CHAPTER VIII

ALGEBRAIC PROPERTIES OF THE INTEGERS

We have identified a musical interval I with a positive real number z € R*. Since
7T C RT, each positive integer gives an interval. For example, we have seen that the integer
2 represents the octave, and that the integer 3 is an interval about 2 cents greater than
the keyboard’s octave-and-a-fifth (1900 cents), as shown by the calculation 1200 log, 3 ~
1901.96.

o
o
o
o o o
2 = octave interval 3 ~ octave-and-a-fifth interval 4 = two octave interval

We will now investigate some properties of the integers Z which relate to musical phenom-
ena.

Ring. A non-empty set R endowed with two associative laws of composition + and - is
called a ring if (R, +) is a commutative group, (R, -) is a monoid, and for any a,b,c € R
we have a- (b+c¢)=a-b+a-cand (b+¢)-a="0b-a+ c-a (The latter property is called
distributivity.). We call the + operation addition and the - operation multiplication, and
we often denote the latter by dropping the - and simply writing ab for a-b. We write 0 and
1 for the additive and multiplicative identity elements, respectively. We say the ring R is
commutative if the monoid (R, -) is commutative. (We have already insisted that (R, +) is
commutative.) We will be dealing only with commutative rings here, so henceforth when
we say “ring” we will mean “commutative ring”.

Two properties that we would expect to hold for any x in a ring R are these: (—1)-xz = —x
and 0 -z = 0. We leave it as an exercise that these properties can indeed be deduced from
our assumptions.

Units. We have assumed that (R, -) is a monoid; it will not be a group in general! since
0 has no multiplicative inverse. However, some elements of R (1, for example) will have
multiplicative inverses. If x € R is such an element, we call z a unit, and we denote its

multiplicative inverse? is by z=!. The set of units in R, sometimes denoted R*, form a

!The only situation when (R, -) is a group is when R = {0}, which coincides with the case 0 = 1. In
this case R is called the trivial ring.

2The multiplicative inverse z !
group are unique.

is unique to x. The proof of this mimics the proof that inverses in a
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2 VIII. ALGEBRAIC PROPERTIES OF THE INTEGERS

group with respect to multiplication.

Cancellation. A ring R is called an integral domain if whenever a,b € R with ab = 0,
then a =0 or b= 0.

PROPOSITION (CANCELLATION). If R is an integral domain, and a,b,c € R with a # 0
and ab = ac, then b = c.

PROOF. We have 0 = ab — ac = a(b — ¢). Since a # 0 and R is an integral domain, we
must have b —c =0, i.e., b=c.

Examples. The reader should verify the details in the following four examples.

(1) Integers. The set of integers Z, taking + and - to be the usual addition and
multiplication, is the most basic example of a ring. It is commutative, and it is an
integral domain. The group of units is Z* = {1, —1}.

(2) Real Numbers. The set R also becomes a ring under the usual + and -. Tt is
also an integral domain. Here we have R* = R — {0}.

(3) Rational Numbers. Q is an integral domain, sharing with R the property that
all non-zero elements are units.

(4) Modular Integers. For m € Z*, we give Z,, a ring structure as follows: The
additive group (Z,,+) is as before. For [k], [(] € Z,,, define [k] - [¢] = [k{]. The
proofs that this is well defined and that the axioms for a ring are satisfied by + and
- are left as an exercise. Note that [0] and [1] are the additive and multiplicative
identity elements, respectively, of Z,,.

Ideals. A subset J C R ic called an ideal if it is a subroup of the additive group (R, +)
and if whenver a € R and d € J, then ad € J.

One example of an ideal in R is the zero ideal {0}. Any other ideal will be called a
non-zero ideal. The ring R itself is an ideal.

Given a € R we can form the set of all multiples of a in R, namely the set

aR = {z € R|z = ab for some b € R}.

Such an ideal is called a principal ideal, and the element a is called a generator for the
ideal. Note that {0} and R are principle ideals by virtue of {0} = OR and R = 1R.

If R is an integral domain in which every ideal is principal, we call R a principal ideal
domain, abbreviated PID.

For example, the set of even integers forms an ideal in Z. This ideal is a principal ideal,
since it is equal to 2Z. We will now show that:

THEOREM. Z is a principal ideal domain.

PRrROOF. This is based on the Euclidean algorithm. Let J be an ideal in Z. If J = {0},
then J = 0Z and we are done. Otherwise J contains non-zero integers, and since n € J
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implies (—1)n = —n is in J, then J must contain some positive integers. Let n be the
smallest positive integer in J (such an n exists by the well ordering principle). We claim
that J = nZ. Clearly nZ C J. To see the other containment, let m € J, and use the
Euclidean algorithm to write m = gqn +r with 0 < r < n. Then r is in J since r = m — gn.
By the minimality of n, we conclude r = 0, hence n = gn € bZ as desired.

If J C Z is an ideal with J # 0, and if n is a generator for J, then the only other
generator for J is —n. This follows easily from the fact that any two generators are
multiples of each other, and will be left as an exercise. Thus any non-zero ideal has a
unique positive generator.

Greatest Common Divisor. Given m,n € Z, We note that the subset mZ + nZ, by
which we mean the set of all integers a which can be written a = hm + kn for some
h,k € Z, is an ideal in Z. Therefore it has a unique positive generator d, which divides
both m and n. If e is any other positive integer which divided both m and n then m,n € eZ
so mZ +nZ = dZ C eZ, and hence e divides d. Therefore d > e and we (appropriately)
call d the greatest common divisor of m and n. The greatest common divisor is denoted
ged(m,n). Since dZ = mZ + nZ, there exist integers h, k such that d = hm + kn.

To say that ged(m,n) =1 is to say that the only common divisors of m and n in Z are
+1. In this case we say that m and n are relatively prime.

Prime Numbers. A positive integer p is called prime if it is divisible in Z by precisely
two positive integers, namely 1 and p. (Note that 1 is not prime by virtue of the word
“precisely”.) The first ten prime numbers are:

(1) 2.3,5,7,11,13,17,19, 23,29

It will be left as an exercise to show that if p is prime and n € Z, then either p divides n
or ged(p,n) = 1.

Sieve of Eratosthenes. A systematic procedure for finding the prime numbers was given
by the Greek astronomer/mathematician Eratosthenes of Cyrene (3rd century BC). We
conceive of the positive integers as an infinite list 1,2,3,4,5,6,..., then proceed to cross
out certain numbers on the list, as follows. After crossing out 1, we cross out all numbers
following 2 which are divisible by 2.

+,2,3,4,5,6,7,89,10, 11,12 ,13,34, 15,
16-,17,18,19,20,21,22,23,24,25,26-,27,28,29,30, ...

Then we find the next number after 2 which is still on the list, which is 3. We then cross
out all numbers following 3 which are not divisible by 3.

+,2,3,4,5,6,7,89,16,11,12- 13, 4, 15,
16-,17,18,19,20, 23,22 23,24 25,26, 27,28,29,30, . ..
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When this process can be continued up to an integer n, the the numbers below n which
remain on the list are precisely the primes which are < n.

+,2,3,4,5,6,7,89,16,11,12- 13, 4,15,
16,17,18,19,20, 23,22 23,24 25,26, 27,28 ,29,30, ...

We have shown that the primes < 30 are the ten integers in the list (1) above.
If the procedure were continued infinitely to completion, the complete list of primes
would remain.

THEOREM. If p is a prime number and if p divides mn, where m,n € Z, then p divides
m or p divides n.

PROOF. Suppose p does not divide m. Then ged(m, p) = 1 and we can write 1 = hm+kp
for some integers h and k. Multiplying this equation by n gives n = hmn + kpn. Note that
p divides both summands on the right, since p divides nm. therefore p divides n. This
concludes the proof.

One can easlily conclude that if a prime number p divides a product mims - - - mg, then
p divides at least one of m,ms,... ,ms.

Unique Factorization. We now establish the fact that every positive integer can be
factored uniquely as the product of primes.

THEOREM. Letn > 1 be an integer. Then n can be factored as

a1, Qo «
n_pl p2 ...prr

where v > 0, p1,p2...,pr are distinct primes, and ai,as,...,a. > 1. Moreover, this
factorization is unique, meaning that if n = qf1q§2 . --qft 1s another such factorization,
then t = r and after rearranging we have p1 = q1, p2 =q2, ... , Pr = Q-

Proor. We first establish the existence of a prime factorization for all integers > 1. If
not all positive integers admit a prime factorization, then by the Well-Ordering Principle
we can choose a smallest integer n which fails to admit a factorization. We note that n
itself could not be prime, otherwise it admits the factorization in the theorem with r =1
and p; = n. Since n is not prime, it has a positive divisor m which is neither n nor 1.
We have n = mf and clearly ¢ is neither n nor 1. We must have 1 < m,¢ < n, so by
the minimality of n, both m and ¢ have prime factorizations. But if m and ¢ have prime
factorizations, then so does n since n = m#. This is a contradiction. Hence all integers > 1
have a prime factorization.

B B2

It remains to show the uniqueness. If p'p5?---pdr = ¢7'q5 ---qft, then p; divides
qflqg2 . --qft. Since p; is prime it must divide one of q1,q2,...,q:. Say p1 divides q;.
Since ¢ is also prime we must have p; = ¢, so we can cancel to get p‘f‘l_lpg‘Q ceeplT =
pfl_lqg2 e qft. We continue cancelling p; to deduce that a; = ;. The remaining equation
ispg? - pir =¢q5° - qft. As above we can argue that po = g2 (after rearranging) and that

ag = 5. We continue to get the desired result.
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Modular Integers. The algebraic properties we have established for Z tell us many things
about the rings of modular integers Z,,, for m € Z*. One such fact concerns the matter
of when an element [n] € Z,, is a generator of the additive group (Zy,, +).

THEOREM. Given [n] € Zy,, the following three conditions are equivalent.
(1) ged(m,n) =1.

(2) [n] is a generator of the additive group (Zp,+).

(3) [n] is a unit in the ring Z,, (i.e., [n] € Z%,).

PROOF. We first consider conditions (2) and (3). If [n] is a generator of (Z,,,+), then
all elements of Z,, can be written as k - [n], for some k € Z. (This is the way we write

exponentiation in an additive group.) In particular, we have [1] = k - [n]. But, by the
definition of multiplication in Z,,, k - [n] = [k] - [n]. Therefore [k] - [n] = [1], which shows [n]
is a unit. Conversely, if [n] € Z,, with inverse [k] = [n]™!, then for any [{] € Z,, we have

0] = [0]-[1] = [€] - [k] - [n] = [€k] - [n] = Lk - [n], which shows that [¢] is a multiple (“power”)
of [n]. Hence [n] is a group generator for (Z,,,+).

The equivalence of (1) with these conditions, the proof of which uses greatest common
divisors, is left as an exercise.

Euler Phi Function. For any m € Z*, we have defined the Euler phi function ¢(m) to
be the number of positive integers n with 1 < n < m which are relatively prime to m.
According to the above theorem, ¢(m) also counts the number of elements in Z}, , and the
number of group generators for (Z,,,+). By virtue of the latter, ¢(m) counts the number
of generating intervals in the m-chromatic scale.

For example ¢(12) = 4, since the numbers 1,5,7,11 are precisely the positive integers
< 12 which are relatively prime to 12. This reflects the fact that the generating intervals
in the 12-chromatic scale are the semitone, the fourth, the fifth, and the major seventh.

Exercises

(1) Prove that in any (commutative) ring R we have (—1) -2 = —z and 0-z = 0, for
any r € R.

(2) Give the prime factorizations of these integers, writing the primes in ascending
order, as in 23 -3 - 72.

(a) 110 (b) 792 (c) 343 (d) 3422 (e) 15 x 1023

(3) Call a musical interval a prime interval if its interval ratio is a prime integer; call it
a rational interval if its interval ratio is a rational number. Show that all rational
intervals can be written as compositions of prime intervals and their opposites.

(4) Express each of these ideals in Z in the form nZ, where n is a positive integer:

(a) 12Z + 15Z (b) 5Z + (—20)Z

(c) 10Z + 447 (d) 13Z + 35Z
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Verify that Q (the rational numbers) is a ring, and, in fact, an integral domain.
Show that the only ideals in Q are {0} and Q.

Prove that there are infinitely many prime numbers. (Hint: If p1,... ,p, were a
complete list of primes, consider a prime factor of py ---p, + 1.)

Prove that if p is prime and n € Z, then either p|n or ged(p,n) = 1.

Given m € Z* and n € Z, prove that [n] is a generator for Z,, if and only if
ged (m,n) = 1. Interpret this as a statement about generating intervals in the
modular m-chromatic scale.

Prove that m iterations of any m-chromatic interval is a multioctave. Interpret this
as a statement about an element [k] of Z,,, and use this statement to prove that
the order r of [k] divides m.



