1. Discuss the continuity of the function $f: R \to R$ if

$$(a) f(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$$

Proof: We need to show that $\forall \epsilon > 0, \exists \delta > 0$ such that $p \in E(or\ R: our\ metric\ space)$

and
$$d_x(p, p_0)\delta$$
, then $d_y(f(p), f(p_0)) < \epsilon$. Let $p_0 = 0$.

case 1)
$$p_0 < 0$$
: $d_x(p, 0) = p$ and $d_y(f(p), f(0)) = d_y(0, 0) = 0$

case 2)
$$p_0 \le 0$$
: $d_x(p,0) = p$ and $d_y(f(p), f(0)) = d_y(p,0) = p$.

Choose $\forall \epsilon > 0$, $\exists d_x(p,0) = p < \delta$ and $d_y(p,0) = p < \epsilon$.

(b)
$$f(x) = \begin{cases} x\sin\frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

Proof: We need to check if $\lim_{x\to 0} f(x) = f(0)$ so, $\lim_{x\to 0} x \sin \frac{1}{x} = 0$.

case 1) If x is nonzero, $0 \le \sin \frac{1}{x} \le 1$, and we have $0 \le \left| x \sin \frac{1}{x} \right| \le |x|$ for all nonzero x.

by squeeze theorm, $\lim_{x\to 0} 0 \le \lim_{x\to 0} \left|x\sin\frac{1}{x}\right| \le \lim_{x\to 0} |x|$, then $0 \le \lim_{x\to 0} \left|x\sin\frac{1}{x}\right| \le 0$.

Thus, $\lim_{x\to 0} \left| x \sin \frac{1}{x} \right| = 0.$

case 2) If x is zero, $\lim_{x\to 0} 0 = 0$.

Therefore, it is continuous.

Discussion:

$$f(x) = x^2$$
 and $f(x) = 1$ are continuous functions.

Select $p=0, q\neq 0$: d(p=0,q)=q and $d(f(p=0),f(q))=d(1,q^2)=|1-q^2|$. The inequality $|1-q^2|<\epsilon$ minplies $-\epsilon < q^2-1 < \epsilon \Longrightarrow \sqrt{1-\epsilon} < q < \sqrt{1+\epsilon}$.

Test with $\epsilon=\frac{1}{2}$: $\sqrt{1-\frac{1}{2}}< q<\sqrt{1+\frac{1}{2}}\Longrightarrow \sqrt{\frac{1}{2}}< q<\sqrt{\frac{3}{2}}$. But we require a δ such that $q<\delta\Longrightarrow \sqrt{\frac{1}{2}}< q<\sqrt{\frac{3}{2}}$. No selection of δ will satisfy both inequalities, so the function must be discontinuous at zero.

(d) Claim: f is not continuous

 $f(x) = \begin{cases} 0 & \text{if } x \text{ is not rational} \\ \frac{1}{q} & \text{if } x = \frac{p}{q} \text{ where p and q are integers with no common divisors other than } \pm 1, \text{ and } q > 0 \end{cases}$

 \mathcal{X}

Suppose that we want to check the continuity at some rational number $\frac{p}{q} = x_0$. Then $\forall \epsilon > 0 \; \exists \delta > 0 \; \text{s.t.} \; |x - x_0| < \delta \; \text{implies} \; |f(x) - f(x_0)| < \epsilon.$ Let x be an irrational number such that $|x - x_0| < \delta$. This is possible by LUB 5 on page 26 in the text. Now given $\epsilon < \frac{1}{q}$, then we have $\forall \epsilon > 0 \; |x - x_0| < \delta \; \text{but} \; |f(x) - f(x_0)| = |0 - \frac{1}{q}| = |\frac{1}{q}| \geq \epsilon \; \forall \delta \; \text{and} \; \text{irrational} \; x.$

Rosenlicht 2

Let E, E' be metric spaces, $f: E \to E'$ a continuous function. Show that if S is a closed subset of E' then $f^{-1}(S)$ is a closed subset of E. Derive from this the results that if f is a continuous real-valued function on E then the sets $\{p \in E : f(p) \le 0\}$, $\{p \in E : f(p) \ge 0\}$, $\{p \in E : f(p) = 0\}$ are closed.

Solution:

Need to Show: $C(f^{-1}(S))$ is an open subset of E.

 $S \subset E'$ closed $\Longrightarrow \mathcal{C}(S) \subset E'$ open. For continuous functions, the inverse image of an open subset is open, so $f^{-1}(\mathcal{C}(S)) \subset E$ is open. We desire to move the complement outside the inverse mapping. This is possible because $f^{-1}(\mathcal{C}(S))=\{p\in E: f(p)\in \mathcal{C}(S)\}=\{p\in E: f(p)\not\in S\}=\mathcal{C}(f^{-1}(S)).$

Now we have that $(f^{-1}(S))$ is closed. So the mapping $f: E \to \mathbb{R}$ maps closed subsets to closed subsets. Then $\{p \in E : f(p) \le 0\}$, $\{p \in E : f(p) \ge 0\}$, $\{p \in E : f(p) = 0\}$ are closed subsets because they map to the closed subsets $\{x\in\mathbb{R}:x\leq 0\}, \{x\in\mathbb{R}:x\geq 0\}, \{0\}.$

Given some $x_1 \ge 0$ and some $\epsilon > 0$, we seek to find a $\delta > 0$ such that $|x_1 - x_2| < \delta$ implies that $|\sqrt{x_1} - \sqrt{x_2}| < \epsilon$. Here, note that regardless of which is greater, we can say that

e, note that regardless of which is greater, where
$$x_1 = \sqrt{x_1} - \sqrt{x_2} = (\sqrt{x_1} - \sqrt{x_2}) \left(\frac{\sqrt{x_1} + \sqrt{x_2}}{\sqrt{x_1} + \sqrt{x_2}} \right)$$
 for $\left(\frac{\chi_1}{\chi_1} + \frac{\chi_2}{\chi_2} \right) = \sqrt{x_1} + \sqrt{x_2}$. Here choosing $\delta < \epsilon^2$ gives us

First let us examine the case that $x_1 = 0$. Here, $|\sqrt{x_1} - \sqrt{x_2}| = \sqrt{x_2}$. Here, choosing $\delta < \epsilon^2$ gives us that $|x_1-x_2|=x_2<\epsilon^2$ so that $|\sqrt{x_1}-\sqrt{x_2}|=\sqrt{x_2}<\epsilon$. Thus we see that if $x_1=0$, the function

Now let us examine the case that $x_1 > 0$. Using the fact that

$$\sqrt{x_1} - \sqrt{x_2} = (\sqrt{x_1} - \sqrt{x_2}) \left(\frac{\sqrt{x_1} + \sqrt{x_2}}{\sqrt{x_1} + \sqrt{x_2}} \right)$$

and distributing, we see that

$$\sqrt{x_1} - \sqrt{x_2} = \frac{x_1 - x_2}{\sqrt{x_1} + \sqrt{x_2}}$$

Since $\sqrt{x_1} > 0$ and $\sqrt{x_2} > 0$, we know that $\sqrt{x_1} + \sqrt{x_2} > \sqrt{x_1}$ which lets us say that

$$\frac{x_1 - x_2}{\sqrt{x_1} + \sqrt{x_2}} < \frac{x_1 - x_2}{\sqrt{x_1}}$$

Here, if we select $\delta = \sqrt{x_1} * \epsilon$, we see that $x_1 - x_2 < \sqrt{x_1} * \epsilon$ so that

$$\frac{x_1-x_2}{\sqrt{x_1}+\sqrt{x_2}}<\frac{x_1-x_2}{\sqrt{x_1}}=\frac{\sqrt{x_1}*\epsilon}{\sqrt{x_1}}=\epsilon$$

Thus given any $x_1 \in \mathbb{R}$ and any $\epsilon > 0$, we see that $\exists \delta > 0$ such that $d(x_1, x_2) < \delta \Rightarrow d(\sqrt{x_1}, \sqrt{x_2}) < \epsilon$ and thus that \sqrt{x} is continuous $\forall x \in \mathbb{R}$.

9.b. Here we note that

$$x-1 = (\sqrt{x}-1)(\sqrt{x}+1)$$

which lets us say that

$$\frac{x-1}{\sqrt{x}-1} = \frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}-1} = \sqrt{x}+1$$

From this we see that

$$\lim_{x \to 1} \frac{x-1}{\sqrt{x}-1} = \lim_{x \to 1} \sqrt{x} + 1 = 2$$

2

13. Write down the details of the following alternate proof that a continuous real valued function f on a compact metrix space E is bounded and attains a maximum: If f is not bounded, then for n=1,2,3 ... there is a point $p_n \in E$ such that $|f(p_n)| > n$, and a contradiction arises from the existence of a convergent subsequence of p_1, p_2, p_3, \ldots Thus f is bounded and we can find a sequence of points q_1, q_2, q_3, \ldots of E such that $\lim_{n\to\infty} f(p_n) = l.u.b$ $\{f(p): p \in E\}$.

A maximum will be attained by f at the limit of a convergent subsequence of $q_1, q_2, q_3, ...$

Proof: Assume that f is not bounded, then for n = 1,2,3...

there is a point $p_n \in E$ such that $|f(p_n)| > n$.

Since E is compact, $\exists a \ convergent \ subsequence \ \{p_{n_k}\} \ with \ \lim_{k \to \infty} p_{n_k} = p_0$, $p_0 \in E$.

Now because f is continuous, we can use the property of continuity. $\lim_{k\to\infty}f(p_{n_k})=f(p_0)$.

Then we could find a positive integer $\sim N$ such that $\forall \dot{k} > N$,

$$1 > \left| f(p_{n_k}) - f(p_0) \right| \ge \left| f(p_{n_k}) \right| - \left| f(p_0) \right| > n_k - \left| f(p_0) \right|$$

 \Rightarrow 1 + $|f(p_0)| > n_k but$ we cannot which is contradiction.

Therefore f is bounded and nonempty. It imples that we can find a sequence in f(E) where $\lim_{n\to\infty}f(q_n)=l.u.b.\{f(p):p\in E\}.$

Since E is compact, $\exists a \text{ convergent subsequence } \{q_{n_k}\} \text{ of } \{q_n\} \text{ where } \lim_{n \to \infty} q_{n_k} = q_0, \quad q_0 \in E.$

However, since $\lim_{n\to\infty}f(q_n)=\lim_{k\to\infty}f\bigl(q_{n_k}\bigr)$, we must have $f(q_0)=$ l. u. b $\{f(p)\colon p\in E\}$.

Thus, $f(q_0) \ge f(p)$, $\forall p \in E$, $f(q_0)$ is max.

14. (a) Prove that if S is a nonempty compact subset of a metrix space E and $p_0 \in E$ then $\min\{d(p_0,p): p \in S\}$ exists (distance from p_0 to S).

Proof: Let $f(x) = d(p,p_0) = |p-p_0|$ where $f: E \to R$.

This is continuous function since if we choose $\delta = \epsilon$, $|f(p) - f(p_1)| = |d(p,p_0) - d(p_1,p_0)| \le d(p,p_1) < \epsilon$ so $d(p,p_1) < \epsilon$ then $|f(p) - f(p_1)| < \epsilon$. also, if $f: E \to E'$ is continuous and S is a subset of E, then the restriction of f to S is continuous on S, too. Therefore, f(x) is continuous on S. Since f is a continuous real valued function on a nonempty compact space S.

(b) Prove that if S is a nonempty closed subset of E^n and $p_0 \in E^n$ then $\min\{d(p_0,p): p \in S\}$ exists.

f attains a minimum at some point by Corollary 2 on textbook p78.

Proof:

If $p_0 \in E$ then $\min\{d(p_0,p): p \in S\} = 0$, we can assume that $p_0 \in S^c$. Choose $\epsilon > 0$, such that the closed ball $\overline{B(p_0,\epsilon)} \subset E^n$ contains points in S, or $\overline{B(p_0,\epsilon)} \cap S = \emptyset$. Consider the continuous function $f: E^n \to \mathbb{R}$ given by the function $f(p) = d(p_0,p)$. Then f is continuous on $\overline{B(p_0,\epsilon)} \cap S$ as well.

Observe that $\overline{B(p_0,\epsilon)} \cap S$ is closed and bounded subset of E^n , and it is compact. by Corollary 2 on textbook p78, f attains a munimum at some point in $\overline{B(p_0,\epsilon)} \cap S$ or $\min\{d(p_0,p): p \in S\}$

Since E is compact and $\{d(p,q): p,q\in E\}$ is bounded and nonempty, E must be bounded. Then we can find a sequence of points $\{(p_n, q_n)\}_{n=1,2,...}$ of E s.t.

$$\lim_{n\to\infty} d(p_n, q_n) = \sup\{d(p, q) : p, q \in E\}.$$

Since E is comapet, \exists convergent subsequences $\{p_n\}, \{q_n\}$ where $\{p_{n_k}\}, \{q_{n_k}\}$ converge to some point $p_o, q_0 \in E$. Thus, we have that

$$d(p_0, q_0) = \lim_{k \to \infty} d(p_{n_k}, q_{n_k})$$

$$= \lim_{n \to \infty} d(p_n, q_n) = \sup \{d(p, q) : p, q \in E\}.$$

Hence, $\max\{d(p,q): p,q \in E\}$ exists. \square

10. Discuss the continuity of the function $f: E^2 \to \mathbb{R}$ if

(a)
$$f(x,y) = \begin{cases} \frac{1}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

(b)
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

(b)
$$f(x,y) = \begin{cases} \frac{xy}{x^2+y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

(c) $f(x,y) = \begin{cases} \frac{xy^2}{x^2+y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$

Proof:

(a) By Lemma and Proposition on pg.75-76 in section 4.3, we know that f(x,y) is continuous when $(x,y) \neq (0,0)$. NTS (rather check) continuity at (0,0). Then by the last Proposition in section 4.2 on pg. 74, which was also used on prob.2, if f(x,y) is continuous at (0,0), then $\forall \{p_n\}_{n\geq 1}$ converges to (0,0) we will have $\lim_{n\to\infty} f(p_n) = f(0,0) = 0$. Thus, choose $p_n=(\frac{1}{n},\frac{1}{n}),$ so then we have that $\lim_{n\to\infty}p_n=(0,0)$ and

$$f(p_n) = \frac{1}{(\frac{1}{n})^2 + (\frac{1}{n})^2} = 2n^2.$$

So we see that as $n \to \infty$, we have $f(p_n) \to \infty$, which is a contradiction. Hence f(x,y) is not continuous at (0,0).

(b) Using the same idea as (a), NTS continuity at (0,0). Choose $\{p_n\}_{n\geq 1}$ converges to (0,0) as $p_n = (\frac{1}{n}, \frac{1}{n})$. Then

$$\lim_{n \to \infty} f(p_n) = \lim_{n \to \infty} \frac{\frac{1}{n} \frac{1}{n}}{(\frac{1}{n})^2 + (\frac{1}{n})^2} = \frac{1}{2} \neq 0 = f(0, 0).$$

A contradiction, hence f(x,y) is not continous at (0,0). \square

(c) NTS continuity at (0,0). By definition of continuity, $\forall \varepsilon > 0$, if $\exists \delta > 0$, s.t. $\forall p = (x_p, y_p)$ $d(p,(0,0)) = \sqrt{x_p^2 + y_p^2} < \delta \text{ where } d(f(p),0) = |f(p)| < \varepsilon.$ f(x, y) is continuous at (0, 0). Check.

$$|f(p)| = \left|\frac{x_p y_p^2}{x_p^2 + y_p^2}\right| \le \left|\frac{x_p y_p^2}{2x_p y_p}\right| = \frac{|y_p|}{2} < \varepsilon \iff |y_p| < 2\varepsilon.$$

Since $x_p^2 \ge 0$, let $\delta = 2\varepsilon$, then for $\sqrt{x_p^2 + y_p^2} < \delta$, $|y_p| < 2\varepsilon$, $|f(p)| < \varepsilon$. Hence f(x,y) is continuous at $(0,0) \implies f(x,y)$ is continuous on E^2 . \square