1. Find a sequence of continuous functions $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ such that $\lim _{x \rightarrow 0} \lim _{n \rightarrow \infty} f_{n}(x)$ and $\lim _{n \rightarrow \infty} \lim _{x \rightarrow 0} f_{n}(x)$ exists and are unequal.

Proof:

$$
f_{n}(x)=\frac{n x}{1+n x}
$$

Then,

$$
\begin{aligned}
\lim _{x \rightarrow 0} \lim _{n \rightarrow \infty} f_{n}(x) & =\lim _{x \rightarrow 0} \lim _{n \rightarrow \infty} \frac{n x}{1+n x} \\
& =\lim _{x \rightarrow 0} \lim _{n \rightarrow \infty} \frac{n x / n x}{(1+n x) / n x} \\
& =\lim _{x \rightarrow 0} \lim _{n \rightarrow \infty} \frac{1}{1+\frac{1}{n x}} \\
& =\lim _{x \rightarrow 0} \frac{1}{1+0}=1
\end{aligned}
$$

Also,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \lim _{x \rightarrow 0} f_{n}(x) & =\lim _{n \rightarrow \infty} \lim _{x \rightarrow 0} \frac{n x}{1+n x} \\
& =\lim _{n \rightarrow \infty} \frac{n \cdot 0}{n \cdot 0+1} \\
& =\lim _{n \rightarrow \infty} 0=0
\end{aligned}
$$

2. If $f: E^{2}-\{(0,0)\} \rightarrow \mathbb{R}$, three limits we can consider are $\lim _{y \rightarrow 0} \lim _{x \rightarrow 0} f(x, y), \lim _{x \rightarrow 0} \lim _{y \rightarrow 0} f(x, y)$, and $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$. Compute these limits, if they exists, for $f(x, y)=\frac{x y}{x^{2}+y^{2}}$ and for $f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$.

Proof:

(a) for $f(x, y)=\frac{x y}{x^{2}+y^{2}}$.
$\lim _{y \rightarrow 0} \lim _{x \rightarrow 0} f(x, y)=\lim _{y \rightarrow 0} \frac{0}{y^{2}}=0$, so it is exists.
$\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} f(x, y)=\lim _{x \rightarrow 0} \frac{0}{x^{2}}=0$,so it is exists.
However, $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$, Let $x=y . \lim _{(x, x) \rightarrow(0,0)} \frac{x^{2}}{x^{2}+x^{2}}=\frac{1}{2}$.
Let $y=0 . \lim _{(x, 0) \rightarrow(0,0)} \frac{0}{x^{2}}=0$.
Since we have different limits from different directions, the limit does not exits.
(b) for $f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$.
$\lim _{y \rightarrow 0} \lim _{x \rightarrow 0} f(x, y)=\lim _{y \rightarrow 0} \frac{-y^{2}}{y^{2}}=-1$,
$\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} f(x, y)=\lim _{x \rightarrow 0} \frac{x^{2}}{x^{2}}=1$
$\lim _{(x, y) \rightarrow(0,0)} f(x, y)$, Let $x=y \cdot \lim _{(x, x) \rightarrow(0,0)} \frac{0}{2 x^{2}}=0$.
Let $y=0 . \lim _{(x, 0) \rightarrow(0,0)} \frac{x^{2}}{x^{2}}=1$.
Likewise (a), we have different limits from different directions, so the limit does not exits.
3. Find a sequence of continuous functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ that converges to the zero function and such that the sequence $\int_{0}^{1} f_{1}(x) \mathrm{d} x, \int_{0}^{1} f_{2}(x) \mathrm{d} x, \int_{0}^{1} f_{3}(x) \mathrm{d} x, \ldots$ increases without bound.

Solution:

Let f_{n} be defined as

$$
f_{n}(x)= \begin{cases}4 n^{3} x & 0 \leq x \leq 1 / 2 n \\ 4 n^{2}-4 n^{3} x & 1 / 2 n<x \leq 1 / n \\ 0 & 1 / n<x \leq 1\end{cases}
$$

Similar to other problems we've seen in class we can show that for any $\epsilon>0$, there exists $N(\epsilon, x)$ such that whenever $n>N$ we get, $\left|f_{n}(x)\right|<\epsilon$. But the integral is given by

$$
\int_{0}^{1} f_{n}(x) \mathrm{d} x=\int_{0}^{1 / 2 n} 4 n^{3} x \mathrm{~d} x+\int_{1 / 2 n}^{1 / n}\left(4 n^{2}-4 n^{3} x\right) \mathrm{d} x=n
$$

hence, as n increases the sequence $\int_{0}^{1} f_{1}(x) \mathrm{d} x, \int_{0}^{1} f_{2}(x) \mathrm{d} x, \int_{0}^{1} f_{3}(x) \mathrm{d} x, \ldots$ increases without bound.
4) Find a uniformly convergent sequence of differentiable functions $f_{n}:(0,1) \rightarrow \mathbb{R}$ such that the sequence $f_{1}^{\prime}, f_{2}^{\prime}, f_{3}^{\prime}, \ldots$ does not converge.

Consider $f_{n}(x)=\frac{\sin (n x)}{n}$. To see that f_{n} converges uniformly, for any $\epsilon>0$, choose $N>0$ such that if $n>N$, then $\frac{1}{n}<\epsilon$. Then we will have $\left|\frac{\sin (n x)}{n}-0\right|<\left|\frac{1}{n}\right|<\epsilon$, and that $f_{n} \rightarrow 0$. Each f_{n} is differentiable since $\sin (n x)$ is differentiable everywhere, and we have $f_{n}^{\prime}(x)=\cos (n x)$. Clearly this does not converge to 0 .
20. Find the radii of convergence of the following power series:
(a) $\sum_{n=1}^{\infty} n(\log n) x^{n}$: Use Root and Ratio test Let $a_{n}=n(\log n)$, we need to show that $\lim \sup \left|a_{n}\right|^{\frac{1}{n}} \leq \lim \sup \left|\frac{a_{n+1}}{a_{n}}\right|$. Then,

$$
\begin{aligned}
\lim \sup \left|a_{n}\right|^{\frac{1}{n}} & \leq \lim \sup \left|\frac{a_{n+1}}{a_{n}}\right| \\
& =\lim \sup \left|\frac{(n+1) \log (n+1)}{n \log n}\right| \\
& =\lim \sup \left|\frac{n \log (n+1)}{n \log n}+\frac{\log (n+1)}{n \log n}\right| \\
& =\lim \sup \left|\frac{\log (n+1)}{\log n}\right|+\lim \sup \left|\frac{\log (n+1)}{n \log n}\right| \\
& =1+0=1 .
\end{aligned}
$$

Therefore, the radius of convergence is 1 .
(b) $\sum_{n=1}^{\infty}(\log n)^{\log n} x^{n}$: Use exponential trick and root test.

Let $a_{n}=(\log n)^{\log n}$.
Then,

$$
\begin{aligned}
\lim \left|a_{n}^{\frac{1}{n}}\right| & =\lim \exp \left(\log a_{n}{ }^{1 / n}\right) \\
& =\lim \exp \left[\log \left\{(\log n)^{\frac{1}{n} \log n}\right\}\right] \\
& =\exp \left[\lim _{n \rightarrow \infty} \frac{\frac{1}{n} \log (\log n)+\frac{1}{n \log n} \log n}{1}\right] \quad \text { (L'Hopstal's rule) } \\
& =\exp \left[\lim _{n \rightarrow \infty} \frac{\log (\log n)+1}{n}\right] \\
& =\exp \left[\lim _{n \rightarrow \infty} \frac{1}{n \log n}\right] \\
& =\exp 0=1 .
\end{aligned}
$$

Thus, the radius of convegence is 1 .
(c) $\sum_{n=1}^{\infty} \frac{x^{n}}{n \sqrt{n}}$: Use Root and Ratio test

Let $a_{n}=\frac{1}{n \sqrt{n}}$. Then,

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{1}{n \sqrt{n}}\right|^{\frac{1}{n}} & =\lim _{n \rightarrow \infty}\left|n^{\frac{-1}{\sqrt{n}}}\right| \\
& =\lim _{n \rightarrow \infty} \exp \left[\log (n)^{\frac{-1}{\sqrt{n}}}\right] \\
& =\lim _{n \rightarrow \infty} \exp \left[\frac{-1}{\sqrt{n}} \log n\right] \\
& =\exp \lim _{n \rightarrow \infty} \frac{-\log n}{\sqrt{n}} \\
& =\exp \lim _{n \rightarrow \infty} \frac{-1 / n}{\frac{1}{2} n^{\frac{-1}{2}}} \quad \text { (L'Hospital's rule) } \\
& =\exp \lim _{n \rightarrow \infty} \frac{-2}{\sqrt{n}} \\
& =\exp 0=1 .
\end{aligned}
$$

Thus, the radius of convergence is 1 .
(d) $\sum_{n=1}^{\infty} \frac{x^{n}}{(\sqrt{n})^{n}}$: Use Root test

$$
\lim _{n \rightarrow \infty} \frac{x^{n}}{(\sqrt{n})^{n}}=\lim _{n \rightarrow \infty}\left(\frac{x^{n}}{(\sqrt{n})^{n}}\right)^{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{x}{\sqrt{n}}=\left|\frac{x}{\sqrt{n}}\right| \rightarrow 0
$$

Therefore, the radius of convergence is ∞.
(e) $\sum_{n=1}^{\infty} \frac{n^{n} x^{x}}{n!}$: Use Ratio test

$$
\lim \sup \left|\frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^{n}}\right|=\lim \sup \left|\frac{(n+1)^{n}}{n^{n}}\right|=\lim \sup \left|\left(1+\frac{1}{n}\right)^{n}\right|=e
$$

Therefore, the radius of convergenve has to be e.
35. Let $[a, b]$ and $[c, d]$ be closed intervals in R and let f be a continuous realvalued function on $\left\{(x, y) \in E^{2}: x \in[a, b], y \in[c, d]\right\}$. By Prob. 15, Chap. VI, $\int_{a}^{b} f(x, y) d x$ is continuous in y and $\int_{a}^{b} f(x, y) d y$ is continuous in x, so that

$$
\int_{c}^{d}\left(\int_{a}^{b} f(x, y) d x\right) d y \text { and } \int_{a}^{b}\left(\int_{c}^{d} f(x, y) d y\right) d x
$$

exist. Prove that these integrals are equal by computing $d / d t$ of

$$
\int_{c}^{d}\left(\int_{a}^{t} f(x, y) d x\right) d y \text { and } \int_{a}^{t}\left(\int_{c}^{d} f(x, y) d y\right) d x
$$

for $t \in(a, b)$. Since f is a continuous real-valued function, we can apply the Fundemental Theorem of Calculus to get

$$
\frac{d}{d t} \int_{a}^{t} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} f(t, y) d y
$$

. We also know that

$$
\frac{d}{d t} \int_{c}^{d}\left(\int_{a}^{t} f(x, y) d x\right) d y=\int_{c}^{d} f(t, y) d y
$$

by the theorem on Page 159 of the book. . Since these two derivitives are the same, we can conclude that are functions are equal up to some constant, meaning

$$
\int_{c}^{d}\left(\int_{a}^{t} f(x, y) d x\right) d y=C+\int_{a}^{t} \int_{c}^{d} f(x, y) d y d x
$$

. If we set $t=a$, we get that $C=0$ and if we take $t=b$ we get

$$
\int_{c}^{d}\left(\int_{a}^{b} f(x, y) d x\right) d y=\int_{a}^{b}\left(\int_{c}^{d} f(x, y) d y\right) d x
$$

Additional Problem 1:

To show that f is integrable, we attempt to find two step functions f_{1}, f_{2} such that $f_{1}(x) \leq f(x) \leq f_{2}(x)$ for all $x \in[a, b]$, and that for any $\epsilon>0,\left|\int_{a}^{b}\left(f_{2}(x)-f_{1}(x)\right) d x\right|<\epsilon$.

First, since f_{k} converges uniformly to f, for any $\epsilon>0$, there exists K such that if $k>K$, then

$$
\left|f_{k}(x)-f(x)\right|<\frac{\epsilon}{4(b-a)}
$$

Then since each f_{k} is integrable, there exists step functions $f_{k_{1}}, f_{k_{2}}$ such that

$$
\begin{gathered}
f_{k_{1}}(x) \leq f_{k}(x) \leq f_{k_{2}}(x) \\
\left|\int_{a}^{b}\left(f_{k_{2}}(x)-f_{k_{1}}(x)\right) d x\right|<\frac{\epsilon}{2}
\end{gathered}
$$

Define then, $f_{1}(x)=f_{k_{1}}(x)-\frac{\epsilon}{4(b-a)}$ and $f_{2}(x)=f_{k_{2}}(x)+\frac{\epsilon}{4(b-a)}$.
If $k>K$, then we do have

$$
\begin{aligned}
& f(x) \leq f(x)+\left(-f_{k}(x)+f_{k_{2}}(x)\right)=\left(f(x)-f_{k}(x)\right)+f_{k_{2}}(x)<f_{2}(x) \\
& f(x) \geq f(x)+\left(-f_{k}(x)+f_{k_{1}}(x)\right)=\left(f(x)-f_{k}(x)\right)+f_{k_{1}}(x)>f_{1}(x)
\end{aligned}
$$

Then

$$
\int_{a}^{b}\left(f_{2}(x)-f_{1}(x)\right) d x=\int_{a}^{b}\left(\left(f_{k_{2}}(x)-f_{k_{1}}(x)\right)+\left(\frac{\epsilon}{2(b-a)}+\frac{\epsilon}{2(b-a)}\right)\right) d x<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

As desired. To show that $\int_{a}^{b} f_{k}(x) d x \rightarrow \int_{a}^{b} f(x) d x$, we must show for $\epsilon>0$, there exists K such that $k>K$ implies $\left|\int_{a}^{b} f_{k}(x) d x-\int_{a}^{b} f(x) d x\right|<\epsilon$. Again, by uniform convergence of f_{k}, there exists a K_{0} such that $\left|f_{k}-f\right|<\frac{\epsilon}{b-a}$ for $k>K_{0}$. Let $K=K_{0}$, then

$$
\left|\int_{a}^{b} f_{k}(x) d x-\int_{a}^{b} f(x) d x\right|=\left|\int_{a}^{b}\left(f_{k}(x)-f(x)\right) d x\right|<\int_{a}^{b} \frac{\epsilon}{b-a} d x=\frac{\epsilon}{b-a}(b-a)=\epsilon
$$

Additional Problem 2:

Prove that if $\sum_{k} g_{k}$ is a series of functions that converges uniformly on a set S and if h is a bounded function on S, then

$$
\sum_{k} h g_{k}
$$

converges uniformly on S.

Solution:

Since h is bounded on S, there exists an $M>0$ such that $\sup _{x \in S}|h(x)|=M$. Additionally, since $\sum_{k} g_{k}$ is a series of functions that converges uniformly on a set S, we know by the Cauchy-criterion that given any $\epsilon>0$ there exists N_{ϵ} such that whenever $n>m>N_{\epsilon}$ we get that

$$
\sup _{x \in S}\left|\sum_{k=m}^{n} g_{k}(x)\right|<\frac{\epsilon}{M} .
$$

We need to show that for any $\epsilon>0$ there exists an N such that whenever $n>m>N$ we get

$$
\sup _{x \in S}\left|\sum_{k=m}^{n} h(x) g_{k}(x)\right|<\epsilon .
$$

But

$$
\begin{aligned}
\sup _{x \in S}\left|\sum_{k=m}^{n} h(x) g_{k}(x)\right| & =\sup _{x \in S}\left|h(x) \sum_{k=m}^{n} g_{k}(x)\right| \\
& =\sup _{x \in S}\left(|h(x)|\left|\sum_{k=m}^{n} g_{k}(x)\right|\right) \\
& \leq \sup _{x \in S}(|h(x)|) \sup _{x \in S}\left(\left|\sum_{k=m}^{n} g_{k}(x)\right|\right) \\
& <M I \frac{\epsilon}{M I}=\epsilon
\end{aligned}
$$

Hence, by letting $N=N$, the proof follows.

Additional Problem 3:

Let $s(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!} \ldots$ and $c(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!} \ldots$ for all $x \in \mathbb{R}$.
a. Prove that $s^{\prime}=c$ and $c^{\prime}=-s$.

$$
\begin{gathered}
s^{\prime}(x)=\frac{d}{d x}\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots\right)=\frac{d}{d x} x-\frac{d}{d x}\left(\frac{x^{3}}{3!}\right)+\frac{d}{d x}\left(\frac{x^{5}}{5!}\right)-\frac{d}{d x}\left(\frac{x^{7}}{7!}\right)+\cdots \\
=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots=c(x) \\
c^{\prime}(x)=\frac{d}{d x}\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots\right)=\frac{d}{d x}(1)-\frac{d}{d x}\left(\frac{x^{2}}{2!}\right)+\frac{d}{d x}\left(\frac{x^{4}}{4!}\right)-\frac{d}{d x}\left(\frac{x^{6}}{6!}\right)+\cdots \\
=0-x+\frac{x^{3}}{3!}-\frac{x^{5}}{5!}+\cdots=-\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots\right)=-s(x)
\end{gathered}
$$

b. Prove that $\left(s^{2}+c^{2}\right)^{\prime}=0$.

$$
\left(s^{2}+c^{2}\right)^{\prime}=2 s s^{\prime}+2 c c^{\prime}=2 s c-2 c s=0
$$

c. Prove that $s^{2}+c^{2}=1$

$$
s^{2}+c^{2}=\int\left(s^{2}+c^{2}\right)^{\prime} d t+\left(s^{2}+c^{2}\right)(0)=0+1=1
$$

Since the integral over 0 is 0 , and the only constant in $\left(s^{2}+c^{2}\right)$ is 1 .

