Let us show that x^2 is not uniformly continuous by showing that $\forall \epsilon > 0 \ \forall \delta > 0, \ \exists x,y \in \mathbb{R}$ such that $|x-y| < \delta$ and $|x^2-y^2| \geq \epsilon$. To do this, choose $x = \frac{\epsilon}{\delta}$ and set $y = \frac{\epsilon}{\delta} + \frac{\delta}{2}$. We see that $|x-y| = |\frac{\epsilon}{\delta} - \frac{\epsilon}{\delta} - \frac{\delta}{2}| = \frac{\delta}{2}$. However we also see that $|x^2-y^2| = \left|\left(\frac{\epsilon}{\delta} + \frac{\delta}{2}\right) - \left(\frac{\epsilon}{\delta}\right)^2\right| = \left|\frac{\epsilon^2}{\delta^2} + \epsilon + \frac{\delta}{4} - \frac{\epsilon^2}{\delta^2}\right| = \left|\epsilon + \frac{\delta^2}{4}\right| = \epsilon + \frac{\delta^2}{4} > \epsilon$. Thus $\forall \epsilon > 0 \ \forall \delta > 0 \ \exists x,y \in \mathbb{R}$ such that $|x-y| < \delta$ and $|x^2-y^2| \geq \epsilon$ and the function $f(x) = x^2$ is not uniformly continuous on \mathbb{R} .

Since $f(x)=\sqrt{|x|}$ is the composition of two functions (namely \sqrt{x} and |x|) we can show that each of these functions is uniformly continuous and use the result from question 20 to conclude that f is also uniformly continuous. First, let us show that \sqrt{x} is uniformly continuous on $[0,\infty)$. To do this, we must find a $\delta>0$ which is a function of ϵ only such that $|x-y|<\delta$ implies that $|\sqrt{x}-\sqrt{y}|<\epsilon$. Let us choose $\delta=\epsilon^2$. Then $|x-y|<\delta$ implies that $|x-y|<\epsilon^2$. Now there are two possibilities here: either that x-y<0 or x-y>0. Say x-y<0 so that |x-y|=y-x. Then we have $y-x<\epsilon^2$ and thus that $y< x+\epsilon^2$. Since y>0 and $x+\epsilon^2>0$, we can take the square root of both sides while still preserving the inequality, giving us $\sqrt{y}<\sqrt{x+\epsilon^2}$. By definition, for any u,v>0 we know that $\sqrt{u+v}\le\sqrt{u}+\sqrt{v}$. Here, this lets us say that $\sqrt{y}<\sqrt{x}+\epsilon^2$ implies that $\sqrt{y}<\sqrt{x}+\epsilon$. Subtracting \sqrt{x} from both sides then gives $\sqrt{y}-\sqrt{x}<\epsilon$ whenever $|x-y|<\delta=\epsilon^2$.

Now let us consider the case that x-y>0. Then |x-y|=x-y>0 and we have $0< x-y<\delta=\epsilon^2$. Adding y gives $y\le x< y+\epsilon^2$. Taking the square root gives $\sqrt{y}\le \sqrt{x}<\sqrt{y+\epsilon^2}$. Again using the aforementioned property of inequalities containing square roots, we may now say that $\sqrt{y}\le \sqrt{x}<\sqrt{y}+\epsilon$. Subtracting \sqrt{y} then gives $0\le \sqrt{x}-\sqrt{y}<\epsilon$. Combining this inequality with the one from end the of the preceding paragraph gives us that $|\sqrt{x}-\sqrt{y}|<\epsilon$ whenever $|x-y|<\delta$ for every $x,y\in[0,\infty)$. Thus \sqrt{x} is uniformly continuous.

For the function |x| we can show uniform continuity by selecting $\delta = \epsilon$. Here, $|x-y| < \delta$ implies $|x-y| < \epsilon$ and, using the reverse triangle inequality we see that $|f(x) - f(y)| = ||x| - |y|| \le |x-y| < \epsilon$ thus giving us $||x| - |y|| < \epsilon$. Thus \sqrt{x} and |x| are both uniformly continuous and their composition is as well.

18. Prove that for any metric space E, the identity function on E is uniformly continuous.

The identity function is defined as Id(x) = x, $\forall x \in E$. Here we need to show that given any $\epsilon > 0$, $\exists \delta > 0$ such that $\forall x,y \in E, d(x,y) < \delta$ implies that $d(Id(x),Id(y)) < \epsilon$. Given some $\epsilon > 0$, let us set $\delta = \epsilon$. Then, taking any $x,y \in E$ such that $d(x,y) < \delta$, using $\delta = \epsilon$ we can say that $d(x,y) < \epsilon$. Now, since Id(x) = x and Id(y) = y, we may substitute these into the preceding inequality, giving us $d(Id(x),Id(y)) < \epsilon$. Thus we have shown that $d(x,y) < \delta$ implies that $d(Id(x),Id(y)) < \epsilon$ and the proof is complete.

19. Prove that for any metric space E and any $p_0 \in E$, the real-valued function sending any p into $d(p_0, p)$ is uniformly continuous.

Let $f(p) = d(p_0, p)$ where p_0 is any point in E. Here we wish to show that f is unformly continuous on E. To do this, we must show that given any $\epsilon > 0$, $\exists \delta > 0$ such that $\forall q, r \in E$, $d(q, r) < \delta$ implies that $d(f(q), f(r)) < \epsilon$. Here, note that, via the triangle inequality, $d(q, r) \ge |d(q, p_0) - d(p_0, r)|$. This means that $\delta > d(q, r)$ implies that $\delta > |d(q, p_0) - d(p_0, r)|$. Since $f(q) = d(q, p_0)$ and $f(r) = d(r, p_0)$, we see that the preceding statement implies that $\delta > |f(q) - f(r)|$. Thus here, given any $\epsilon > 0$, setting $\delta = \epsilon$ gives us that $d(q, r) < \delta$ implies $d(f(q), f(r)) < \epsilon$ for every $q, r \in E$ and the proof for uniform continuity is complete.

20. State precisely and prove: A uniformly continuous function of a uniformly continuous function is uniformly continuous.

Here let $f: E \to E'$ and $g: E' \to S$. We seek to show that $h = g \circ f: E \to S$ is uniformly continuous if f and g are. To do this, we must show that given any $\epsilon_h > 0 \ \exists \delta_h > 0$ such that $d_E(p,q) < \delta_h$ implies that $d_S(h(p),h(q)) < \epsilon_h$, $\forall p,q \in E$.

Now, since g is uniformly continuous, given some $\epsilon_h > 0$ we know that $\exists \delta_g$ such that $\forall r,s \in E',\ d_{E'}(r,s) < \delta_g$ implies that $d_S(g(r),g(s)) < \epsilon_h$. Using the fact that f is uniformly continuous, we can set $\epsilon_f = \delta_g$ and we know that $\forall u,v \in E$ we have $d_E(u,v) < \delta_f$ implies that $d_{E'}(f(u),f(v)) < \epsilon_f = \delta_g$ which in turn implies that $d_S(g(f(u)),g(f(v))) < \epsilon_h$. Rewriting this last inequality, we have $d_S((g \circ f)(u),(g \circ f)(v)) < \epsilon_h$ whenever $d_E(u,v) < \delta_f$. Thus given any $\epsilon_h > 0$ we can set $\delta_h = \delta_f$ and be guaranteed that $d_E(u,v) < \delta_f$ implies that $d_S(h(u),h(v)) < \epsilon_h \ \forall u,v \in E$, meaning that $h:E \to S$ is uniformly continuous and the proof is complete.

() 3 8 f such th Problem 22

Assume the norm on V is 11.11, and the one on V'is 11.11z.

Assume 11x-y11, 48 for some X, y & V.

Gne has 1x-y11=11x-y+x0-x011,.

Thus 1/ x-y + xo-xoll, < 8 and

1/f(x-y+x0)-f(x0)1/2 < E.

That is $\|f(x)-f(y)+f(x_0)-f(x_0)\|_{2} \in \mathbb{R}$ and 50 $\|f(x)-f(y)\|_{2} \in \mathbb{R}$.

b.1 => Assume A= of If (x) II , rev, x to f above is bounded say by 17 > 0.

For $x \neq 0$, $||f(x)|| = ||x|| \frac{||f(x)||}{||x||} \leq m ||x||$. for x = 0 We also have $||f(x)|| = 0 \leq m ||x|| = 0$ Hence $\forall x \in V$, $||f(x)|| \leq m ||x||$.

Let $\xi > 0$. Take $S = \frac{\xi}{\Pi}$. $\|X\| \le \delta = 0$. $\|\Pi\| \times \|X\| \le \epsilon = 0$. $\|f(X)\| \le \epsilon$. Hence f is continuous at zero and therefore is continuous everywhere.

(E) Assume f is continuous. Let us show that A is bounded.

Since f is continuous at 0, $\forall \xi > 0$, $\exists \delta > 0$ Such that $\|x\| < \delta = \|f(x)\| < \xi$.

For $x \neq 0$, $x = \frac{2||x||}{8} \cdot \frac{S}{2||x||} \times$ Some $\left|\left|\frac{S}{2||x||} \times \right|\right| = \frac{S}{2} < S$, $\left|\left|f\left(\frac{S}{2||x||} \times\right)\right|\right| < \frac{S}{2}$.

Thus $\left|\left|f(x)\right|\right|\right| = \frac{2||x||}{||x||} \left|\left|f\left(\frac{1}{2||x||} \times\right)\right|\right| < \frac{2}{8} \times \frac{S}{8}$.

So f is bounded below by 0 and above by $\frac{2S}{8}$.

C.) Let (Y1, -, Yn) be a basis of V. Consider the function P: 12n -> 12 xiVill Vis a norm on 12°. Indeed: P(x) =0 (→) P(x1 -- /xn)=0 (→) 11 Exww11=0 (2) ZXV W' =0 (2) Xc = 0 1=1, -, M (2) X = 0. Q(X+Y) = 11 Z(Xi+Yi) Yi 11 - 11 ZXiYi + E YiVi 11 211 2xi Vi 11+ 112 YiYi-11 = 4(x)+ 4(x). 4(4x)=112-1xivi11=121112xivil = 12) 8(x). Sence l'is a norm it is continuous on 18". Let 11.11. denote the Euclidean norm. STY XEIRT, HX110=14 is compact. Thus I xo e S such that m= 4(xo) = 4(x). Remark that m \$ 0 some m=0=) ((x)=0 and

xo=0 impossible as 11 Xollo=1

Paxen, x \$0, $\frac{x}{\|x\|_0} \in S'$, $m \leq \mathcal{C}(\frac{x}{\|x\|_0})$ mell Z XV Vill, 11 1/2 m = 11 × 11 = 11 × 11, Now for X = \(\frac{2}{2}\times 1 \times 1 \times 1 \times 1 11 f(zx. vi) | = 11 \(\frac{1}{2} \times i f(\frac{1}{2} \times 1) | 1 < 3 m 11x11, 11 f(w) 1) Thus 11f(x)11 < 2 tm f(xi) Thus fis continuous by part b.). Checking that the norm makes the set of infinite sequences above a normed vector space:

- 1. Given that at least one of the x_i 's is nonzero, clearly $\max\{|x_1|, |x_2|, |x_3|, ...\} > 0$.
- 2. $\max\{|x_1|, |x_2|, |x_3|, ...\} = 0$ only if all the x_i 's are zero.
- 3. $\|(cx_1, cx_2, cx_3, ...)\| = \max\{|cx_1|, |cx_2|, |cx_3|, ...\} = \max\{|c||x_1|, |c||x_2|, |c||x_3|, ...\} = |c| \cdot \max\{|x_1|, |x_2|, |x_3|, ...\}.$
- 4. By the triangle inequality, $|x_i + y_i| \le |x_i| + |y_i| \le \max_i(x_i) + \max_i(y_i)$. So we must have $\max_i(x_i + y_i) \le \max(x_i) + \max(y_i)$.

Showing the map is a one-to-one linear transformation:

Within each component, we have $f(x_i) = i \cdot x_i$. This is clearly a linear transformation, and one-to-one. Since all components are then mapped by a linear transformation, the larger map is a linear transformation.

Assure
$$(X_1, 2X_2, 3X_3, ---) = (X_1', 2X_2', 3X_1', -)$$

Then $i \times i = i \times i$ for $i = i, 2y -$
 $so \times i = x \cdot i$
and $(X_1, X_2, X_3, ---) = (X_1', X_1', ---)$
So the map is one-to-one.

Set
$$X^{n} = (X_{1}^{n}/X_{2}^{n}, \dots)$$

where $X_{1}^{n} = \begin{cases} 0, 4, 4 \neq n \\ 1, 4 \neq 1 = n \end{cases}$

where $X_{1}^{n} = \begin{cases} 0, 1, 0, 0, \dots \\ 0, 1, 0, \dots \end{cases}$
 $X^{2} = (0, 1, 0, 0, \dots)$
 $X^{3} = (0, 0, 1, 0, \dots)$

If f denotes the map: $[X_{11}, X_{1}, \dots) \mapsto (X_{11}, 2X_{2}, 3X_{3}, \dots) = (0, \dots, 9n, 40 \dots)$
 $f(X^{n}) = (X_{1}^{n}, 2X_{2}^{n}, \dots) = (0, \dots, 9n, 40 \dots)$

Thus $\||f(X^{n})\|| = n$ and $\||X^{n}\|| = 1$.

So $\frac{\||f(X^{n})\||}{\||X^{n}\||} = n$

and the set $\int \frac{\||f(X)\||}{\||X^{n}\||} ||X^{n}|| + 1$ is not and then f is not

23. Use Problem 22 to prove that if V is a finite dimensional vector space over \mathbb{R} and $|||_1, |||_2$ are two norm funtions on V.

Solution

Let e_n be the canomial base of V, and let $x \in V$. Then $x = \sum_{i=1}^n x_i e_i = \|x\|_1 = \|\sum_{i=1}^n x_i e_i\|_1 \le \sum_{i=1}^n |x_i| * \|e_i\|_1$ by using the definition of a norm and $\|\cdot\|_1$ is any norm. We can apply the Cauchy Schwarz inequality. $\|x\|_1 \le \sum_{i=1}^n |x_i| * \|e_i\|_1 \le \sqrt{\sum_{i=1}^n |x_i|^2} * \sqrt{\sum_{i=1}^n \|e_i\|_1^2}$. We can see that $\sqrt{\sum_{i=1}^n |x_i|^2} = \|x\|_e$ and $\sqrt{\sum_{i=1}^n \|e_i\|_1^2} = \mu_1$ where $\|\cdot\|_e$ is the euclidean norm, and μ_1 is some constant. Then, $\|x\|_1 \le \mu_1 * \|x\|_e$. Now we show that $f(x) = \|x\|_1$ is continuous with respect to the euclidean norm. Let $\epsilon > 0$, we need to show

$$\begin{split} & \exists \delta_{\epsilon} > 0 \text{ s.t. } ||x-y||_{e} < \delta_{\epsilon} = ||||x||_{1} - ||y||_{1}|| < \epsilon. \text{ Let } \delta_{e} = \frac{\epsilon}{|\mu_{1}|}. \text{ Then } \\ & \frac{\epsilon}{|\mu_{1}|} \geq ||x-y||_{e} \geq ||||x||_{e} - ||y||_{e}|| = \frac{\epsilon}{|\mu_{1}|} \geq ||\frac{||x||_{1}}{|\mu_{1}|} - \frac{||y||_{1}}{|\mu_{1}|}||_{e} = \frac{1}{\mu_{1}} * |||x||_{1} - ||y||_{1}||_{e} \\ & \text{Then, } \epsilon > ||||x||_{1} - ||y||_{1}||_{\epsilon} = \text{F is continuous. Let } S = \{x \in v \text{ s.t. } ||x||_{e} = 1\}. \\ & \text{S is closed and bounded, so it is compact, and then F has a minimum value in } \\ & \text{S at } x_{min}. \text{ Now } \forall x \in v, \quad \frac{x}{||x||_{\epsilon}} \in s = ||\frac{x}{||x||_{\epsilon}}||_{1} \geq m_{1} \text{ where } m_{1} \text{ is the minimum } \\ & \text{value of F in s. Then, } ||x||_{1} \geq m_{1} * ||x||_{e}. \text{ For any norms, we have basically } \\ & \text{shown that } \exists \mu_{1}, m_{2}, \mu_{2} \text{ such that } m_{1} * ||x||_{e} \leq ||x||_{1} \leq \mu_{1} * ||x||_{e} = m_{e} * ||x||_{e} \leq ||x||_{2} \leq \mu_{2}||x||_{e} = \exists m = \frac{m_{1}}{m_{2}} \text{ and } \mu = \frac{\mu_{1}}{\mu_{2}} \text{ such that } m \leq \frac{||x||_{1}}{||x||_{2}} < \mu. \text{ It basically } \\ & \text{follows that given that } \mathbb{R} \text{ is complete, and all norms are equivalent to the euclidean norm, the space is complete } \forall \text{ norm.} \end{aligned}$$

33)

a. Show that the sequence of functions $x, x^2, x^3, ...$ converges uniformly on [0, a] for any $a \in (0,1)$, but not on [0,1].

Let $\{f_n\} = \{x^n\}$, and suppose $f^n \to f$. We must show that for $\epsilon > 0$, $\exists N$ such $d(f, f^n) < \epsilon$ whenever n > N for all x.

For $a \in (0,1)$, it is clear to see that $x^n \to 0$ as n approaches infinity. We must then show $|x^n| < \epsilon$ whenever n is greater than some N.

On [0, a], x^n attains its max at x = a, so $x^n < a^n$. Then note a^n decreases with increasing n, so we choose N such $a^N < \epsilon$.

 $\{f_n\}$ doesn't converge uniformly on [0,1] because at x = 1 $f^n = (1)^n = 1 \neq 0$ for all n.

b. Show that the sequence of functions x(1-x), $x^2(1-x)$, $x^3(1-x)$, ... converges uniformly on [0,1].

Since on [0,1], at least one of the quantities x^n and (1-x) is less than 1, and at is at most 1, thus we might guess f=0. Then we must show for $\epsilon>0$, $\exists N$ such $|x^n(1-x)-0|<\epsilon$ if n>N.

 x^n and (1-x) are both continuous functions, and using calculus, we can calculate the maximum value that $|x^n(1-x)|$ attains on [0,1].

$$\frac{d}{dx}(x^n(1-x)) = -x^n + nx^{n-1}(1-x) = -x^n + nx^{n-1} - nx^n = -x + n - nx = 0$$

So $x^n(1-x)$ attains its max at $x = \frac{n}{n+1}$, which is $\left(\frac{n}{n+1}\right)^n \left(\frac{1}{n+1}\right)$

Then $|x^n(1-x)| < \left(\frac{n}{n+1}\right)^n \left(\frac{1}{n+1}\right) < \frac{1}{n+1} < \epsilon$. If we choose $N = (1-\epsilon)/\epsilon$, then whenever n > N, we will have $|x^n(1-x)| < \epsilon$.

34) Is the sequence of functions $f_1, f_2, f_3, ...$ on [0,1] uniformly convergent if

 $f_n(x) = \frac{x}{1+nx^2}$? Note $f_n \to 0$. We must find for $\epsilon > 0$, an N such n > N implies $|f_n - 0| < \epsilon$.

Observe $f_n' = \frac{(1+nx^2)-x(2nx)}{(1+nx^2)^2} = \frac{1-nx^2}{(1+nx^2)^2} = 0$. This has solution at $x = \sqrt{\frac{1}{n}}$, and f_n attains a max value $\frac{1}{2}\sqrt{\frac{1}{n}}$. So $\left|\frac{x}{1+nx^2}\right| < \frac{1}{2}\sqrt{\frac{1}{n}}$, thus if we choose $N > 1/4\epsilon^2$, we will have $|f_n - 0| < \epsilon$ whenever n > N

 $f_n(x) = \frac{nx}{1+nx^2}$? Note for all n, $f_n(0) = 0$, and for x > 0, $f_n \to \frac{1}{x}$. Since $\lim_{n \to \infty} f_n$ is not continuous on [0,1], it does not converge uniformly.

 $f_n(x) = \frac{nx}{1+n^2x^2}$? Again we have $f_n \to 0$. We must find for $\epsilon > 0$, an N such n > N implies $|f_n - 0| < \epsilon$.

Again, taking the derivative and setting it to 0 gives us:

$$f_n' = \frac{(1 + n^2 x^2)n - nx(2n^2 x)}{(1 + n^2 x^2)^2} = \frac{n - n^3 x^2}{(1 + n^2 x^2)^2} = 0$$

This has solution at x = 1/n. But this means that f_n attains a max of $f_n\left(\frac{1}{n}\right) = \frac{n\left(\frac{1}{n}\right)}{1+n^2\left(\frac{1}{n}\right)^2} = \frac{1}{2}$. Thus it would not be possible to choose an N for all ϵ , specifically any $\epsilon < \frac{1}{2}$.

37) Let $f_1, f_2, f_3, ...$ and $g_1, g_2, g_3, ...$ be uniformly convergent sequences of real-valued functions on a metric space E. Show that the sequence $f_1 + g_1, f_2 + g_2, ...$ is uniformly convergent.

Let $f_n \to f$ and $g_n \to g$. We have that for all x, for $\epsilon > 0$, $\exists N_1, N_2 \text{ such } |f_n(x) - f(x)| < \frac{\epsilon}{2}$ whenever $n > N_1$ and $|g_n(x) - g(x)| < \frac{\epsilon}{2}$ whenever $n > N_2$.

We hypothesize that $f_n + g_n \to f + g$. So we must find N such $|(f_n + g_n)(x) - (f + g)(x)| < \epsilon$ whenever n > N. Note $|(f_n + g_n)(x) - (f + g)(x)| = |(f_n - f)(x) + (g_n - g)(x)| \le |f_n(x) - f(x)| + |g_n(x) - g(x)|$. So if we take $N = \max(N_1, N_2)$, we will have that $|(f_n + g_n)(x) - g(x)| \le |f_n(x) - g(x)|$.

 $|g_n(x)-(f+g)(x)| \le |f_n(x)-f(x)| + |g_n(x)-g(x)| \le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$. So $\{f_n+g_n\}$ is uniformly convergent.

How about $f_1g_1, f_2g_2, ...$? Suppose that $f_ng_n \to fg$. We must then find N such $|(f_ng_n)(x) - (fg)(x)| < \epsilon$ whenever n > N, for all $\epsilon > 0$, and x.

$$|(f_n g_n)(x) - (fg)(x)| = |(f_n g_n)(x) - (fg_n)(x) + (fg_n)(x) - (fg)(x)|$$

$$\leq |(f_n - f)(x)||g_n(x)| + |f(x)||(g_n - g)(x)|$$

We can make $|(f_n - f)(x)|$ and $|(g_n - g)(x)|$ arbitrarily small, but the behavior $g_n(x)$ and f(x) are undetermined. So no, $\{f_ng_n\}$ is not guaranteed to be uniformly convergent. But we can make it so with the addition that all f_n , g_n , as well as f, g are bounded. Then $|g_n(x)|$ and |f(x)| are f(x) = f(x).

counterexample: fing gn = xth = f=g=x

Given $\epsilon > 0$, there exists some N such that $d(f_n(x), f(x)) < \epsilon$ when n > N. Since each function is bounded, all elements of $f_n(x)$ are bounded and thus all elements exists in an open ball $B_r(x_0)$. Which means that we have $d(f(x), y) \leq d(f(x), f_n(x)) + d(f_n(x), x_0) < \epsilon + r$, Thus all elements are contained in an open ball $B_{\epsilon+r}(x_0)$. Therefore the sequence is bounded.