
CHAPTER XI

THE RATIONAL NUMBERS AS INTERVALS

The rational numbers Q are a subset of R containing Z, and we also have the contain-
ments Z+ ⊂ Q+ ⊂ R+. We have noted that elements of R+ are in 1-1 correspondence with
the set of intervals, and that this gives a group isomorphism from the group of intervals
with (R+, · ). In the last chapter we examined those intervals which correspond to posi-
tive integers, i.e., lie in the monoid (Z+, · ). Now we will consider those intervals which
correspond to elements of the subgroup (Q+, · ).

It has long been acknowledged that two pitches sounded simultaneously create an effect
that we are prone to call “harmonious” or “consonant” when the ratio of their frequencies
can be expressed as a ratio (n : m) where m and n are small positive integers. The smaller
the integers, the more consonant the interval. We refer to such intervals as just intervals.

Rational Intervals. To say that an interval I is given by a ratio (n : m) of positive
integers is to say that it corresponds to a positive rational number.

Definition. An interval I will be called rational if its corresponding ratio lies in Q+.
Otherwise we say I is an irrational interval.

In ancient times such intervals could be accurately created with a vibrating string of
length L using techiques of plane geometry. Any interval can be divided into n equal
subintervals using compass and rule, as shown below for n = 5 and the interval [a, b].

a b
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2 XI. THE RATIONAL NUMBERS AS INTERVALS

If n
m

≥ 1, its rational interval is obtained with the strings fundamental frequency by fretting
the string at distance m

n ·L (≤ L) from one end.

The intervals of equal temperament, however, were not so accessible before the develop-
ment of relatively modern techniques. For example the semitone’s ratio of 21/12 would
necessitate, as we have seen, finding the distance 2−1/12L - a technique not accessible to
ancient mathematicians.

Unique Factorization of Positive Rational Numbers. The following theorem about
factorization in Q+ follows from the analogous theorem about Z+ from Chapter VII.

Theorem. Let x ∈ Q+. Then x can be factored as

x = pα1
1 pα2

2 · · · pαr
r

where r ≥ 0, p1, p2 . . . , pr are distinct primes, and α1, α2, . . . , αr ∈ Z, �= 0. Moreover, this
factorization is unique, meaning that if x = qβ1

1 qβ2
2 · · · qβt

t is another such factorization,
then t = r and after rearranging we have p1 = q1, p2 = q2, . . . , pr = qr.

Note that this statement differs from the analogous theorem about Z in that it allows
the exponents α1, . . . , αr to be non-zero integers, not just positive ones. The proof of this
theorem will be an exercise.

Given x = pα1
1 · · · pαr

r as in the theorem, we may, without loss of generality, assume that
α1, . . . , αi are positive and αi+1, . . . , αr are negative. Set s = r − i, and let βj = −αi+j

and qj = pi+j for j = 1, . . . , s. We have

x =
pα1
1 pα2

2 · · · pαi
i

qβ1
1 qβ2

2 · · · qβs
s

with p1, . . . , pi, q1, . . . , qs being distinct primes and α1, . . . , αi, β1, . . . , βs positive integers.
We can easily write an element of Q in this form provided we can find the prime factorization
of its numerator and denominator. The fraction x = 1,222,452

11,180,400 seems intractible, but a little
work with small primes gives the factorizations 1,222,452 = 11 · 73 · 34 · 22, 11,180,400 =
113 · 7 · 52 · 3 · 24. Thus, by cancellation, we have

x =
72 · 33

112 · 52 · 22
.

We will seek to understand rational intervals by the configuration of prime numbers
p1, . . . , pi, q1, . . . , qs which appear in their factorization, as above. We will first focus
on some just intervals which are less than an octave, comparing them to their keyboard
approximations.

We begin considering some cases where the denominator is a power of 2, i.e. rational
intervals having ratio n/2β , where n is odd. In this case, the interval is the composition of
the integral interval n with −β octaves. For example:

Just Fifth. Consider the interval given by 3
2 ∈ Q+. This is the integral interval 3 lowered

by 1 octave. We noted in Chapter 8 that the interval 3 is ≈ 1.96 cents sharp of the
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keyboard’s octave plus a fifth. Hence 3
2

is sharp of a fifth by this same amount. (Or we can
calculate directly: 1200 log2

3
2 ≈ 701.96. The keyboards fifth is 700 cents.) The rational

interval given by 3
2 is called the just fifth.

�
approximation of 3 (≈ 2 cents flat)

�
� �

approximation of 3
2 (≈ 2 cents flat)

��

Just Major Third. The interval 5
4 is the integral interval 5 minus two octaves, which is

about 14 cents less than the keyboard’s two octaves plus a major third. Hence 5
4 is the

same amount flat of the major third, and is called the just major third.

�
approximation of 5 (≈ 14 cents sharp)

�
�

�
approximation of 5

4 (≈ 14 cents sharp)

��

Greater Whole Tone (Pytharean Whole Tone). Since 3 is approximately one octave
plus a fifth, the interval 9

8 is twice that, lowered by three octaves: 9
8 = (3

2 )2 · 1
2 . This gives

something close to the keyboard’s step. The calculation 1200 log2
9
8 ≈ 203.91 shows that

this just interval is about 4 cents sharp of a step. We refrain from calling this interval the
“just step” or “just whole tone” because we will soon encounter another just interval that
is well approximated by the keyboard’s one step. Instead, we will refer to this interval as
the greater whole tone. It is also called the Pythagorean whole tone, for a reason that will
be given shortly.

Now we will investigate some intervals having ratio n/3β, where n is not divisible by 3.

Just Fourth. The most basic of these is the interval given by the ratio 4
3 . Note that this

interval, call it I, is complimentary to the just fifth, since 4
3
· 3

2
= 2. This says I is given

additively as one octave minus a just fifth, which means it is about 2 cents flat of a fourth.
We call I the just fourth.

�
approximation of 4

3 (≈ 2 cents sharp)

��

Lesser Whole Tone. The ratio 10
9 gives another interval approximated by the step. We

have 1200 log2
10
9

≈ 182.40, showing this interval to be about 18 cents flat of the keyboard’s
step. This interval will be called the lesser just step. Observe that the keyboard’s step lies
between the lesser and greater just steps, closer to the latter, as indicated on the scale of
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cents below:

0 100 200 300

182.40
203.91

comma of Didymus

The interval between the lesser and greater whole tones has a ratio of 9
8 ÷ 10

9 = 81
80 which

is measured in cents by 1200 log2
81
80

≈ 21.50. This is called the comma of Didymus.

Just Major Sixth. The fraction 5
3 gives us an interval ≈ 884.36 measured in cents. Since

it is only about 16 cents flat of the major sixth, we call it the just major sixth.

�
approximation of 5

3 (≈ 16 cents sharp)

��

There are at least two common just intervals whose denominators involve the prime
number 5.

Just Minor Third. By virtue of the equality 3
2 ÷ 5

4 = 6
5 , the ratio 6

5 gives the interval I
“between” the just third and the just fifth, i.e., I is (additively) a just fifth minus a just
third. The cents measurement of 6

5 is 1200 log2
6
5 ≈ 315.64, about 16 cents sharp of the

keyboard’s minor third. We call it the just minor third.

�
approximation of 6

5 (≈ 16 cents flat)

���

Just Semitone. We consider the fraction 16
15

= 23

3·5 . By virtue of the fact that it has larger
numerator and denominator than any of those previously discussed, it gives an interval
that might be considered “less just”, and which one might expect to be less consonant. It
is also the first ratio we have listed whose denominator involves more than one prime. We
have 1200 log2

16
15

≈ 111.73, placing this interval about 12 cents sharp of one semitone. It
is called the just semitone.

�
approximation of 16

15
(≈ 12 cents flat)

�� �
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Septimal Intervals. All the just intervals above involve only the primes 2,3, and 5.
(According to a definition that will be given in the next chapter, these are 5-limit intervals.)
The prime 7 introduces us to still more just intervals, and these intervals are not so well
approximated by 12-tone equal temperament. Three examples are the septimal minor
seventh, with ratio 7

4 , its compliment the septimal whole tone, with ratio 8
7 , and the septimal

minor third, with ratio 7
6 . These intervals are sufficiently far away from keyboard notes as

to impart a texture that is sometimes called “blue”, or “soulful”, to music which employs
them.

�
approximation of 7

4 (≈ 31 cents sharp)

��� �
approximation of 8

7 (≈ 31 cents flat)

� �

�
approximation of 7

6 (≈ 33 cents sharp)

���

Higher Primes. There is, in theory, an infinite list of higher primes to consider (The
infinitude of the set of primes will appear as an exercise.), but in practice there is a limit to
the audible range of an interval. The human ear is able to listen to ratios up to about 1000,
so there are indeed many audible possibilities. Although the primes > 7 may be considered
remote, they can contribute intervals which have legitimate uses in music. These intervals,
unnamed for the most part, will be referred to as “exotic”. We often describe them by
using the prefixes sub- and super- before the names of keyboard intervals.

An example is the exotic tritone with ratio 11
8 . The calculation 1200 log2

11
8 ≈ 551.32

shows this interval to be almost halfway between the keyboard’s fourth and tritone. Another
is the exotic super-minor sixth given by 13

8 . It is about 41 cents sharp of the keyboard’s
minor sixth, according to 1200 log2

13
8 ≈ 840.53. These intervals are quite strange to the

ear.
By contrast, the next two primes 17 and 19 give near-keyboard intervals as follows:

A super-semitone is given by 17
16 , which is only about 5 cents sharp of the keyboard’s

semitone, and a sub-minor third is given by 19
16 , only 2 cents flat of the keyboard’s minor

third. Note that these rational intervals are better approximated by the keyboard than the
just semitone and the just minor third.

The Comma of Pythagoras. The Greek mathematician Pythagoras (c. 540-510 B.C.)
believed that the perfection of the (3 : 2) fifth (what we now call the just fifth) symbolized
the perfection of the universe. He discovered that the iteration of twelve just fifths is almost
the same as the iteration of seven octaves. This is demonstrated by:

(
3
2

)12

=
312

212
=

531441
4096

≈ 129.75
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27 = 128

The interval between these is

(
3
2

)12

27
=

312

219
=

531441
524228

≈ 1.01364 ,

which is measured in cents by

1200 log2

(
312

219

)
≈ 23.46 .

It is called the comma of Pythagoras.

This comma is the discrepancy we would get if we were to try to tune up the 12-note
scale with just fifths. We know that the tempered fifth, iterated twelve times, gives us seven
octaves. Thus if we let the circle represent all intervals (additively) modulo 7 octaves, then
a fifth will be 1/12th of the circle. Placing C at the top, we have:

C
G

D

A

E

B
G�D�

A�

E�

B�

F

12-octave clock with tempered fifths

If we plot the 7-octave circle of fifths using just fifths, the twelve intervals add up to
slightly more than one rotation, wrapping around the clock and ending up clockwise of
the 12 o’clock position by precisely the comma of Pythagoras, as shown below. Thus the
tuning of C would be problematic.
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C
G

D

A

E

B
G�

D�

A�

E�

B�

F
C

7-octave clock with just fifths

This small but nonnegligible interval, not quite a quarter of a semitone, was greatly dis-
turbing to Pythagoras.

Irrationality of Equally-Tempered Intervals. We will now show that all intervals
between notes of the equally tempered scale, excepting iterations of the octave, are irra-
tional, that is, they correspond to ratios which lie outside of Q. In fact, this holds even in
non-standard equally tempered scales.

Theorem. Let I be an the interval between two notes in the chromatic n-scale. If I is
not the iteration of octaves (i.e., the ratio corresponding to I is not a power of 2), then I
is an irrational interval.

Proof. Suppose I has ratio x = a
b , with a, b ∈ Z+. By cancelling, we may assume

that gcd(a, b) = 1. The modular chromatic interval given by I, which lies in Z12, has finite
order, which says that n iterations of I gives k octaves, for some positive integer n and
some integer k. This says that xn =

(
a
b

)n = 2k. Writing a = pα1
1 · · · pαr

r , b = qβ1
1 · · · qβt

t ,
with α1, . . . , αr, β1, . . . , βs being positive integers, as in the Unique Factorization Theorem
for Z, we have {{p1, . . . , pr} ∩ {q1, . . . , qs} = ∅ (since gcd(a, b) = 1) and

xn =
(a

b

)n

=
pnα1
1 · · · pnαr

r

qnβ1
1 · · · qnβt

t

= 2k .

The uniqueness of this expresssion says that 2 is the only prime in the set of primes
{p1, . . . , pr, q1, . . . , qs}. Therefore either r = 0 and b = 2β, or s = 0 and a = 2α. Hence x
has the form 2α or 1/2β , which says I is an iteration of octaves. �

This tells us that none of the intervals in any equally-tempered scale, save multi-octaves,
are just, and suggests that none should be considered perfectly consonant. However, we
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have seen that the just intervals involving small powers of the primes 2,3, and 5 have
fairly close approximations in the 12-chromatic scale. For example, we have seen that
the tempered fifth closely approximates 3

2 , and the tempered major third gives a fair
approximation of 5

4 . This likely explains why the 12-chromatic scale gained acceptance. In
the next chapter we will present some historical alternate methods of tuning the scale in
non-equal temperament designed to render some just intervals with precision, and discuss
the advantages and limitations of such scales.

Exercises

(1) For each of these rational intervals, find the 12-chromatic interval which best ap-
proximates it, and calculate the error. Express the approximating interval by name
(e.g., “minor third”).

(a) 5
3 (b) 11

10 (c) 19
16 (d) 9

7 (e) 5
5

(2) Give the prime factorizations of these rational numbers as p
α1
1 p

α2
2 ···pαr

r

q
β1
1 q

β2
2 ···qβs

s

with

{p1, . . . , pr} ∩ {q1, . . . , qs} = ∅ ,

writing the primes of the numerator and denominator in ascending order, as in
23·5·72

3·112·133 .

(a) 150
65

(b) 1000
287

(c) 750
980

(d) 512
162

(e) 69
289

(3) Suppose x ∈ Q+ has the factorization x = p
α1
1 p

α2
2 ···pαr

r

q
β1
1 q

β2
2 ···qβs

s

as in the previous exercise.

What criteria about this factorization says x is an integer?

(4) Give a direct proof that
√

2 is irrational. Interpret this as a statement about a
musical interval.

(5) Let p be a fixed prime. Verify that set of rational numbers x whose prime fac-
torization has the form x = pα1

1 pα2
2 · · · pαr

r with p1, . . . , pr ≤ p forms a subgroup
of (Q+, ·). (Intonation which utilizes only interval ratios in this subgroup is called
p-limit tuning.)

(6) Show by multiplication and division in Q+ that:
(a) A just major third plus a just minor third is a just fifth.
(b) A just fifth plus a septimal minor third is a just minor seventh.
(c) A greater just whole tone plus a lesser just whole tone is a just major third.
(d) The comma of Didymus plus one octave is two just fifths minus a lesser whole

tone.
(e) A just major third minus a just fourth is a just semitone downward.

(7) Show by comparing rational numbers that:
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(a) Three just major thirds is not an octave.
(b) Four just minor thirds is not an octave.
(c) A just fifth plus two just semitones is not a just major sixth.
(d) Two just fourths is not a just minor seventh.
(e) The difference between a just major third and a just minor third is not a just

semitone.
In each case above, calculate the difference as a fractional interval ratio, with prime
factorization, and calculate the difference in cents.

(8) Prove that the (additive) measurement in octaves of a rational interval cannot be
a rational number unless the interval is a multioctave. (Hint: If interval ratio x is
measured by a

b octaves, we have x = 2
a
b . Use unique factorization in Q+.) Deduce

that the measurement of such an interval in semitones or cents is not rational.


