2. For which real numbers $\alpha>0$ is the function $f: E^{2} \rightarrow \mathbb{R}$ that is given by $f(x, y)=$ $\left(x^{2}+y^{2}\right)^{\alpha}$ differentiable?
Solution:
It suffices to show for which values of α the partial derivatives exist and are continuous on any open interval of E^{2}. The partial derivatives are given by

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=2 \alpha x\left(x^{2}+y^{2}\right)^{\alpha-1} \\
& \frac{\partial f}{\partial y}=2 \alpha y\left(x^{2}+y^{2}\right)^{\alpha-1}
\end{aligned}
$$

Whenever $\alpha \geq 1$, both partials are the compositions of continuous functions at all points in E^{2} and therefore the function f is differentiable for this case. Whenever $0<\alpha<1$ we have that

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=2 \alpha \frac{x}{\left(x^{2}+y^{2}\right)^{1-\alpha}} \\
& \frac{\partial f}{\partial y}=2 \alpha \frac{y}{\left(x^{2}+y^{2}\right)^{1-\alpha}}
\end{aligned}
$$

which is not defined on $(x, y)=(0,0)$. Therefore the function is not differentiable at every point in E^{2} for $0<\alpha<1$.
3. Show that if f is a real-valued function on a connected open subset of E^{n} and $f_{1}^{\prime}=$ $f_{2}^{\prime}=\cdots=f_{n}^{\prime}=0$ then f is constant.

Solution:

Since the partials of exist and are continuous on an open (connected) subset U of E^{n} by the theorem on page 197 of IA by Rosenlicht, we know f is differentiable. Hence we can apply the lemma on page 196 of IA by Rosenlicht to get that for any $a \in U$

$$
\begin{aligned}
f(x)-f(a) & =f_{1}^{\prime}(x)\left(x_{1}-a_{1}\right)+f_{2}^{\prime}(x)\left(x_{2}-a_{2}\right)+\cdots+f_{n}^{\prime}(x)\left(x_{n}-a_{n}\right) \\
& =0 \cdot\left(x_{1}-a_{1}\right)+0 \cdot\left(x_{2}-a_{2}\right)+\cdots+0 \cdot\left(x_{n}-a_{n}\right)=0
\end{aligned}
$$

for all $x \in U$. This implies that $f(x)=f(a)$ for any $a \in U$ and for all $x \in U$. Since the derivative exists on all of the open connected subset, we know there are no discontinuities in the function values and the function needs to therefore be constant.

Problem 5:

Proof. Let f be a real-valued function on an open subset U of E^{n}. Suppose that f is continuously differentiable. Then we have:

$$
\lim _{x \rightarrow y} \frac{\left|f(x)-\left(f(y)+f_{1}^{\prime}(y)\left(x_{1}-y_{1}\right)+\ldots+f_{n}^{\prime}(y)\left(x_{n}-y_{n}\right)\right)\right|}{d(x, y)}=0
$$

Since $d(x, y)=\left(\left(x_{1}-y_{1}\right)^{2}+\ldots+\left(x_{n}-y_{n}\right)^{2}\right)^{\frac{1}{2}} \leq\left|x_{1}-y_{1}\right|+\ldots+\left|x_{n}-y_{n}\right|$, if we define the function $\epsilon(x, y)=\frac{f(x)-\left(f(y)+f_{1}^{\prime}(y)\left(x_{1}-y_{1}\right)+\ldots+f_{n}^{\prime}(y)\left(x_{n}-y_{n}\right)\right)}{\left|x_{1}-y_{1}\right|+\ldots+\left|x_{n}-y_{n}\right|}$ for $x \neq y$ and $\epsilon(y, y)=0$, we have
$\lim _{x \rightarrow y} \epsilon(x, y)=0$. Thus: $f(x)=f(y)+f_{1}^{\prime}(y)\left(x_{1}-y_{1}\right)+\ldots+f_{n}^{\prime}(y)\left(x_{n}-y_{n}\right)+\epsilon(x, y)\left(\mid x_{1}-\right.$ $y_{1}\left|+\ldots+\left|x_{n}-y_{n}\right|\right)$ for all $x \in U$. Defining: $A_{i}(x, y)=f_{i}^{\prime}(y)+\epsilon(x, y)$ (or subtraction if $x_{i}-a_{i} \leq 0$ implies that $f(x)-f(y)=A_{1}(x, y)\left(x_{1}-y_{1}\right)+\ldots+A_{n}(x, y)\left(x_{n}-y_{n}\right)$ and $\lim _{x \rightarrow y} A_{i}(x, y)=A_{i}(y, y)=f_{i}^{\prime}(y)$; therefore, they are continuous for any $y \in U$.

Now, suppose that there exist continuous real-valued functions $A_{i}(x, y)$ functions $(i=$ $1, \ldots, n$) such that $f(x)-f(y)=A_{1}(x, y)\left(x_{1}-y_{1}\right)+\ldots+A_{n}(x, y)\left(x_{n}-y_{n}\right)$ for all $x, y \in U$. Then for $x, y \in U, x \neq y$, we have $\frac{\mid f(x)-\left(f(y)+A_{1}(x, y)\left(x_{1}-y_{1}\right)+\ldots+A_{n}(x, y)\left(x_{n}-y_{n}\right) \mid\right.}{d(x, y)}$ $=\frac{\left|\left(A_{1}(x, y)-A_{1}(y, y)\right)\left(x_{1}-y_{1}\right)+\ldots+\left(A_{n}(x, y)-A_{n}(y, y)\right)\left(x_{n}-y_{n}\right)\right|}{d(x, y)} \leq\left|A_{1}(x, y)-A_{1}(y, y)\right|\left|\frac{\left|x_{1}-y_{1}\right|}{d(x, y)}+\ldots+\right| A_{n}(x, y)-$ $A_{n}(y, y)| | \frac{\left|x_{n}-y_{n}\right|}{d(x, y)} \leq\left|A_{1}(x, y)-A_{1}(y, y)\right|+\ldots+\left|A_{n}(x, y)-A_{n}(y, y)\right|$. By the continuity of the $A_{i}(x, y)$ functions:

$$
\lim _{x \rightarrow y}\left|A_{1}(x, y)-A_{1}(y, y)\right|+\ldots+\left|A_{n}(x, y)-A_{n}(y, y)\right|=0
$$

Therfore:

$$
\lim _{x \rightarrow y} \frac{\left|f(x)-\left(f(y)+A_{1}(x, y)\left(x_{1}-y_{1}\right)+\ldots+A_{n}(x, y)\left(x_{n}-y_{n}\right)\right)\right|}{d(x, y)}=0
$$

Problem 6:

We can apply the change of variable corollary to the fundamental theorem of calculus to get

$$
\begin{aligned}
F(y) & =\int_{\alpha(y)}^{\beta(y)} f(x, y) \mathrm{d} x=\int_{\alpha(y)}^{\alpha\left(y_{0}\right)} f(x, y) \mathrm{d} x+\int_{\alpha\left(y_{0}\right)}^{\beta\left(y_{0}\right)} f(x, y) \mathrm{d} x+\int_{\beta\left(y_{0}\right)}^{\beta(y)} f(x, y) \mathrm{d} x \\
& =\int_{\alpha\left(y_{0}\right)}^{\beta\left(y_{0}\right)} f(x, y) \mathrm{d} x+\int_{y_{0}}^{y} f(\beta(x), y) \beta^{\prime}(x) \mathrm{d} x-\int_{y_{0}}^{y} f(\alpha(x), y) \alpha^{\prime}(x) \mathrm{d} x
\end{aligned}
$$

for arbitrary $y_{0}, y \in U$. Evaluating the derivative of F at y_{0} yields

$$
\begin{aligned}
& F^{\prime}\left(y_{0}\right)=\lim _{y \rightarrow y_{0}} \frac{F(y)-F\left(y_{0}\right)}{y-y_{0}}= \\
& \lim _{y \rightarrow y_{0}} \frac{\int_{\alpha\left(y_{0}\right)}^{\beta\left(y_{0}\right)} f(x, y) \mathrm{d} x+\int_{y_{0}}^{y} f(\beta(x), y) \beta^{\prime}(x) \mathrm{d} x-\int_{y_{0}}^{y} f(\alpha(x), y) \alpha^{\prime}(x) \mathrm{d} x-\int_{\alpha\left(y_{0}\right)}^{\beta\left(y_{0}\right)} f\left(x, y_{0}\right) \mathrm{d} x}{y-y_{0}} \\
& =\lim _{y \rightarrow y_{0}} \frac{\int_{\alpha\left(y_{0}\right)}^{\beta\left(y_{0}\right)} f(x, y)-f\left(x, y_{0}\right) \mathrm{d} x}{y-y_{0}}+\lim _{y \rightarrow y_{0}} \frac{\int_{y_{0}}^{y} f(\beta(x), y) \beta^{\prime}(x) \mathrm{d} x-\int_{y_{0}}^{y} f(\alpha(x), y) \alpha^{\prime}(x) \mathrm{d} x}{y-y_{0}}
\end{aligned}
$$

For the first term, since f is continuous and is being evaluated on the compact set $\left[\alpha\left(y_{0}\right), \beta\left(y_{0}\right)\right]$, we know that it is in fact uniformly continuous and we can therefore swap the limit and integral operations since they act on different variables to get

$$
\begin{aligned}
& =\int_{\alpha\left(y_{0}\right)}^{\beta\left(y_{0}\right)} \lim _{y \rightarrow y_{0}} \frac{f(x, y)-f\left(x, y_{0}\right)}{y-y_{0}} \mathrm{~d} x+\lim _{y \rightarrow y_{0}} \frac{\int_{y_{0}}^{y} f(\beta(x), y) \beta^{\prime}(x) \mathrm{d} x-\int_{y_{0}}^{y} f(\alpha(x), y) \alpha^{\prime}(x) \mathrm{d} x}{y-y_{0}} \\
& =\int_{\alpha\left(y_{0}\right)}^{\beta\left(y_{0}\right)} \frac{\partial f}{\partial y}\left(x, y_{0}\right) \mathrm{d} x+\lim _{y \rightarrow y_{0}} \frac{\int_{y_{0}}^{y}\left(f(\beta(x), y) \beta^{\prime}(x)-f(\alpha(x), y) \alpha^{\prime}(x)\right) \mathrm{d} x}{y-y_{0}}
\end{aligned}
$$

but by the fundamental theorem of calculus the second term becomes

$$
=\int_{\alpha\left(y_{0}\right)}^{\beta\left(y_{0}\right)} \frac{\partial f}{\partial y}\left(x, y_{0}\right) \mathrm{d} x+f\left(\beta\left(y_{0}\right), y_{0}\right) \beta^{\prime}\left(y_{0}\right)-f\left(\alpha\left(y_{0}\right), y_{0}\right) \alpha^{\prime}\left(y_{0}\right) .
$$

Since $y_{0} \in U$ was picked arbitrarily, the identity follows.

Problem 7

Let V, W be normed vector spaces, let U be an open subset of V and let $a \in U$. A function $f: U \rightarrow W$ is differentiable at a if there exists a continuous linear transformation $T: V \rightarrow W$ such that

$$
\lim _{x \rightarrow a} \frac{\|f(x)-f(a)-T(x-a)\|}{\|x-a\|}=0
$$

(a) Let f be differentiable at a and suppose S and T are continuous linear transformations as defined above.

$$
\|(S-T)(x-a)\| \leq\|f(x)-f(a)-S(x-a)\|-\|f(x)-f(a)-T(x-a)\|
$$

And we have $\lim _{x \rightarrow a} \frac{\|(S-T)(x-a)\|}{\|x-a\|}=0$.
Let $v \neq 0$ and $x=a+v \in U$ such that $\lim _{v \rightarrow 0} \frac{\|(S-T)(v)\|}{\|v\|}=0$ So that we have $S(v)=T(v)$ and there is a unique linear transformation.
(b) Let f be differentiable at a and let φ be a function onto W such that $\lim _{x \rightarrow a} \frac{\|\varphi(x)\|}{\|x-a\|}=0$. Let $f(x)=f(a)+D f(a)(x-a)+\varphi(x)$.
$\lim _{x \rightarrow a} \varphi(x)=\lim _{x \rightarrow a} D f(a)(x-a)=0$ so $\lim _{x \rightarrow a} f(a)+D f(a)(x-a)+\varphi(x) \Rightarrow \lim _{x \rightarrow a} f(x)=f(a)$. Hence f is continuous at a.
(c) Let $W=E^{n}$ and suppose f is differentiable at a.

$$
T(v)=\lim _{t \rightarrow 0} \frac{f(a+t v)-f(a)}{t}=0
$$

Which implies that the directional derivatives of the component functions f_{i} of f are differentiable at a
Now suppose the component functions of f are differentiable at a. The derivative of the component functions $f_{i}^{\prime}(a)$ would be the projection of $f^{\prime}(a)$ on the $i^{\text {th }}$ coordinate of W.

$$
\left|y_{i}\right| \leq|y| \leq \sum\left|y_{i}\right| \forall\left(y_{1}, \ldots, y_{n}\right) \in W
$$

Hence f is differentiable at a.
(d) Let V, W, Z be normed vector spaces. U and U^{\prime} are open subsets of V and W respectively. Let $f: U \rightarrow U^{\prime}$ be a differentiable function at $a \in U$ and $g: U^{\prime} \rightarrow Z$ be a differentiable function at $f(a)$.
Let $f(x)=f(a)+f^{\prime}(a)(x-a)+\varphi(x)$ and $g(y)=g(f(a))+g^{\prime}(f(a))(y-f(a))+\psi(y)$. $\lim _{x \rightarrow a} \frac{|\varphi(x)|}{|x-a|}=\lim _{y \rightarrow a} \frac{|\psi(y)|}{|y-f(a)|}=0$

$$
g(f(x))=g(f(a))+g^{\prime}(f(a))\left(f^{\prime}(a)(x-a)+\varphi(x)\right)+\psi(f(x))
$$

$g^{\prime}(f(a))$ is a linear transformation so there exists a constant C such that for $y,\left|g^{\prime}(f(a))(y)\right| \leq$ $C|y|$. Thus

$$
\lim _{x \rightarrow a} \frac{\left|g^{\prime}(f(a))(\varphi(x))\right|}{|x-a|} \leq \lim _{x \rightarrow a} \frac{C|\varphi(x)|}{|x-a|}=0
$$

Let $\varepsilon>0$. There exists $\delta>0$ such that $|\psi(y)|<\varepsilon|y-f(a)|$ whenever $|y-f(a)|<\delta$. f is continuous on a so there exists $\gamma>0$ such that $|f(x)-f(a)|<\delta$ whenever $|x-a|<\gamma$.

$$
|x-a|<\gamma \Rightarrow|\psi(f(x))| \leq \varepsilon|f(x)-f(a)|<\varepsilon\left|f^{\prime}(a)(x-a)\right|+\varepsilon|\varphi(x)|
$$

Therefore, there exists a constant C^{\prime} depending on the linear transformation $f^{\prime}(a) \frac{|\psi(f(x))|}{|x-a|} \leq$ $\varepsilon C^{\prime}+\varepsilon \frac{|\varphi(x)|}{|x-a|}$ whenever $|x-a|<\gamma$.
The existence of the above limits imply that $g \circ f$ is differentiable at a and $(g \circ f)^{\prime}=$ $g^{\prime}(f(a)) f^{\prime}(a)$.
8. Verify that if $\varphi, \psi: \mathbb{R} \rightarrow \mathbb{R}$ are twice differentiable functions, if $a \in \mathbb{R}$, and if $f(x, y)=$ $\varphi(x-a y)+\psi(x+a y)$ for all $x, y \in E^{2}$ then

$$
\begin{gathered}
\frac{\partial^{2} f}{\partial y^{2}}=a^{2} \frac{\partial^{2} f}{\partial x^{2}} \\
\frac{\partial^{2} f(x, y)}{\partial y^{2}}=\frac{\partial^{2}}{\partial y^{2}}[\phi(x-a y)+\psi(x+a y)]=\frac{\partial}{\partial y}\left[\frac{\partial}{\partial y} \phi(x-a y)+\frac{\partial}{\partial y} \psi(x+a y)\right] \\
\frac{\partial^{2} f(x, y)}{\partial y^{2}}=\frac{\partial}{\partial y}\left[\frac{\partial \phi(x-a y)}{\partial y}(-a)+\frac{\partial \psi(x+a y)}{\partial y}(a)\right] \\
\frac{\partial^{2} f(x, y)}{\partial y^{2}}=\frac{\partial^{2} \phi(x-a y)}{\partial y^{2}}(-a)^{2}+\frac{\partial^{2} \psi(x+a y)}{\partial y^{2}}(a)^{2}
\end{gathered}
$$

However,

$$
\frac{\partial^{2} f(x, y)}{\partial x^{2}}=\frac{\partial^{2} \phi(x-a y)}{\partial x^{2}}+\frac{\partial^{2} \psi(x+a y)}{\partial x^{2}}
$$

Therefore,

$$
a^{2} \frac{\partial^{2} f(x, y)}{\partial x^{2}}=\frac{\partial^{2} f(x, y)}{\partial y^{2}}
$$

9. Verify that the function $u(x, y)=e^{-x^{2} / 4 y} / \sqrt{y}$ satisfies that differential equation

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial y} \\
\frac{\partial u}{\partial y}=\frac{e^{-x^{2} / 4 y}\left(x^{2}-2 y\right)}{4 y^{5 / 2}} \\
\frac{\partial u}{\partial x}=\frac{x e^{-x^{2} / 4 y}}{2 y^{3 / 2}} \\
\frac{\partial^{2} u}{\partial x^{2}}=\frac{e^{-x^{2} / 4 y}\left(x^{2}-2 y\right)}{4 y^{5 / 2}}
\end{gathered}
$$

Do the same for the function $\int_{a}^{b} f(t) e^{-(x-t)^{2} / 4 y} y^{-1 / 2} d t$ where $[a, b]$ is a closed interval in \mathbb{R} and $f:[a, b] \rightarrow \mathbb{R}$ is continuous.

$$
\frac{\partial u}{\partial y}=\frac{\partial}{\partial y} \int_{a}^{b} f(t) e^{-(x-t)^{2} / 4 y} y^{-1 / 2} d t=\int_{a}^{b} \frac{\partial}{\partial y} f(t) e^{-(x-t)^{2} / 4 y} y^{-1 / 2} d t
$$

Additional Problem 1:

(a) Prove that if f is bilinear then

$$
\lim _{(h, k) \rightarrow(0,0)} \frac{|f(h, k)|}{|(h, k)|}=0 .
$$

Let $\left(e_{1}^{n}, \ldots, e_{n}^{n}\right)$ and $\left(e_{1}^{m}, \ldots, e_{n}^{m}\right)$ be the standard bases for \mathbb{R}^{n} and \mathbb{R}^{m} respectively. For any $x \in \mathbb{R}^{n}, x=\sum_{i=1}^{n} x^{i} e_{n}^{i}$ and for any $y \in \mathbb{R}^{m}, y=\sum_{j=1}^{m} y^{j} e_{m}^{j}$. Thus we have

$$
f(x, y)=f\left(\sum_{i=1}^{n} x^{i} e_{n}^{i}, \sum_{j=1}^{m} y^{j} e_{m}^{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} f\left(x^{i} e_{n}^{i}, y^{j} e_{m}^{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} x^{i} y^{j} f\left(e_{n}^{i}, e_{m}^{j}\right)
$$

Let $M=\sum_{i, j}\left\|f\left(e_{n}^{i}, e_{m}^{j}\right)\right\|$ such that

$$
\begin{aligned}
\|f(x, y)\| & =\left\|\sum_{i, j} x^{i} y^{j} f\left(e_{n}^{i}, e_{m}^{j}\right)\right\| \leq \sum_{i, j}\left|x^{i} y^{j}\right|\left\|f\left(e_{n}^{i}, e_{m}^{j}\right)\right\| \\
& \leq M * \max \left\{x^{i}\right\} \max \left\{y^{j}\right\} \leq M\|x\|\|y\|
\end{aligned}
$$

So we have

$$
\lim _{(h, k) \rightarrow(0,0)} \frac{|f(h, k)|}{|(h, k)|} \leq \lim _{(h, k) \rightarrow(0,0)} \frac{M\|h\|\|k\|}{|(h, k)|}=\lim _{(h, k) \rightarrow(0,0)} \frac{M\|h\|\|k\|}{\sqrt{\|h\|^{2}+\|k\|^{2}}}
$$

Since $\|h\|\|k\| \leq\|h\|^{2}+\|k\|^{2}$

$$
\begin{gathered}
\lim _{(h, k) \rightarrow(0,0)} \frac{M\|h\|\|k\|}{\sqrt{\|h\|^{2}+\|k\|^{2}}} \leq \lim _{(h, k) \rightarrow(0,0)} \frac{M\left(\|h\|^{2}+\|k\|^{2}\right)}{\sqrt{\|h\|^{2}+\|k\|^{2}}} \\
=\lim _{(h, k) \rightarrow(0,0)} M \sqrt{\|h\|^{2}+\|k\|^{2}}=0
\end{gathered}
$$

(b) Prove that $D f(a, b)(h, k)=f(a, k)+f(h, b)$.

$$
=\begin{gathered}
\lim _{(h, k) \rightarrow(0,0)} \frac{\|f(a+h, b+k)-f(a, b)-f(a, k)-f(h, b)\|}{\|(h, k)\|} \\
=\lim _{(h, k) \rightarrow(0,0)} \frac{\|f(a, b)+f(a, k)+f(h, b)+f(h, k)-f(a, b)-f(a, k)-f(h, b)\|}{\|(h, k)\|} \frac{\|f(h, k)\|}{\|(h, k)\|}=0
\end{gathered}
$$

So $D f(a, b)(h, k)=f(a, k)+f(h, b)$.
2. Define $I P: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $I P(x, y)=\langle x, y\rangle$ (the inner product between the vectors x and $y)$.
(a) Compute $D(I P)(x, y)$ and $(I P)^{\prime}(x, y)$. We can compute the Jacobian by finding the partials, i.e. using the inner product definition we see that

$$
\begin{aligned}
& \frac{\partial\langle x, y\rangle}{\partial x}=\frac{\partial x^{\top} y}{\partial x}=y^{\top} \\
& \frac{\partial\langle x, y\rangle}{\partial y}=\frac{\partial x^{\top} y}{\partial y}=x^{\top}
\end{aligned}
$$

thus for column vectors x and y we get that $(I P)^{\prime}(x, y)=\left[y^{\top}, x^{\top}\right]$. Hence $D(I P)(x, y)(h, k)=y^{\top} h+x^{\top} k$.
(b) If f and g are differentiable maps from $\mathbb{R} \rightarrow \mathbb{R}^{n}$ and $h(t)=\langle f(t), g(t)\rangle$ show that

$$
h^{\prime}(t)=\left\langle f^{\prime}(t)^{\top}, g(t)\right\rangle+\left\langle f(t), g^{\prime}(t)^{\top}\right\rangle .
$$

where y^{\top} is the transpose of the matrix/vector y.

Solution:

The derivative is given by

$$
\begin{aligned}
h^{\prime}(t) & =\lim _{k \rightarrow 0} \frac{h(t+k)-h(t)}{k}=\lim _{k \rightarrow 0} \frac{\langle f(t+k), g(t+k)\rangle-\langle f(t), g(t)\rangle}{k} \\
& =\lim _{k \rightarrow 0} \frac{\langle f(t+k), g(t+k)\rangle-\langle f(t), g(t+k)\rangle+\langle f(t), g(t+k)\rangle-\langle f(t), g(t)\rangle}{k} \\
& =\lim _{k \rightarrow 0} \frac{\langle f(t+k), g(t+k)\rangle-\langle f(t), g(t+k)\rangle}{k}+\lim _{k \rightarrow 0} \frac{\langle f(t), g(t+k)\rangle-\langle f(t), g(t)\rangle}{k} .
\end{aligned}
$$

Breaking this up using the inner product definition yields

$$
\begin{aligned}
& \lim _{k \rightarrow 0} \frac{\langle f(t+k), g(t+k)\rangle-\langle f(t), g(t+k)\rangle}{k}+\lim _{k \rightarrow 0} \frac{\langle f(t), g(t+k)\rangle-\langle f(t), g(t)\rangle}{k} \\
& =\lim _{k \rightarrow 0} \frac{f(t+k)^{\top} g(t+k)-f(t)^{\top} g(t+k)}{k}+\lim _{k \rightarrow 0} \frac{f(t)^{\top} g(t+k)-f(t)^{\top} g(t)}{k} \\
& =\lim _{k \rightarrow 0} \frac{(f(t+k)-f(t))^{\top} g(t+k)}{k}+\lim _{k \rightarrow 0} \frac{f(t)^{\top}(g(t+k)-g(t))}{k} \\
& =\lim _{k \rightarrow 0} \frac{(f(t+k)-f(t))^{\top} g(t+k)}{k}+\lim _{k \rightarrow 0} \frac{(g(t+k)-g(t))^{\top} f(t)}{k} \\
& =\left(f^{\prime}(t)\right)^{\top} g(t)+\left(g^{\prime}(t)\right)^{\top} f(t) \\
& =\left\langle f^{\prime}(t), g(t)\right\rangle+\left\langle f(t), g^{\prime}(t)\right\rangle .
\end{aligned}
$$

