}\{a_n:n\geq N\}>M$. This implies that $\forall M>0$, $\exists N \text{ s.t. } \forall n\geq N$, $a_n>M$ and $\lim a_n=+\infty$. Suppose $\varliminf_{n\to\infty} a_n = \varlimsup_{n\to\infty} a_n = \ne\infty$, then $\forall M<0$, $\exists N \text{ s.t. } \sup\{a_n:n\geq N\}< M$. This implies that $\forall M>0$, $\exists N \text{ s.t. } \forall n\geq N$, $a_n< M$ and $\lim a_n=-\infty$.

Suppose $\varliminf_{n\to\infty}a_n=\varlimsup_{n\to\infty}a_n=a$. Since $\varliminf_{n\to\infty}a_n=a$ then $\forall \epsilon>0$, $\exists M_0$ s.t. $|a-\inf\{a_n:n>M_0\}|<\epsilon$ and $\inf\{a_n:n>M_0\}>a-\epsilon$. Therefore, $a-\epsilon< a_n, \ \forall n\geq M_0$. Since $\varlimsup_{n\to\infty}a_n=a$ then $\forall \epsilon>0$, $\exists N_0$ s.t. $|a-\sup\{a_n:n>N_0\}|<\epsilon$ and $\sup\{a_n:n>N_0\}< a+\epsilon$. Therefore, $a_n< a+\epsilon, \ \forall n\geq N_0$. Therefore $a-\epsilon< a_n< a+\epsilon, \ \forall n\geq \max\{N_0,M_0\}$ and $\lim a_n=a$.

We have shown $\lim_{n\to\infty} a_n \leq \overline{\lim}_{n\to\infty} a_n$, with equality holding if and only if the sequence converges.

III.19 Let $\{a_n\}$ and $\{b_n\}$ be bounded sequences of real numbers. Show that $\overline{\lim}_{n\to\infty}(a_n+b_n) \leq \overline{\lim}_{n\to\infty}a_n + \overline{\lim}_{n\to\infty}b_n$, with equality holding if one of the original sequences converges.

For a_n+b_n , each are non-empty and bounded then $a_n \leq \sup a_n$ and $b_n \leq \sup b_n, \forall n$. Then $a_n+b_n \leq \sup a_n+\sup b_n$, $\forall n$. If it is true for all n, then it's true for the largest $\sup \{a_n+b_n\} \leq \sup a_n+\sup b_n$. If it's true for all n, then for any fixed N, $\sup \{a_n+b_n:n>N\} \leq \sup \{a_n:n>N\} + \sup \{b_n:n>N\}$ and surely $\lim_{N\to\infty} \sup \{a_n+b_n:n>N\} \leq \lim_{N\to\infty} \sup \{a_n:n>N\} + \lim_{N\to\infty} \sup \{b_n:n>N\}$. Therefore, $\overline{\lim}_{n\to\infty}(a_n+b_n) \leq \overline{\lim}_{n\to\infty}a_n + \overline{\lim}_{n\to\infty}b_n$.

Assume without loss of generality that $a_n \to a$, then $\overline{\lim}_{n\to\infty}a_n = \underline{\lim}_{n\to\infty}a_n = \lim a_n$. From earlier homework we know that $\inf a_n + \sup b_n \le \sup(a_n + b_n)$. Therefore, for any $N = \inf\{a_n : n \ge N\} + \sup\{b_n : n \ge N\} \le \sup\{a_n + b_n : n \ge N\}$, and $\underline{\lim}_{n\to\infty}a_n + \overline{\lim}_{n\to\infty}b_n \le \overline{\lim}_{n\to\infty}(a_n + b_n)$. However, because $a_n \to a$, $\underline{\lim}_{n\to\infty}a_n + \overline{\lim}_{n\to\infty}b_n = \overline{\lim}_{n\to\infty}a_n + \overline{\lim}_{n\to\infty}b_n$. Since $\underline{\lim}_{n\to\infty}a_n + \overline{\lim}_{n\to\infty}b_n \le \overline{\lim}_{n\to\infty}(a_n + b_n) \le \overline{\lim}_{n\to\infty}a_n + \overline{\lim}_{n\to\infty}b_n$. $\underline{\lim}_{n\to\infty}a_n + \overline{\lim}_{n\to\infty}b_n$.

Problem 23: Prove that if V is a normed vector space and a_1, a_2, a_3, \ldots and b_1, b_2, b_3, \ldots are convergent sequences of elements of V with limits a and b respectively, then $\lim(a_n + b_n) = a + b$ and $\lim(a_n - b_n) = a - b$ and if furthermore c_1, c_2, c_3, \ldots is a sequence of real numbers converging to c, then $\lim c_n a_n = ca$

(a) Need to show that $\forall \epsilon > 0 \ \exists N \ \text{s.t.} \ \| (a_n + b_n) - (a + b) \| < \epsilon \ \forall n \geq N$. Since both $\{a_n\}$ and $\{b_n\}$ are both convergent sequences and the norm is just the distance between two points we have $\forall \epsilon > 0 \ \exists N \ \text{s.t.} \ \| a_n - a \| < \frac{\epsilon}{2} \ \text{and} \ \| b_n - b \| < \frac{\epsilon}{2}$. Given any epsilon, choose $n \geq N$ and add the two inequalities together, $\| a_n - a \| + \| b_n - b \| < \epsilon$. Using property four of "normed vector spaces" page 63, we have $\| (a_n - a) + (b_n - b) \| \leq \| (a_n - a) + (b_n - b) \| < \epsilon$. Rearranging the terms on the

lefthand side, $||(a_n + b_n) - (a + b)|| < \epsilon \forall n \ge N$ as desired!

- (b) Need to show $\lim(a_n b_n) = a b$. We can use the result from part (a) and re-write the above equations as $\lim(a_n + (-b_n)) = a + (-b) \Rightarrow \lim(a_n b_n) = a b$ as desired!
- (c) Need to show $\forall \epsilon > 0$ $\exists N$ s.t. $\|c_n a_n ca\| < \epsilon \ \forall n \geq N$. First we know that convergent sequences are bounded and since both $\{a_n\}$ and $\{c_n\}$ are convergent sequences, $\|a_n\| < M$ and $\|c_n\| < M$. In addition since they both are convergent, given any epsilon positive $\exists N_1$ s.t. $\|a_n a\| < \frac{\epsilon}{2M}$ and $\exists N_2$ s.t. $\|c_n c\| < \frac{\epsilon}{2M}$. Let's choose $n \geq N = \max\{N_1, N_2\}$. Looking at the inequality $\|c_n a_n ca\|$ we can re-write this as $\|c_n a_n ac_n + ac_n ca\|$ and rearranging the terms inside to get $\|c_n (a_n a) + a(c_n c)\| \Rightarrow \{a_n\}$ and $\{c_n\}$ both converge and they are bounded by M we have $\|c_n a_n ca\| \leq |c_n| * \|a_n a\| + |a| * \|c_n c\| < |M| * \frac{\epsilon}{2M} + |M| * \frac{\epsilon}{2M} = \epsilon \ \forall n \geq N$ as desired!

2"

X

1. Show that $\lim s_n = +\infty$ if and only if $\lim (-s_n) = -\infty$.

Answer:

Since this problem contains an "if and only if" statement, we must show two logical directions. First let us show the "only if" direction. We are given that $\lim s_n = +\infty$ which means that $\forall M > 0, \exists N \ s.t. \ n \geq N \Rightarrow s_n > M$; we would like to show that $\forall M' < 0, \exists N \ s.t. \ n \geq N \Rightarrow s_n < M'$. Given some M' < 0, set M = -M'. Since M' < 0, M = -M' > 0, so $\exists N \ s.t. \ n \geq N \Rightarrow s_n > M$. Multiplying the last inequality by -1 gives us that $-s_n < -M$ which in turn means that $-s_n < M'$ for every $n \geq N$. Thus for any M' < 0, there is some index after which all $-s_n$ are less than M'. Thus $\lim (-s_n) = -\infty$.

Now let us show the "if" direction. We are told that $\forall M' < 0, \exists N \ s.t. \ n \ge N \Rightarrow -s_n < M'$ and we would like to show that $\forall M > 0, \exists N \ s.t. \ n \ge N \Rightarrow s_n > M$. Given some M > 0, set M' = -M; since M > 0, we know that M' < 0, meaning that $\exists N$ such that $n \ge N \Rightarrow -s_n < M'$. Multiplying this inequality by -1 gives $s_n > -M'$; we know that -M' = M so that $s_n > M$ for every $n \ge N$. Thus given any $s_n > 0$, there is some index after which all terms are greater than $s_n = +\infty$. Having shown both logical directions, the proof is complete.

- 2. Suppose that there exists a N_0 such that if $n \geq N_0$ then $s_n \leq t_n$.
- (a) Prove that if $\lim s_n = +\infty$ then $\lim t_n = +\infty$. If $\lim s_n = +\infty$, then $\forall M > 0$, $\exists N$ s.t. $\forall n \geq N$, $s_n > M$. So given an M > 0 choose $N^* = \max\{N_0, N\}$, therefore $M < s_n \leq t_n$, $\forall n \geq N^*$. We have if $\lim s_n = +\infty$ then $\lim t_n = +\infty$.
- (b) If $\lim s_n = s$ and $\lim t_n = t$, then $s \le t$. If $s_n \to s$, then $\forall \epsilon > 0$, $\exists N_s$ s.t. $\forall n \ge N_s$, $|s_n - s| < \epsilon$ and $s - \epsilon < s_n$. Likewise there exists a N_t . Then given any $\epsilon > 0$, we choose $N^* = \max\{N_s, N_t, N_0\}$. Then we have if $s_n \le t_n$, $s_n - t_n \le 0$. From $s_n \to s$ and $t_n \to t$, $s - \epsilon - (t - \epsilon) < s_n - t_n \le 0$, which implies that $s \to t \le 2\epsilon$. Since ϵ is arbitrary, $s \le t$.
 - 3. Show that $\liminf s_n = -\limsup(-s_n)$.

Proof:

2

We have shown that $\inf s_n = -\sup(-s_n)$ in Exam 1. Now $\liminf s_n = \lim_{N\to\infty}\inf\{s_n, n\geq N\} = \lim_{N\to\infty}-\sup\{-s_n, n\geq N\} = -\limsup_{N\to\infty}\sup\{-s_n, n\geq N\} = -\lim\sup_{N\to\infty}(-s_n)$.

4. Let $\{s_n\}$ be a sequence of real numbers and let

$$\sigma_n = \frac{1}{n} \sum_{k=1}^n s_k.$$

- (a) Show that $\liminf s_n \leq \liminf \sigma_n \leq \limsup \sigma_n \leq \limsup s_n$;
- (b) Show that if $\lim s_n$ exists, then $\lim \sigma_n$ exists and $\lim s_n = \lim \sigma_n$. *Proof*:
- (a) The second inequality is trivial. To prove the third inequality, we first

$$-\sum_{k>N}^{n} M = -\sum_{k>N}^{n} + \sup_{k>N} s_k.$$

Since n > M > N, we can break σ_n into two parts:

$$\sigma_n = \frac{s_1 + \dots + s_n}{n} = \frac{s_1 + \dots + s_N}{n} + \frac{s_{N+1} + \dots + s_n}{n}.$$

Since n > M,

$$\frac{s_1+\cdots+s_N}{n} \le \frac{s_1+\cdots+s_N}{M},$$

and

 $\frac{s_{N+1} + \dots + s_n}{n} \le \frac{(n-N)\sup_{k>N} s_k}{n} \le \sup_{n>N} s_k.$

Therefore

$$\sigma_n \le \frac{s_1 + \dots + s_N}{M} + \sup_{k > N} s_k.$$

Immediately, we have

$$\sup_{n>M} \sigma_n \le \frac{s_1 + \dots + s_N}{M} + \sup_{k>N} s_k.$$

Now, fix N and let M goes to infinity, we have that

$$\limsup \sigma_n \leq \sup_{k > N} s_k$$

for all N. Finally, let $N \to \infty$, we have that

$$\limsup \sigma_n \le \limsup s_k.$$

To prove the first inequality, use the fact that $\liminf s_n = -\limsup(-s_n)$. Since $\limsup(-\sigma_n) \leq \limsup(-s_n)$. $\Rightarrow -\liminf \sigma_n \leq -\liminf s_n \Rightarrow$

5. Prove that a sequence $\{s_n\}$ of real numbers is bounded if and only if $\limsup |s_n| < \infty$

5.

Proof. $\{s_n\}$ bounded implies that $\sup\{|s_n|:n\in\mathbb{N}\}$ is bounded above by an upper bound, say M. Since $\sup\{|s_n|: n > N\} \le \sup\{|s_n|: n \in \mathbb{N}\}\$ for any N,

 $\limsup |s_n| = \lim_{N \to \infty} \sup\{|s_n| : n > N\} \leq \lim_{N \to \infty} \sup\{|s_n| : n \in \mathbb{N}\} \leq \sup\{|s_n| : n \in \mathbb{N}\} \leq M$

If $\limsup |s_n| < +\infty$, there there is an M > 0 such that $\limsup |s_n| = M$, ie. for $\epsilon > 0$, there is an N' such that $|\sup\{|s_n| : n > N\} - M| < \epsilon$ for N > N'. Say $\epsilon=1$. Then $\sup\{|s_n|:n>N\}<1+M$ for N>N' so $\{|s_n|:n>N'\}$ is bounded. The set $\{|s_n|:n\leq N'\}$ is also bounded since it is a finite set. Therefore, $\{|s_n| : n \in \mathbb{N}\}$ is bounded so $\{s_n\}$ is a bounded sequence.

X