## CHAPTER VIII

## ALGEBRAIC PROPERTIES OF THE INTEGERS

We have identified a musical interval $I$ with a positive real number $x \in \mathbb{R}^{+}$. Since $\mathbb{Z}^{+} \subset \mathbb{R}^{+}$, each positive integer gives an interval. For example, we have seen that the integer 2 represents the octave, and that the integer 3 is an interval about 2 cents greater than the keyboard's octave-and-a-fifth ( 1900 cents), as shown by the calculation $1200 \log _{2} 3 \approx$ 1901.96.

$2=$ octave interval

$3 \approx$ octave-and-a-fifth interval

$4=$ two octave interval

We will now investigate some properties of the integers $\mathbb{Z}$ which relate to musical phenomena.

Ring. A non-empty set $R$ endowed with two associative laws of composition + and $\cdot$ is called a ring if $(R,+)$ is a commutative group, $(R, \cdot)$ is a monoid, and for any $a, b, c \in R$ we have $a \cdot(b+c)=a \cdot b+a \cdot c$ and $(b+c) \cdot a=b \cdot a+c \cdot a$ (The latter property is called distributivity.). We call the + operation addition and the $\cdot$ operation multiplication, and we often denote the latter by dropping the $\cdot$ and simply writing $a b$ for $a \cdot b$. We write 0 and 1 for the additive and multiplicative identity elements, respectively. We say the ring $R$ is commutative if the monoid $(R, \cdot)$ is commutative. (We have already insisted that $(R,+)$ is commutative.) We will be dealing only with commutative rings here, so henceforth when we say "ring" we will mean "commutative ring".

Two properties that we would expect to hold for any $x$ in a ring $R$ are these: $(-1) \cdot x=-x$ and $0 \cdot x=0$. We leave it as an exercise that these properties can indeed be deduced from our assumptions.

Units. We have assumed that $(R, \cdot)$ is a monoid; it will not be a group in general ${ }^{1}$ since 0 has no multiplicative inverse. However, some elements of $R$ (1, for example) will have multiplicative inverses. If $x \in R$ is such an element, we call $x$ a unit, and we denote its multiplicative inverse ${ }^{2}$ is by $x^{-1}$. The set of units in $R$, sometimes denoted $R^{*}$, form a

[^0]group with respect to multiplication.
Cancellation. A ring $R$ is called an integral domain if whenever $a, b \in R$ with $a b=0$, then $a=0$ or $b=0$.

Proposition (CANCELLATION). If $R$ is an integral domain, and $a, b, c \in R$ with $a \neq 0$ and $a b=a c$, then $b=c$.

Proof. We have $0=a b-a c=a(b-c)$. Since $a \neq 0$ and $R$ is an integral domain, we must have $b-c=0$, i.e., $b=c$.

Examples. The reader should verify the details in the following four examples.
(1) Integers. The set of integers $\mathbb{Z}$, taking + and $\cdot$ to be the usual addition and multiplication, is the most basic example of a ring. It is commutative, and it is an integral domain. The group of units is $\mathbb{Z}^{*}=\{1,-1\}$.
(2) Real Numbers. The set $\mathbb{R}$ also becomes a ring under the usual + and $\cdot$. It is also an integral domain. Here we have $\mathbb{R}^{*}=\mathbb{R}-\{0\}$.
(3) Rational Numbers. $\mathbb{Q}$ is an integral domain, sharing with $\mathbb{R}$ the property that all non-zero elements are units.
(4) Modular Integers. For $m \in \mathbb{Z}^{+}$, we give $\mathbb{Z}_{m}$ a ring structure as follows: The additive group $\left(\mathbb{Z}_{m},+\right)$ is as before. For $[k],[\ell] \in \mathbb{Z}_{m}$, define $[k] \cdot[\ell]=[k \ell]$. The proofs that this is well defined and that the axioms for a ring are satisfied by + and - are left as an exercise. Note that [0] and [1] are the additive and multiplicative identity elements, respectively, of $\mathbb{Z}_{m}$.

Ideals. A subset $J \subseteq R$ ic called an $i d e a l$ if it is a subroup of the additive group $(R,+)$ and if whenver $a \in R$ and $d \in J$, then $a d \in J$.

One example of an ideal in $R$ is the zero ideal $\{0\}$. Any other ideal will be called a non-zero ideal. The ring $R$ itself is an ideal.

Given $a \in R$ we can form the set of all multiples of $a$ in $R$, namely the set

$$
a R=\{x \in R \mid x=a b \text { for some } b \in R\} .
$$

Such an ideal is called a principal ideal, and the element $a$ is called a generator for the ideal. Note that $\{0\}$ and $R$ are principle ideals by virtue of $\{0\}=0 R$ and $R=1 R$.

If $R$ is an integral domain in which every ideal is principal, we call $R$ a principal ideal domain, abbreviated PID.

For example, the set of even integers forms an ideal in $\mathbb{Z}$. This ideal is a principal ideal, since it is equal to $2 \mathbb{Z}$. We will now show that:

Theorem. $\mathbb{Z}$ is a principal ideal domain.
Proof. This is based on the Euclidean algorithm. Let $J$ be an ideal in $\mathbb{Z}$. If $J=\{0\}$, then $J=0 \mathbb{Z}$ and we are done. Otherwise $J$ contains non-zero integers, and since $n \in J$
implies $(-1) n=-n$ is in $J$, then $J$ must contain some positive integers. Let $n$ be the smallest positive integer in $J$ (such an $n$ exists by the well ordering principle). We claim that $J=n \mathbb{Z}$. Clearly $n \mathbb{Z} \subseteq J$. To see the other containment, let $m \in J$, and use the Euclidean algorithm to write $m=q n+r$ with $0 \leq r<n$. Then $r$ is in $J$ since $r=m-q n$. By the minimality of $n$, we conclude $r=0$, hence $n=q n \in b \mathbb{Z}$ as desired.

If $J \subseteq \mathbb{Z}$ is an ideal with $J \neq 0$, and if $n$ is a generator for $J$, then the only other generator for $J$ is $-n$. This follows easily from the fact that any two generators are multiples of each other, and will be left as an exercise. Thus any non-zero ideal has a unique positive generator.

Greatest Common Divisor. Given $m, n \in \mathbb{Z}$, We note that the subset $m \mathbb{Z}+n \mathbb{Z}$, by which we mean the set of all integers $a$ which can be written $a=h m+k n$ for some $h, k \in \mathbb{Z}$, is an ideal in $\mathbb{Z}$. Therefore it has a unique positive generator $d$, which divides both $m$ and $n$. If $e$ is any other positive integer which divided both $m$ and $n$ then $m, n \in e \mathbb{Z}$ so $m \mathbb{Z}+n \mathbb{Z}=d \mathbb{Z} \subseteq e \mathbb{Z}$, and hence $e$ divides $d$. Therefore $d \geq e$ and we (appropriately) call $d$ the greatest common divisor of $m$ and $n$. The greatest common divisor is denoted $\operatorname{gcd}(m, n)$. Since $d \mathbb{Z}=m \mathbb{Z}+n \mathbb{Z}$, there exist integers $h, k$ such that $d=h m+k n$.

To say that $\operatorname{gcd}(m, n)=1$ is to say that the only common divisors of $m$ and $n$ in $\mathbb{Z}$ are $\pm 1$. In this case we say that $m$ and $n$ are relatively prime.

Prime Numbers. A positive integer $p$ is called prime if it is divisible in $\mathbb{Z}$ by precisely two positive integers, namely 1 and $p$. (Note that 1 is not prime by virtue of the word "precisely".) The first ten prime numbers are:

$$
\begin{equation*}
2,3,5,7,11,13,17,19,23,29 \tag{1}
\end{equation*}
$$

It will be left as an exercise to show that if $p$ is prime and $n \in \mathbb{Z}$, then either $p$ divides $n$ or $\operatorname{gcd}(p, n)=1$.

Sieve of Eratosthenes. A systematic procedure for finding the prime numbers was given by the Greek astronomer/mathematician Eratosthenes of Cyrene (3rd century BC). We conceive of the positive integers as an infinite list $1,2,3,4,5,6, \ldots$, then proceed to cross out certain numbers on the list, as follows. After crossing out 1 , we cross out all numbers following 2 which are divisible by 2 .

$$
\begin{aligned}
& 4,2,3,4,5,6,7,8,9,10,11,12,13,14,15 \\
& 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30, \ldots
\end{aligned}
$$

Then we find the next number after 2 which is still on the list, which is 3 . We then cross out all numbers following 3 which are not divisible by 3 .

$$
\begin{aligned}
& 4,2,3,4,5,6,7,8,9,10,11,12,13,14,15 \\
& 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30, \ldots
\end{aligned}
$$

When this process can be continued up to an integer $n$, the the numbers below $n$ which remain on the list are precisely the primes which are $\leq n$.

$$
\begin{aligned}
& 4,2,3,4,5,6,7,8,9,10,11,12,13,14,15 \\
& 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30, \ldots
\end{aligned}
$$

We have shown that the primes $\leq 30$ are the ten integers in the list (1) above.
If the procedure were continued infinitely to completion, the complete list of primes would remain.

Theorem. If $p$ is a prime number and if $p$ divides $m n$, where $m, n \in \mathbb{Z}$, then $p$ divides $m$ or $p$ divides $n$.

Proof. Suppose $p$ does not divide $m$. Then $\operatorname{gcd}(m, p)=1$ and we can write $1=h m+k p$ for some integers $h$ and $k$. Multiplying this equation by $n$ gives $n=h m n+k p n$. Note that $p$ divides both summands on the right, since $p$ divides $n m$. therefore $p$ divides $n$. This concludes the proof.

One can easlily conclude that if a prime number $p$ divides a product $m_{1} m_{2} \cdots m_{s}$, then $p$ divides at least one of $m_{1}, m_{2}, \ldots, m_{s}$.

Unique Factorization. We now establish the fact that every positive integer can be factored uniquely as the product of primes.

Theorem. Let $n \geq 1$ be an integer. Then $n$ can be factored as

$$
n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}
$$

where $r \geq 0, p_{1}, p_{2} \ldots, p_{r}$ are distinct primes, and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r} \geq 1$. Moreover, this factorization is unique, meaning that if $n=q_{1}^{\beta_{1}} q_{2}^{\beta_{2}} \cdots q_{t}^{\beta_{t}}$ is another such factorization, then $t=r$ and after rearranging we have $p_{1}=q_{1}, p_{2}=q_{2}, \ldots, p_{r}=q_{r}$.

Proof. We first establish the existence of a prime factorization for all integers $\geq 1$. If not all positive integers admit a prime factorization, then by the Well-Ordering Principle we can choose a smallest integer $n$ which fails to admit a factorization. We note that $n$ itself could not be prime, otherwise it admits the factorization in the theorem with $r=1$ and $p_{1}=n$. Since $n$ is not prime, it has a positive divisor $m$ which is neither $n$ nor 1 . We have $n=m \ell$ and clearly $\ell$ is neither $n$ nor 1 . We must have $1<m, \ell<n$, so by the minimality of $n$, both $m$ and $\ell$ have prime factorizations. But if $m$ and $\ell$ have prime factorizations, then so does $n$ since $n=m \ell$. This is a contradiction. Hence all integers $\geq 1$ have a prime factorization.

It remains to show the uniqueness. If $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}=q_{1}^{\beta_{1}} q_{2}^{\beta_{2}} \cdots q_{t}^{\beta_{t}}$, then $p_{1}$ divides $q_{1}^{\beta_{1}} q_{2}^{\beta_{2}} \cdots q_{t}^{\beta_{t}}$. Since $p_{1}$ is prime it must divide one of $q_{1}, q_{2}, \ldots, q_{t}$. Say $p_{1}$ divides $q_{1}$. Since $q_{1}$ is also prime we must have $p_{1}=q_{1}$, so we can cancel to get $p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}=$ $p_{1}^{\beta_{1}-1} q_{2}^{\beta_{2}} \cdots q_{t}^{\beta_{t}}$. We continue cancelling $p_{1}$ to deduce that $\alpha_{1}=\beta_{1}$. The remaining equation is $p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}=q_{2}^{\beta_{2}} \cdots q_{t}^{\beta_{t}}$. As above we can argue that $p_{2}=q_{2}$ (after rearranging) and that $\alpha_{2}=\beta_{2}$. We continue to get the desired result.

Modular Integers. The algebraic properties we have established for $\mathbb{Z}$ tell us many things about the rings of modular integers $\mathbb{Z}_{m}$, for $m \in \mathbb{Z}^{+}$. One such fact concerns the matter of when an element $[n] \in \mathbb{Z}_{m}$ is a generator of the additive group $\left(\mathbb{Z}_{m},+\right)$.

Theorem. Given $[n] \in \mathbb{Z}_{m}$, the following three conditions are equivalent.
(1) $\operatorname{gcd}(m, n)=1$.
(2) $[n]$ is a generator of the additive group $\left(\mathbb{Z}_{m},+\right)$.
(3) $[n]$ is a unit in the ring $\mathbb{Z}_{m}$ (i.e., $[n] \in \mathbb{Z}_{m}^{*}$ ).

Proof. We first consider conditions (2) and (3). If $[n]$ is a generator of $\left(\mathbb{Z}_{m},+\right)$, then all elements of $\mathbb{Z}_{m}$ can be written as $k \cdot[n]$, for some $k \in \mathbb{Z}$. (This is the way we write exponentiation in an additive group.) In particular, we have $[1]=k \cdot[n]$. But, by the definition of multiplication in $\mathbb{Z}_{m}, k \cdot[n]=[k] \cdot[n]$. Therefore $[k] \cdot[n]=[1]$, which shows $[n]$ is a unit. Conversely, if $[n] \in \mathbb{Z}_{m}^{*}$, with inverse $[k]=[n]^{-1}$, then for any $[\ell] \in \mathbb{Z}_{m}$ we have $[\ell]=[\ell] \cdot[1]=[\ell] \cdot[k] \cdot[n]=[\ell k] \cdot[n]=\ell k \cdot[n]$, which shows that $[\ell]$ is a multiple ("power") of $[n]$. Hence $[n]$ is a group generator for $\left(\mathbb{Z}_{m},+\right)$.

The equivalence of (1) with these conditions, the proof of which uses greatest common divisors, is left as an exercise.

Euler Phi Function. For any $m \in \mathbb{Z}^{+}$, we have defined the Euler phi function $\phi(m)$ to be the number of positive integers $n$ with $1 \leq n<m$ which are relatively prime to $m$. According to the above theorem, $\phi(m)$ also counts the number of elements in $\mathbb{Z}_{m}^{*}$, and the number of group generators for $\left(\mathbb{Z}_{m},+\right)$. By virtue of the latter, $\phi(m)$ counts the number of generating intervals in the $m$-chromatic scale.

For example $\phi(12)=4$, since the numbers $1,5,7,11$ are precisely the positive integers $\leq 12$ which are relatively prime to 12 . This reflects the fact that the generating intervals in the 12 -chromatic scale are the semitone, the fourth, the fifth, and the major seventh.

## Exercises

(1) Prove that in any (commutative) ring $R$ we have ( -1 ) $x=-x$ and $0 \cdot x=0$, for any $x \in R$.
(2) Give the prime factorizations of these integers, writing the primes in ascending order, as in $2^{3} \cdot 3 \cdot 7^{2}$.
(a) 110
(b) 792
(c) 343
(d) 3422
(e) $15 \times 10^{23}$
(3) Call a musical interval a prime interval if its interval ratio is a prime integer; call it a rational interval if its interval ratio is a rational number. Show that all rational intervals can be written as compositions of prime intervals and their opposites.
(4) Express each of these ideals in $\mathbb{Z}$ in the form $n \mathbb{Z}$, where $n$ is a positive integer:
(a) $12 \mathbb{Z}+15 \mathbb{Z}$
(b) $5 \mathbb{Z}+(-20) \mathbb{Z}$
(c) $10 \mathbb{Z}+44 \mathbb{Z}$
(d) $13 \mathbb{Z}+35 \mathbb{Z}$
(5) Verify that $\mathbb{Q}$ (the rational numbers) is a ring, and, in fact, an integral domain. Show that the only ideals in $\mathbb{Q}$ are $\{0\}$ and $\mathbb{Q}$.
(6) Prove that there are infinitely many prime numbers. (Hint: If $p_{1}, \ldots, p_{n}$ were a complete list of primes, consider a prime factor of $p_{1} \cdots p_{n}+1$.)
(7) Prove that if $p$ is prime and $n \in \mathbb{Z}$, then either $p \mid n$ or $\operatorname{gcd}(p, n)=1$.
(8) Given $m \in \mathbb{Z}^{+}$and $n \in \mathbb{Z}$, prove that $[n]$ is a generator for $\mathbb{Z}_{m}$ if and only if $\operatorname{gcd}(m, n)=1$. Interpret this as a statement about generating intervals in the modular $m$-chromatic scale.
(9) Prove that $m$ iterations of any $m$-chromatic interval is a multioctave. Interpret this as a statement about an element $[k]$ of $\mathbb{Z}_{m}$, and use this statement to prove that the order $r$ of $[k]$ divides $m$.


[^0]:    ${ }^{1}$ The only situation when $(R, \cdot)$ is a group is when $R=\{0\}$, which coincides with the case $0=1$. In this case $R$ is called the trivial ring.
    ${ }^{2}$ The multiplicative inverse $x^{-1}$ is unique to $x$. The proof of this mimics the proof that inverses in a group are unique.

