1. First notice that
\[\Delta = \left(\frac{\partial}{\partial x} \right)^2 + \left(\frac{\partial}{\partial y} \right)^2 = \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) = 4 \frac{\partial}{\partial \bar{z}} \frac{\partial}{\partial z}. \]
Since
\[\Delta(zh) = 4 \frac{\partial}{\partial \bar{z}} \frac{\partial(zh)}{\partial \bar{z}} = 4 \frac{\partial}{\partial \bar{z}} \left(h + \frac{\partial h}{\partial z} \right) = 4 \frac{\partial h}{\partial \bar{z}} + \Delta h, \]
it follows that \(\partial h/\partial \bar{z} = 0 \), i.e. \(h \) is holomorphic. \(\square \)

2. Every point of \(\mathbb{C} \setminus \{0\} \) has a neighborhood where \(\log z \) has a single-valued branch. Therefore, \(\log |z| \) is harmonic in such neighborhood, being the real part of a holomorphic function. Furthermore, \(\log z \) is holomorphic in \(\mathbb{C} \setminus ((-\infty, 0]) \), which means that its imaginary part \(\text{Im} \log z = \arg z \) is a conjugate harmonic function to \(\log |z| \).

Suppose that \(\log |z| \) has a conjugate harmonic function on \(\mathbb{C} \setminus \{0\} \), say \(v(z) \). Since the conjugate harmonic function is unique up to a constant, there is \(C \in \mathbb{R} \) such that \(v(z) = \arg z + C \) for all \(z \in \mathbb{C} \setminus ((-\infty, 0]) \). But then
\[\lim_{y \downarrow 0} v(-1 \pm iy) = C + \lim_{y \downarrow 0} \arg(-1 \pm iy) = C \pm \pi, \]
which means that \(v \) is discontinuous at \(-1\), a contradiction. \(\square \)

3. Let \(f_1(z) = iBA^{-1}z \) and \(f_2(z) = e^z \). Obviously \(f_1 \) maps the strip \(D = \{ z : |\text{Re} \, z| < A \} \) bijectively onto a horizontal strip \(D_1 = \{ z : |\text{Im} \, z| < B \} \). Using the formula \(e^{x+iy} = e^x e^{iy} \), we see that \(f_2 \) maps \(D_1 \) onto the set \(D_2 = \{ z : |\arg z| < B \} \). The mapping \(f_2 \) is also bijective, see Problem 2 of Homework 2. Thus \(z \mapsto \exp(iBA^{-1}z) \) is a bijective holomorphic (hence conformal) mapping from \(D \) onto \(D_2 \). \(\square \)

4. A line that passes through the origin can be parametrized as follows: \(L = \{ te^{i\theta} : t \in \mathbb{R} \} \). Then the image of \(L \) under the map \(w = 1/z \) is \(\{ t^{-1} e^{-i\theta} : t \in \mathbb{R} \} \), which is another line passing through the origin.

Now suppose that \(L \) does not pass through 0. Let \(\zeta \) be the point symmetric to 0 with respect to \(L \). Then \(L = \{ z : |z - \zeta| = |z| \} \) is the set of points that are equidistant from 0 and \(\zeta \). Therefore, the image of \(L \) under inversion is
\[\{ w : |1/w - \zeta| = |1/w| \} = \{ w : |w - 1/\zeta| = 1/|\zeta| \}, \]
which is a circle centered at \(1/\zeta \). \(\square \)

5. (a) Suppose that \(f(z) = (az + b)/(cz + d) \) is not the identity map. Then its finite fixed points are precisely the roots of the non-zero polynomial \(q(z) = az + b - z(cz + d) \). If \(c \neq 0 \), then \(q \) has 1 or 2 roots, and those are the only fixed points of \(f \), because \(f(\infty) = a/c \neq \infty \). Suppose that \(c = 0 \). Then \(q \) has one root if \(a - d \neq 0 \), and no roots otherwise. Since \(f(\infty) = \infty \), the map \(f \) has either 1 or 2 fixed points.
(b) Let \(z_1, z_2 \) be the (only) fixed points of \(f \). It is easy to construct a fractional linear transformation \(g \) such that \(g(0) = z_1 \) and \(g(\infty) = z_2 \). Now the composition \(h = g^{-1} \circ f \circ g \) fixes 0 and \(\infty \), which implies \(h(z) = az \) for all \(z \). Here \(a \neq 0, 1 \) because \(f \) is invertible and is not the identity map.

Suppose that two maps \(f_1(z) = a_1 z \) and \(f_2(z) = a_2 z \) are conjugate by a fractional linear transformation \(g \), that is, \(g^{-1} \circ f_1 \circ g = f_2 \). Then \(f_1 \circ g = g \circ f_2 \), which means that

\[
(1) \quad a_1 g(z) = g(a_2 z), \quad z \in \mathbb{C}.
\]

Suppose that \(g(0) \neq \infty \). Since both sides of (1) must have the same derivative at \(z = 0 \), it follows that \(a_1 g'(0) = a_2 g'(0) \). But \(g'(0) \neq 0 \) because \(g \) is a conformal map. Thus \(a_1 = a_2 \). If \(g(0) = \infty \), then the map \(g_1(z) = 1/g(z) \) is holomorphic in a neighborhood of 0, and \(a_1^{-1}g_1(z) = g_1(a_2 z) \). Equating derivatives at \(z = 0 \) as above, we obtain \(a_1^{-1} = a_2 \).

Conversely, if \(a_1^{-1} = a_2 \), then \(f_1 \) and \(f_2 \) are conjugate by \(z \mapsto 1/z \).

In conclusion, two distinct maps \(z \mapsto a_1 z \) and \(z \mapsto a_2 z \) are conjugate if and only if \(a_1 a_2 = 1 \).

(c) Let \(z_1 \) be the only fixed point of \(f \). There is a fractional linear transformation \(g \) such that \(g(\infty) = z_1 \). The composition \(h = g^{-1} \circ f \circ g \) fixes \(\infty \) and no other point. This is only possible if \(h(z) = z + b \), \(b \neq 0 \) (see (a) above). Let \(p(z) = bz \); then \(p^{-1} \circ h \circ p(z) = b^{-1}(bz + b) = z + 1 \), as required.

In a summary, every fractional linear transformations is conjugate to exactly one of the following maps:

(i) the identity;
(ii) \(z \mapsto az \), where either \(|a| > 1 \) or \(a = e^{i\theta} \) with \(0 < \theta \leq \pi \).
(iii) \(z \mapsto z + 1 \).