CHAPTER VIII

ALGEBRAIC PROPERTIES OF THE INTEGERS

We have identified a musical interval I with a positive real number $x \in \mathbb{R}^+$. Since $\mathbb{Z}^+ \subset \mathbb{R}^+$, each positive integer gives an interval. For example, we have seen that the integer 2 represents the octave, and that the integer 3 is an interval about 2 cents greater than the keyboard's octave-and-a-fifth (1900 cents), as shown by the calculation $1200 \log_2 3 \approx$ 1901.96.

2 = octave interval

 $3 \approx \text{octave-and-a-fifth interval}$

4 =two octave interval

We will now investigate some properties of the integers \mathbb{Z} which relate to musical phenomena.

Ring. A non-empty set R endowed with two associative laws of composition + and \cdot is called a ring if (R, +) is a commutative group, (R, \cdot) is a monoid, and for any $a, b, c \in R$ we have $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(b+c) \cdot a = b \cdot a + c \cdot a$ (The latter property is called distributivity.). We call the + operation addition and the \cdot operation multiplication, and we often denote the latter by dropping the \cdot and simply writing ab for $a \cdot b$. We write 0 and 1 for the additive and multiplicative identity elements, respectively. We say the ring R is *commutative* if the monoid (R, \cdot) is commutative. (We have already insisted that (R, +) is commutative.) We will be dealing only with commutative rings here, so henceforth when we say "ring" we will mean "commutative ring".

Two properties that we would expect to hold for any x in a ring R are these: $(-1) \cdot x = -x$ and $0 \cdot x = 0$. We leave it as an exercise that these properties can indeed be deduced from our assumptions.

Units. We have assumed that (R, \cdot) is a monoid; it will not be a group in general¹ since 0 has no multiplicative inverse. However, some elements of R (1, for example) will have multiplicative inverses. If $x \in R$ is such an element, we call x a *unit*, and we denote its multiplicative inverse² is by x^{-1} . The set of units in R, sometimes denoted R^* , form a

¹The only situation when (R, \cdot) is a group is when $R = \{0\}$, which coincides with the case 0 = 1. In this case R is called the *trivial ring*.

²The multiplicative inverse x^{-1} is unique to x. The proof of this mimics the proof that inverses in a group are unique.

group with respect to multiplication.

Cancellation. A ring R is called an *integral domain* if whenever $a, b \in R$ with ab = 0, then a = 0 or b = 0.

PROPOSITION (CANCELLATION). If R is an integral domain, and $a, b, c \in R$ with $a \neq 0$ and ab = ac, then b = c.

PROOF. We have 0 = ab - ac = a(b - c). Since $a \neq 0$ and R is an integral domain, we must have b - c = 0, i.e., b = c.

Examples. The reader should verify the details in the following four examples.

- (1) **Integers.** The set of integers \mathbb{Z} , taking + and \cdot to be the usual addition and multiplication, is the most basic example of a ring. It is commutative, and it is an integral domain. The group of units is $\mathbb{Z}^* = \{1, -1\}$.
- (2) **Real Numbers.** The set \mathbb{R} also becomes a ring under the usual + and \cdot . It is also an integral domain. Here we have $\mathbb{R}^* = \mathbb{R} \{0\}$.
- (3) **Rational Numbers.** \mathbb{Q} is an integral domain, sharing with \mathbb{R} the property that all non-zero elements are units.
- (4) Modular Integers. For $m \in \mathbb{Z}^+$, we give \mathbb{Z}_m a ring structure as follows: The additive group $(\mathbb{Z}_m, +)$ is as before. For $[k], [\ell] \in \mathbb{Z}_m$, define $[k] \cdot [\ell] = [k\ell]$. The proofs that this is well defined and that the axioms for a ring are satisfied by + and \cdot are left as an exercise. Note that [0] and [1] are the additive and multiplicative identity elements, respectively, of \mathbb{Z}_m .

Ideals. A subset $J \subseteq R$ ic called an *ideal* if it is a subroup of the additive group (R, +) and if whenver $a \in R$ and $d \in J$, then $ad \in J$.

One example of an ideal in R is the zero ideal $\{0\}$. Any other ideal will be called a *non-zero ideal*. The ring R itself is an ideal.

Given $a \in R$ we can form the set of all multiples of a in R, namely the set

$$aR = \{ x \in R \mid x = ab \text{ for some } b \in R \}.$$

Such an ideal is called a *principal ideal*, and the element a is called a generator for the ideal. Note that $\{0\}$ and R are principle ideals by virtue of $\{0\} = 0R$ and R = 1R.

If R is an integral domain in which every ideal is principal, we call R a *principal ideal domain*, abbreviated PID.

For example, the set of even integers forms an ideal in \mathbb{Z} . This ideal is a principal ideal, since it is equal to $2\mathbb{Z}$. We will now show that:

THEOREM. \mathbb{Z} is a principal ideal domain.

PROOF. This is based on the Euclidean algorithm. Let J be an ideal in \mathbb{Z} . If $J = \{0\}$, then $J = 0\mathbb{Z}$ and we are done. Otherwise J contains non-zero integers, and since $n \in J$

implies (-1)n = -n is in J, then J must contain some positive integers. Let n be the smallest positive integer in J (such an n exists by the well ordering principle). We claim that $J = n\mathbb{Z}$. Clearly $n\mathbb{Z} \subseteq J$. To see the other containment, let $m \in J$, and use the Euclidean algorithm to write m = qn + r with $0 \leq r < n$. Then r is in J since r = m - qn. By the minimality of n, we conclude r = 0, hence $n = qn \in b\mathbb{Z}$ as desired.

If $J \subseteq \mathbb{Z}$ is an ideal with $J \neq 0$, and if n is a generator for J, then the only other generator for J is -n. This follows easily from the fact that any two generators are multiples of each other, and will be left as an exercise. Thus any non-zero ideal has a unique positive generator.

Greatest Common Divisor. Given $m, n \in \mathbb{Z}$, We note that the subset $m\mathbb{Z} + n\mathbb{Z}$, by which we mean the set of all integers a which can be written a = hm + kn for some $h, k \in \mathbb{Z}$, is an ideal in \mathbb{Z} . Therefore it has a unique positive generator d, which divides both m and n. If e is any other positive integer which divided both m and n then $m, n \in e\mathbb{Z}$ so $m\mathbb{Z} + n\mathbb{Z} = d\mathbb{Z} \subseteq e\mathbb{Z}$, and hence e divides d. Therefore $d \geq e$ and we (appropriately) call d the greatest common divisor of m and n. The greatest common divisor is denoted gcd(m, n). Since $d\mathbb{Z} = m\mathbb{Z} + n\mathbb{Z}$, there exist integers h, k such that d = hm + kn.

To say that gcd(m, n) = 1 is to say that the only common divisors of m and n in \mathbb{Z} are ± 1 . In this case we say that m and n are relatively prime.

Prime Numbers. A positive integer p is called *prime* if it is divisible in \mathbb{Z} by precisely two positive integers, namely 1 and p. (Note that 1 is not prime by virtue of the word "precisely".) The first ten prime numbers are:

$$(1) 2, 3, 5, 7, 11, 13, 17, 19, 23, 29$$

It will be left as an exercise to show that if p is prime and $n \in \mathbb{Z}$, then either p divides n or gcd(p, n) = 1.

Sieve of Eratosthenes. A systematic procedure for finding the prime numbers was given by the Greek astronomer/mathematician Eratosthenes of Cyrene (3rd century BC). We conceive of the positive integers as an infinite list $1, 2, 3, 4, 5, 6, \ldots$, then proceed to cross out certain numbers on the list, as follows. After crossing out 1, we cross out all numbers following 2 which are divisible by 2.

$$\pm, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,$$

 $16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, \dots$

Then we find the next number after 2 which is still on the list, which is 3. We then cross out all numbers following 3 which are not divisible by 3.

 $\begin{array}{c} 1,2,3,4,5,6,7,8,9,10,11,12-,13,14,15,\\ 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,\ldots\end{array}$

When this process can be continued up to an integer n, the the numbers below n which remain on the list are precisely the primes which are $\leq n$.

 $\begin{array}{c} 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,\\ 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,\ldots\end{array}$

We have shown that the primes ≤ 30 are the ten integers in the list (1) above.

If the procedure were continued infinitely to completion, the complete list of primes would remain.

THEOREM. If p is a prime number and if p divides mn, where $m, n \in \mathbb{Z}$, then p divides m or p divides n.

PROOF. Suppose p does not divide m. Then gcd(m, p) = 1 and we can write 1 = hm + kp for some integers h and k. Multiplying this equation by n gives n = hmn + kpn. Note that p divides both summands on the right, since p divides nm. therefore p divides n. This concludes the proof.

One can easily conclude that if a prime number p divides a product $m_1m_2\cdots m_s$, then p divides at least one of m_1, m_2, \ldots, m_s .

Unique Factorization. We now establish the fact that every positive integer can be factored uniquely as the product of primes.

THEOREM. Let $n \geq 1$ be an integer. Then n can be factored as

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$$

where $r \geq 0, p_1, p_2, \ldots, p_r$ are distinct primes, and $\alpha_1, \alpha_2, \ldots, \alpha_r \geq 1$. Moreover, this factorization is unique, meaning that if $n = q_1^{\beta_1} q_2^{\beta_2} \cdots q_t^{\beta_t}$ is another such factorization, then t = r and after rearranging we have $p_1 = q_1, p_2 = q_2, \ldots, p_r = q_r$.

PROOF. We first establish the existence of a prime factorization for all integers ≥ 1 . If not all positive integers admit a prime factorization, then by the Well-Ordering Principle we can choose a smallest integer n which fails to admit a factorization. We note that nitself could not be prime, otherwise it admits the factorization in the theorem with r = 1and $p_1 = n$. Since n is not prime, it has a positive divisor m which is neither n nor 1. We have $n = m\ell$ and clearly ℓ is neither n nor 1. We must have $1 < m, \ell < n$, so by the minimality of n, both m and ℓ have prime factorizations. But if m and ℓ have prime factorizations, then so does n since $n = m\ell$. This is a contradiction. Hence all integers ≥ 1 have a prime factorization.

It remains to show the uniqueness. If $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r} = q_1^{\beta_1} q_2^{\beta_2} \cdots q_t^{\beta_t}$, then p_1 divides $q_1^{\beta_1} q_2^{\beta_2} \cdots q_t^{\beta_t}$. Since p_1 is prime it must divide one of q_1, q_2, \ldots, q_t . Say p_1 divides q_1 . Since q_1 is also prime we must have $p_1 = q_1$, so we can cancel to get $p_1^{\alpha_1 - 1} p_2^{\alpha_2} \cdots p_r^{\alpha_r} = p_1^{\beta_1 - 1} q_2^{\beta_2} \cdots q_t^{\beta_t}$. We continue cancelling p_1 to deduce that $\alpha_1 = \beta_1$. The remaining equation is $p_2^{\alpha_2} \cdots p_r^{\alpha_r} = q_2^{\beta_2} \cdots q_t^{\beta_t}$. As above we can argue that $p_2 = q_2$ (after rearranging) and that $\alpha_2 = \beta_2$. We continue to get the desired result. **Modular Integers.** The algebraic properties we have established for \mathbb{Z} tell us many things about the rings of modular integers \mathbb{Z}_m , for $m \in \mathbb{Z}^+$. One such fact concerns the matter of when an element $[n] \in \mathbb{Z}_m$ is a generator of the additive group $(\mathbb{Z}_m, +)$.

THEOREM. Given $[n] \in \mathbb{Z}_m$, the following three conditions are equivalent.

- (1) gcd(m,n) = 1.
- (2) [n] is a generator of the additive group $(\mathbb{Z}_m, +)$.
- (3) [n] is a unit in the ring \mathbb{Z}_m (i.e., $[n] \in \mathbb{Z}_m^*$).

PROOF. We first consider conditions (2) and (3). If [n] is a generator of $(\mathbb{Z}_m, +)$, then all elements of \mathbb{Z}_m can be written as $k \cdot [n]$, for some $k \in \mathbb{Z}$. (This is the way we write exponentiation in an additive group.) In particular, we have $[1] = k \cdot [n]$. But, by the definition of multiplication in \mathbb{Z}_m , $k \cdot [n] = [k] \cdot [n]$. Therefore $[k] \cdot [n] = [1]$, which shows [n]is a unit. Conversely, if $[n] \in \mathbb{Z}_m^*$, with inverse $[k] = [n]^{-1}$, then for any $[\ell] \in \mathbb{Z}_m$ we have $[\ell] = [\ell] \cdot [1] = [\ell] \cdot [k] \cdot [n] = [\ell k] \cdot [n] = \ell k \cdot [n]$, which shows that $[\ell]$ is a multiple ("power") of [n]. Hence [n] is a group generator for $(\mathbb{Z}_m, +)$.

The equivalence of (1) with these conditions, the proof of which uses greatest common divisors, is left as an exercise.

Euler Phi Function. For any $m \in \mathbb{Z}^+$, we have defined the *Euler phi function* $\phi(m)$ to be the number of positive integers n with $1 \leq n < m$ which are relatively prime to m. According to the above theorem, $\phi(m)$ also counts the number of elements in \mathbb{Z}_m^* , and the number of group generators for $(\mathbb{Z}_m, +)$. By virtue of the latter, $\phi(m)$ counts the number of generating intervals in the *m*-chromatic scale.

For example $\phi(12) = 4$, since the numbers 1, 5, 7, 11 are precisely the positive integers ≤ 12 which are relatively prime to 12. This reflects the fact that the generating intervals in the 12-chromatic scale are the semitone, the fourth, the fifth, and the major seventh.

Exercises

- (1) Prove that in any (commutative) ring R we have $(-1) \cdot x = -x$ and $0 \cdot x = 0$, for any $x \in R$.
- (2) Give the prime factorizations of these integers, writing the primes in ascending order, as in $2^3 \cdot 3 \cdot 7^2$.

(a) 110 (b) 792 (c) 343 (d)
$$3422$$
 (e) 15×10^{23}

- (3) Call a musical interval a *prime interval* if its interval ratio is a prime integer; call it a *rational interval* if its interval ratio is a rational number. Show that all rational intervals can be written as compositions of prime intervals and their opposites.
- (4) Express each of these ideals in \mathbb{Z} in the form $n\mathbb{Z}$, where n is a positive integer:

(a)
$$12\mathbb{Z} + 15\mathbb{Z}$$
(b) $5\mathbb{Z} + (-20)\mathbb{Z}$ (c) $10\mathbb{Z} + 44\mathbb{Z}$ (d) $13\mathbb{Z} + 35\mathbb{Z}$

- (5) Verify that Q (the rational numbers) is a ring, and, in fact, an integral domain. Show that the only ideals in Q are {0} and Q.
- (6) Prove that there are infinitely many prime numbers. (Hint: If p_1, \ldots, p_n were a complete list of primes, consider a prime factor of $p_1 \cdots p_n + 1$.)
- (7) Prove that if p is prime and $n \in \mathbb{Z}$, then either $p \mid n$ or gcd(p, n) = 1.
- (8) Given $m \in \mathbb{Z}^+$ and $n \in \mathbb{Z}$, prove that [n] is a generator for \mathbb{Z}_m if and only if gcd(m,n) = 1. Interpret this as a statement about generating intervals in the modular *m*-chromatic scale.
- (9) Prove that m iterations of any m-chromatic interval is a multioctave. Interpret this as a statement about an element [k] of \mathbb{Z}_m , and use this statement to prove that the order r of [k] divides m.