CHAPTER X

TIMBRE AND PERIODIC FUNCTIONS

Timbre. The term timbre refers to the quality or distinguishing properties of a musical
tone other than its pitch, i.e., that which enables one to distinguish between a violin, a
trombone, a flute, the vowel o, or the vowel e, even though the tones have the same pitch.
In order to address this phenomenon we need to discuss a few more concepts relating to

functions and graphs.

Piecewise Definitions and Continuity. A function can be defined in piecewise fashion,

for example,

(x) = x, forax <1
g = 1, forax>1,
whose graph is:
y y = g(x)
X
or
x, forax <1
h(z) =
2, forax >1,
whose graph is:
y = h(x)
y
X
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Note the “jump” that appears in the graph of y = h(x) at # = 1. This is an example
of a discontinuity, i.e., the situation at a point @ = a at which the function fails to be
continuous, as per the following definition.

DEFINITION. A function y = f(x) is defined to be continuous at © = a if given any € > 0
there exists 6 > 0 such that |f(z) — f(a)| < € whenever |z — a| < 4.

The function

z, forxz <1
h = ’
(@) {2 for x > 1

Y

has the same graph as h(x) except at & = 1. We could assign f(1) to be some other number,
as in

x, forax <1
ho(x) = ¢ 3, foraz=1
2, forax>1,
which has the graph

y = ha(x)

O
y
X

which again has a discontinuity at * = 1. It is not hard to prove that there is, in fact,
no way to reasign h(1), leaving all other values of h unchanged, in such a way that h is
continuous at x = 1.

A rough interpretation of a discontinuity is a “jump” in the graph. (This is not precise
mathematical terminology, but it serves us pretty well intuitively.) A function which is
continuous on an interval [ is one whose graph has no “jumps” for any = € I.

Periodic Functions. A function f(z) whose domain is all of R is called periodic if there
is a positive number P such that for all + € R, f(z + P) = f(x). This means that the
behavior of the function is completely determined by its behavior on the half-open interval
[0, P) (or on any half-open interval of width P).
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The number P is called the period of the function.
Example. The functions y = sinz and y = cosx are periodic of period 2.

Any function f(x) defined on the interval [0, P) can be extended (uniquely) to a periodic
function g(x) of period P whose domain is all of R. This is done by setting g(x) = f(x—nP)
for € [nP,(n + 1)P) for all integers n.

Effect of Shifting and Stretching on Periodicity. If y = f(¢) is a periodic function
with period P, then the vertical and horizontal shifts y = f(¢) + ¢ and y = f(t — ¢), for
¢ € R are also periodic of period P, as is the vertical stretch y = ¢f(¢). However the
horizontal stretch y = f(t/c) will have period ¢P. So the effect of stretching horizontally
by a factor of ¢ is to divide the the frequency of f(t) by e¢. The proofs of these assertions
will be left as an exercise.

Shifting and Stretching Sine and Cosine. The graph of y = cosz is obtained by
shifting the graph of y = sinx to the left by ¢ = 7. This is because the sine and cosine
funtions have the relationship

Ccos T = sin <:1;—|— g) ,

which is a special case of the “summation” formula
(1) sin(a 4 ) = sina cos § + cosasin 3.

Note that the former equation is obtained from the latter by setting a = z and 8 = 7,
since cos 7 = 0 and sin 7 = 1.

More generally, if we treat (1) as a functional equation by replacing o by the independent
variable « and letting 8 be some fixed number (we might wish to think of 3 as being an
angle measured in radians), we have

(2) sin(x + ) = cos Bsina + sinf cos x .

The numbers cos 3 and sin 3, are the coordinates of the point @ on the unit circle (i.e., the
circle of radius one) centered at the origin, such that the arc length counterclockwise along

the circle from (1,0) to @ is 3.
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Let k,d € R with d > 0. Replacing = by kz and multiplying both sides of the above
equation by d yields the equation of the function g(x) obtained by starting with f(x) =
sin x, shifting to the left by # and horizontally compressing by a factor of k (i.e., stretching
by 1/k). The resulting general transformation of sinx is:

(4) g(x) = dsin(kx + 3) = d(cos fsinkx + sin 3 cos k)

Now let us consider an arbitrary function of the form
(4) h(z) = Asinka 4+ Bcoska,

where A, B € R are any numbers. The point (A, B) has distance vV A% + B? from the origin.
If A and B are not both zero, then letting

A B

VA? + B2’ VA2 4+ B2’

the point (a,b) has distance 1 from the origin, hence lies on the unit circle centered at the
origin. Thus there is an angle 3 for which a = cos 3,b = sin 3, and letting d = / A? + B?

we have

h(z) = d(asinkx + bcos kx)
= d(cos fsinkx + sin 3 cos k)
= dsin(ka + ).

Therefore h(x) is a transformation of sin « having the form (3), where d = VA2 + B?. The
angle (3 is called the phase shift, and the number d > 0 is the amplitude.

Example. Consider the function h(z) = 3sina + 2cosx. We have A = 3, B = 2,
d = 32422 =13, a = %, and b = % The angle [ is an acute angle (since
the point (3,2) lies in the first quadrant, so # can be found on a calculater by taking

arcsin \/% ~ (0.588. Thus we have

. 2
sz +

3
o) = VI3 (5 V13
= \/E(cosﬁsinx + sin (F cos x)
=V 13sin(z + 4),

cos 1)

where 3 = 0.588. The amplitude is v/13 and the phase shift is § ~ 0.588.

Vibrations. We will use the term wvibration to mean an oscillation having a pattern which
repeats every interval of P units of time. The frequency of the vibration, i.e., the number of
repetitions of its pattern per unit of time, is 1/P. For our purposes, time will be measured
in seconds. If we realize a vibration as the up and down motion of a point, the vibration is
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given by a function y = f(¢) where y is the position of the particle at time ¢. The function
will be periodic, the period being the number P above.

Vibrating motion can arise from the strings of a violin, a column of air inside a trumpet,
of the human vocal chords. The vibration is transmitted through the air by contraction
and expansion (This is called a sound wave.) and received by the human ear when the ear
drum is set in motion, vibrating in the same pattern as the vibrating object. The brain
interprets the vibration as a musical tone. If the vibration has period P, measured in
seconds, then the pitch, or frequency, of the tone will be F = 1/P Hz.

Musical Tones and Periodic Functions. Given any periodic function y = f(¢) of period
P, we can contemplate an oscillating object whose position at time ¢ is f(¢) and ask what
is the sound of such a vibration. We would expect the pitch of the tone to be 1/P Hz, but
we wish to investigate what other aspects of y = f(¢) determine the character, or timbre,
of the sound we are hearing.

If a function y = f(t) did in fact represent the position of an object, we would expect the
function f(t) to be continuous. This is based on the supposition that the objects position
does not “jump” instantly. Although this is indeed a reflection of reality, our discussion will
nevertheless associate a vibration with any periodic function y = f(¢) of period P € R*
satisfying the following more general properties:

(1) f has only finitely many discontinuities on [0, P).
(2) f is bounded, i.e., there are numbers b, B € R such that for all t € R, b < f(t) < B.

We interpret the discontinuities as moments at which the vibrating object’s position changes
very quickly, so that the transition from one location to another seems instantaneous. This
exemplifies the fact that mathematics presents a models of physical phenomena, not an
exact representation.

Suppose y = f(t) is a periodic function, with period P, satisfying the above two con-
ditions. As described above, f(t) is associated to a tone of pitch (frequency) F = 1/P.
According to our observations about the effect of shifting on periodicity, the pitch is not
changed if we alter f(¢) by a horizontal shift. Since such a shift can be thought of as a
delay, we would not expect the timbre of the tone, and in fact it does not. The vertical
shift describes a motion with altered amplitude, but the same pitch and the same basic
“personality”. Observation confirms that such a stretch adjusts the loudness, with very
little effect, if any, on the timbre of the tone. The horizontal compression y = f(ct) changes
the period to P/e, hence the pitch to 1/(P/¢) = ¢/P = ¢F. So the effect of compressing
horizontally by a factor of ¢ is to multiply the frequency of f(t) by c.

Effect of Horizontal Stretching on Pitch. The final observation above tells us how to
apply a horizontal compression to f(#) to achieve any desired pitch (frequency) r. Suppose
the period P is given in seconds. We want r = ¢F = which gives ¢ = rP. Thus the
function

c

P
y = f(rpt)

represents a tone having frequency r cycles per second, i.e., r Hz.

Example. Suppose y = sinz gives motion in seconds. Here P = 27, so the frequency is



6 X. TIMBRE AND PERIODIC FUNCTIONS

1/27 Hz (which is way below the threshold of human audibility). Let us adjust the pitch
to give Ay, tuned to r = 440 Hz. Accordingly we write y = sin(rPt), i.e.,

y = sin(880wt).

The tone given by a sine function as above is sometimes called a “pure tone”. It is a
nondescript hum, very similar to the tone produced by a tuning fork.

Fourier Theory. We will describe how all periodic functions having reasonably good
behavior can be written in terms of the functions sint and cost. We first make the following
observations.

The first is that if f(¢) and ¢(¢) are two functions which are periodic of period P, then
so is (f + ¢)(¢t), which is defined as f(¢) + ¢(¢). This is elementary: (f + ¢)(t + P) =
fE+P)+g(t+P) = f(t)+g(t) = (f+g)(t). More generally, one sees that fi(t),... , fu(t)
are periodic of period P then so is 7 _, fx(%).

Secondly, suppose f(t) is periodic of period P, and k € Z*. As we have seen, the
function f(kt) has as its graph the graph of f(¢) compressed horizontally by a compression
factor of k, and it has period P/k. However, it also has period P, since f(k(t + P)) =
f(kt+kP) = f(kt). Obviously the function af(kt), for any a € R, is also periodic of period
P. Therefore a sum Y ,_, ax f(kt), where ai,... ,a, € R, is again periodic of period P. In
particular, a sum Y ,_, aj sin(kt) has period 27.

The following theorem entails two concepts which go well beyond the scope of this course:
the derivitive and the infinite summation.

THEOREM. Suppose f(t) is periodic of period 27 which is bounded and has a bounded
continuous derivative at all but finitely many points in [0,27). Then there is a real number
C' and sequences of real numbers Ay, Ay, As ... and By, B, B3 ... such that, for all t at
which f(t) is continuous we have f(t) represented by the convergent sum

(5) f(#) = C+ > [Agsin(kt) + By cos(kt)] .

Note that there is a condition on f(¢) beyond the conditions (1) and (2) stated earlier
in this chapter. It involves the concept of derivitive, which one learns in calculus. The
condition roughly says that, away from finitely many points, the graph of f(t) is smooth
and that it doesn’t slope up or down too much.

The infinite summation, called the Fourier series for f, is based on the notions of limit
and convergence, also from calculus. With the proper definitions and development, it
becomes possible for an infinite sum to have a limit, i.e., to “add up” (converge) to a
number. An example is the sum Z;ﬁ“;o 2% =1+ % + i + % + .-, which has 2 as its limit.

This moral of the story presented by the above theorem is that well-behaved periodic
functions can be approximated by a series of multiples of the sine and cosine functions
functions. There is more to the story, which, again, can be understood by anyone familiar
with calculus: The coefficients in formula (1) are uniquely determined by the integrals
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Czl/of

A = /0 sin(kt) f(t) dt

™
1
i

below.

B = /27T cos(kt) f(t) dt

If g(t) is a function of arbitrary period P, then g(%t) has period 27, hence we have

g (%t) =C + ki:l [Ay sin(kt) + By cos(kt)]

by the theorem. Recovering ¢(t) by replacing ¢ by M in the above, we get the Fourier

series for an arbitrary function of period P, satisfying the other hypotheses of the theorem:

2kt 2kt
(6) C’—I—Z{Aksm——l—Bkcos Iz

Harmonics and Overtones. Associating the function ¢(¢) having period P as above
with a musical tome of pitch F' = 1/P, let us note that

g(t)=C+ Z [Ag sin 27 Fkt + By, cos 27 Fkt|
k=1

each summand Ay, sin 2r Fkt+ By, cos 2r Fkt in (6) has the form (4), and therefore represents
a transformation of sin 27 F'kt which can be written in the form (3) as

dy, (cos By sin 2n Fkt + sin By, cos 2n Fkt) = dy sin(2n Fkt 4 5y,

A B
dr = /A7 + B2, cosﬁk:—k, sinﬁk:—k
dy dy

(provided Ay and By, are not both zero). Hence we have

where

g(t)=C+ Z dy sin(2r Fkt + B)
k=1

The k*® summand dy sin(2x Fkt + 3;) is obtained from sin ¢ via shifting by 8 (the kB
phase shift), compressing by a factor of k and stretching vertically by a factor of dj, (the k"
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amplitude). This function has the same basic sound (pitch and timbre) as sin(27rkFt), with
a volume adjustment resulting from the amplitude d. It is called the k" harmonic of the
function g(t). For k > 1 it is also called the (k — 1)™ overtone of g(¢). When isolated, this
harmonic gives the pitch kF', so the sequnce of pitches associated to the harmonics gives
the sequence of integer ratios with the fundamental frequncy F. These are the intervals
discussed in Chapter IX; recall that is we take Fy as the fundamental (first harmonic), the
first 13 harmonics are approximated on the keyboard as follows:

| ,Q'#‘zbi

o)
i/ oY )
7 @
[ fan ®
NV ®
oJ
o & 5 6 7 8 9 10 11 12 13
&) e
7
[ J
1 2 3
It is the relative sizes of the (non-negative) amplitudes dy,ds,ds,... that determines

the timbre, or character of a sustained tone, allowing us to distinguish between different
musical voices and instruments. We can think of dj, as the “weight” or “degree of presence”
of the k'™ harmonic in the sound represented by ¢(¢). The timbre of the tone seems to
depend on this sequence alone, independent of the sequence of phase shifts Gy, 82, 33, ...,
which certainly affect the shape of the graph of ¢(¢), but not the sound.

Exercises

(1) Prove that if y = f(¢) has period P, then so does y = f(t) + ¢, y = f(t — ¢), and
y = cf(t), for any ¢ € R. Prove that f(¢/c¢) (¢ # 0) has period cP.

(2) Suppose the function y = f(t) is the periodic function of period P corresponding
to a musical tone, and suppose the graph of y = f(¢) is:

C

/\ C
/ P

For each of the functions below, sketch its graph and explain how its associated
tone compares that of f(t).

(a) y = 2 f(1) (b) y = f(2t)
(c)y=f(t)+e¢ (d) y = f(t+¢)
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(3) Find the value « for which the pitch associated to the periodic function y = sin(at),
where t is time in seconds, is:

(a) middle C (b) AE (c) Dg

(4) Find the period, frequency, amplitude, and phase shift for these functions, and
express each in the form Asin(at) + B cos(at):

(a) f(t) = 5sin(307t + )
(b) g(t) = \/isin(SOOt +7)
(c) A(t)

_g sin(2000¢ 4 aresin(0.7))

(5) Find the period, frequency, amplitude, and phase shift for these functions, and
express each in the form dsin(at + 3):

(a) f(t) = 4sin(300t) 4 5 cos(300t)
(b) g(t) = 2sin(4507t) — 2 cos(4507t)
(¢) h(t) = —sin(15007t) 4 3 cos(15007t)

(6) Suppose musical tone with pitch By has harmonics 1, 3, 5 only, with amplitudes 1,
%, %, respectively, and phase shifts 0, 7, — 7, respectively. Suppose also that the
vertical shift C' is 0. Write its Fourier series in the form > Ay sin(kt) + By, cos(kt).



