
CHAPTER VIII

ALGEBRAIC PROPERTIES OF THE INTEGERS

We have identified a musical interval I with a positive real number x ∈ R+. Since
Z+ ⊂ R+, each positive integer gives an interval. For example, we have seen that the integer
2 represents the octave, and that the integer 3 is an interval about 2 cents greater than
the keyboard’s octave-and-a-fifth (1900 cents), as shown by the calculation 1200 log2 3 ≈
1901.96.

�
2 = octave interval

�� �
3 ≈ octave-and-a-fifth interval

�
� �

4 = two octave interval

�
�

We will now investigate some properties of the integers Z which relate to musical phenom-
ena.

Ring. A non-empty set R endowed with two associative laws of composition + and · is
called a ring if (R,+) is a commutative group, (R, · ) is a monoid, and for any a, b, c ∈ R
we have a · (b + c) = a · b + a · c and (b + c) · a = b · a + c · a (The latter property is called
distributivity.). We call the + operation addition and the · operation multiplication, and
we often denote the latter by dropping the · and simply writing ab for a ·b. We write 0 and
1 for the additive and multiplicative identity elements, respectively. We say the ring R is
commutative if the monoid (R, · ) is commutative. (We have already insisted that (R,+) is
commutative.) We will be dealing only with commutative rings here, so henceforth when
we say “ring” we will mean “commutative ring”.

Two properties that we would expect to hold for any x in a ring R are these: (−1)·x = −x
and 0 · x = 0. We leave it as an exercise that these properties can indeed be deduced from
our assumptions.

Units. We have assumed that (R, · ) is a monoid; it will not be a group in general1 since
0 has no multiplicative inverse. However, some elements of R (1, for example) will have
multiplicative inverses. If x ∈ R is such an element, we call x a unit, and we denote its
multiplicative inverse2 is by x−1. The set of units in R, sometimes denoted R∗, form a

1The only situation when (R, · ) is a group is when R = {0}, which coincides with the case 0 = 1. In

this case R is called the trivial ring.
2The multiplicative inverse x−1 is unique to x. The proof of this mimics the proof that inverses in a

group are unique.

Typeset by AMS-TEX

1



2 VIII. ALGEBRAIC PROPERTIES OF THE INTEGERS

group with respect to multiplication.

Cancellation. A ring R is called an integral domain if whenever a, b ∈ R with ab = 0,
then a = 0 or b = 0.

Proposition (cancellation). If R is an integral domain, and a, b, c ∈ R with a �= 0
and ab = ac, then b = c.

Proof. We have 0 = ab − ac = a(b − c). Since a �= 0 and R is an integral domain, we
must have b − c = 0, i.e., b = c.

Examples. The reader should verify the details in the following four examples.

(1) Integers. The set of integers Z, taking + and · to be the usual addition and
multiplication, is the most basic example of a ring. It is commutative, and it is an
integral domain. The group of units is Z∗ = {1,−1}.

(2) Real Numbers. The set R also becomes a ring under the usual + and · . It is
also an integral domain. Here we have R∗ = R − {0}.

(3) Rational Numbers. Q is an integral domain, sharing with R the property that
all non-zero elements are units.

(4) Modular Integers. For m ∈ Z+, we give Zm a ring structure as follows: The
additive group (Zm,+) is as before. For [k], [�] ∈ Zm, define [k] · [�] = [k�]. The
proofs that this is well defined and that the axioms for a ring are satisfied by + and
· are left as an exercise. Note that [0] and [1] are the additive and multiplicative
identity elements, respectively, of Zm.

Ideals. A subset J ⊆ R ic called an ideal if it is a subroup of the additive group (R,+)
and if whenver a ∈ R and d ∈ J , then ad ∈ J .

One example of an ideal in R is the zero ideal {0}. Any other ideal will be called a
non-zero ideal. The ring R itself is an ideal.

Given a ∈ R we can form the set of all multiples of a in R, namely the set

aR = {x ∈ R |x = ab for some b ∈ R}.

Such an ideal is called a principal ideal, and the element a is called a generator for the
ideal. Note that {0} and R are principle ideals by virtue of {0} = 0R and R = 1R.

If R is an integral domain in which every ideal is principal, we call R a principal ideal
domain, abbreviated PID.

For example, the set of even integers forms an ideal in Z. This ideal is a principal ideal,
since it is equal to 2Z. We will now show that:

Theorem. Z is a principal ideal domain.

Proof. This is based on the Euclidean algorithm. Let J be an ideal in Z. If J = {0},
then J = 0Z and we are done. Otherwise J contains non-zero integers, and since n ∈ J
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implies (−1)n = −n is in J , then J must contain some positive integers. Let n be the
smallest positive integer in J (such an n exists by the well ordering principle). We claim
that J = nZ. Clearly nZ ⊆ J . To see the other containment, let m ∈ J , and use the
Euclidean algorithm to write m = qn + r with 0 ≤ r < n. Then r is in J since r = m− qn.
By the minimality of n, we conclude r = 0, hence n = qn ∈ bZ as desired.

If J ⊆ Z is an ideal with J �= 0, and if n is a generator for J , then the only other
generator for J is −n. This follows easily from the fact that any two generators are
multiples of each other, and will be left as an exercise. Thus any non-zero ideal has a
unique positive generator.

Greatest Common Divisor. Given m,n ∈ Z, We note that the subset mZ + nZ, by
which we mean the set of all integers a which can be written a = hm + kn for some
h, k ∈ Z, is an ideal in Z. Therefore it has a unique positive generator d, which divides
both m and n. If e is any other positive integer which divided both m and n then m,n ∈ eZ

so mZ + nZ = dZ ⊆ eZ, and hence e divides d. Therefore d ≥ e and we (appropriately)
call d the greatest common divisor of m and n. The greatest common divisor is denoted
gcd(m,n). Since dZ = mZ + nZ, there exist integers h, k such that d = hm + kn.

To say that gcd(m,n) = 1 is to say that the only common divisors of m and n in Z are
±1. In this case we say that m and n are relatively prime.

Prime Numbers. A positive integer p is called prime if it is divisible in Z by precisely
two positive integers, namely 1 and p. (Note that 1 is not prime by virtue of the word
“precisely”.) The first ten prime numbers are:

(1) 2, 3, 5, 7, 11, 13, 17, 19, 23, 29

It will be left as an exercise to show that if p is prime and n ∈ Z, then either p divides n
or gcd(p, n) = 1.

Sieve of Eratosthenes. A systematic procedure for finding the prime numbers was given
by the Greek astronomer/mathematician Eratosthenes of Cyrene (3rd century BC). We
conceive of the positive integers as an infinite list 1, 2, 3, 4, 5, 6, . . . , then proceed to cross
out certain numbers on the list, as follows. After crossing out 1, we cross out all numbers
following 2 which are divisible by 2.

1−, 2, 3, 4−, 5, 6−, 7, 8−,9, 10−−, 11, 12−−, 13, 14−−, 15,

16−−, 17, 18−−, 19, 20−−, 21, 22−−, 23, 24−−, 25, 26−−, 27, 28−−, 29, 30−−, . . .

Then we find the next number after 2 which is still on the list, which is 3. We then cross
out all numbers following 3 which are not divisible by 3.

1−, 2, 3, 4−, 5, 6−, 7, 8−,9−, 10−−, 11, 12−−−−, 13, 14−−, 15−−,

16−−, 17, 18−−, 19, 20−−, 21−−, 22−−, 23, 24−−, 25, 26−−, 27−−, 28−−, 29, 30−−, . . .
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When this process can be continued up to an integer n, the the numbers below n which
remain on the list are precisely the primes which are ≤ n.

1−, 2, 3, 4−, 5, 6−, 7, 8−,9−, 10−−, 11, 12−−−−, 13, 14−−, 15−−,

16−−, 17, 18−−, 19, 20−−, 21−−, 22−−, 23, 24−−, 25−−, 26−−, 27−−, 28−−, 29, 30−−, . . .

We have shown that the primes ≤ 30 are the ten integers in the list (1) above.
If the procedure were continued infinitely to completion, the complete list of primes

would remain.

Theorem. If p is a prime number and if p divides mn, where m,n ∈ Z, then p divides
m or p divides n.

Proof. Suppose p does not divide m. Then gcd(m, p) = 1 and we can write 1 = hm+kp
for some integers h and k. Multiplying this equation by n gives n = hmn+ kpn. Note that
p divides both summands on the right, since p divides nm. therefore p divides n. This
concludes the proof.

One can easlily conclude that if a prime number p divides a product m1m2 · · ·ms, then
p divides at least one of m1,m2, . . . ,ms.

Unique Factorization. We now establish the fact that every positive integer can be
factored uniquely as the product of primes.

Theorem. Let n ≥ 1 be an integer. Then n can be factored as

n = pα1
1 pα2

2 · · · pαr
r

where r ≥ 0, p1, p2 . . . , pr are distinct primes, and α1, α2, . . . , αr ≥ 1. Moreover, this
factorization is unique, meaning that if n = qβ1

1 qβ2
2 · · · qβt

t is another such factorization,
then t = r and after rearranging we have p1 = q1, p2 = q2, . . . , pr = qr.

Proof. We first establish the existence of a prime factorization for all integers ≥ 1. If
not all positive integers admit a prime factorization, then by the Well-Ordering Principle
we can choose a smallest integer n which fails to admit a factorization. We note that n
itself could not be prime, otherwise it admits the factorization in the theorem with r = 1
and p1 = n. Since n is not prime, it has a positive divisor m which is neither n nor 1.
We have n = m� and clearly � is neither n nor 1. We must have 1 < m, � < n, so by
the minimality of n, both m and � have prime factorizations. But if m and � have prime
factorizations, then so does n since n = m�. This is a contradiction. Hence all integers ≥ 1
have a prime factorization.

It remains to show the uniqueness. If pα1
1 pα2

2 · · · pαr
r = qβ1

1 qβ2
2 · · · qβt

t , then p1 divides
qβ1
1 qβ2

2 · · · qβt
t . Since p1 is prime it must divide one of q1, q2, . . . , qt. Say p1 divides q1.

Since q1 is also prime we must have p1 = q1, so we can cancel to get pα1−1
1 pα2

2 · · · pαr
r =

pβ1−1
1 qβ2

2 · · · qβt
t . We continue cancelling p1 to deduce that α1 = β1. The remaining equation

is pα2
2 · · · pαr

r = qβ2
2 · · · qβt

t . As above we can argue that p2 = q2 (after rearranging) and that
α2 = β2. We continue to get the desired result.
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Modular Integers. The algebraic properties we have established for Z tell us many things
about the rings of modular integers Zm, for m ∈ Z+. One such fact concerns the matter
of when an element [n] ∈ Zm is a generator of the additive group (Zm,+).

Theorem. Given [n] ∈ Zm, the following three conditions are equivalent.
(1) gcd (m,n) = 1.
(2) [n] is a generator of the additive group (Zm,+).
(3) [n] is a unit in the ring Zm (i.e., [n] ∈ Z∗

m).

Proof. We first consider conditions (2) and (3). If [n] is a generator of (Zm,+), then
all elements of Zm can be written as k · [n], for some k ∈ Z. (This is the way we write
exponentiation in an additive group.) In particular, we have [1] = k · [n]. But, by the
definition of multiplication in Zm, k · [n] = [k] · [n]. Therefore [k] · [n] = [1], which shows [n]
is a unit. Conversely, if [n] ∈ Z∗

m, with inverse [k] = [n]−1, then for any [�] ∈ Zm we have
[�] = [�] · [1] = [�] · [k] · [n] = [�k] · [n] = �k · [n], which shows that [�] is a multiple (“power”)
of [n]. Hence [n] is a group generator for (Zm,+).

The equivalence of (1) with these conditions, the proof of which uses greatest common
divisors, is left as an exercise.

Euler Phi Function. For any m ∈ Z+, we have defined the Euler phi function φ(m) to
be the number of positive integers n with 1 ≤ n < m which are relatively prime to m.
According to the above theorem, φ(m) also counts the number of elements in Z∗

m, and the
number of group generators for (Zm,+). By virtue of the latter, φ(m) counts the number
of generating intervals in the m-chromatic scale.

For example φ(12) = 4, since the numbers 1, 5, 7, 11 are precisely the positive integers
≤ 12 which are relatively prime to 12. This reflects the fact that the generating intervals
in the 12-chromatic scale are the semitone, the fourth, the fifth, and the major seventh.

Exercises

(1) Prove that in any (commutative) ring R we have (−1) · x = −x and 0 · x = 0, for
any x ∈ R.

(2) Give the prime factorizations of these integers, writing the primes in ascending
order, as in 23 · 3 · 72.
(a) 110 (b) 792 (c) 343 (d) 3422 (e) 15 × 1023

(3) Call a musical interval a prime interval if its interval ratio is a prime integer; call it
a rational interval if its interval ratio is a rational number. Show that all rational
intervals can be written as compositions of prime intervals and their opposites.

(4) Express each of these ideals in Z in the form nZ, where n is a positive integer:

(a) 12Z + 15Z (b) 5Z + (−20)Z

(c) 10Z + 44Z (d) 13Z + 35Z
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(5) Verify that Q (the rational numbers) is a ring, and, in fact, an integral domain.
Show that the only ideals in Q are {0} and Q.

(6) Prove that there are infinitely many prime numbers. (Hint: If p1, . . . , pn were a
complete list of primes, consider a prime factor of p1 · · · pn + 1. )

(7) Prove that if p is prime and n ∈ Z, then either p |n or gcd(p, n) = 1.

(8) Given m ∈ Z+ and n ∈ Z, prove that [n] is a generator for Zm if and only if
gcd (m,n) = 1. Interpret this as a statement about generating intervals in the
modular m-chromatic scale.

(9) Prove that m iterations of any m-chromatic interval is a multioctave. Interpret this
as a statement about an element [k] of Zm, and use this statement to prove that
the order r of [k] divides m.


