Homework 4, Math 422, Spring 2004

Due Wednesday, March 3.

1. A finite Blaschke Product is a rational function of the form

\[B(z) = e^{i\varphi} \left(\frac{z - a_1}{1 - \overline{a_1}z} \right) \cdots \left(\frac{z - a_n}{1 - \overline{a_n}z} \right), \]

where \(a_1, \ldots, a_n \in \mathbb{D} \) and \(0 \leq \varphi < 2\pi \). Show that if \(f(z) \) is continuous for \(|z| \leq 1 \) and holomorphic for \(|z| < 1 \), and if \(|f(z)| = 1 \) for \(|z| = 1 \), then \(f(z) \) is a finite Blaschke product.

2. Show that if \(f(z) \) is meromorphic for \(|z| < 1 \), and \(|f(z)| \to 1 \) as \(|z| \to 1 \), then \(f(z) \) is a rational function, and is, more specifically, the quotient of two finite Blaschke products.

3. Suppose the curve \(\gamma \) passing through 0 is the graph of a function \(y = h(x) \) that can be expressed as a convergent power series \(h(x) = \sum_{k=1}^{\infty} a_k x^k \), \(-r < x < r\), where the \(a_k \)'s are real. (a) Show that \(z = \zeta + ih(\zeta) \) can be solved for \(\zeta \) as a holomorphic function of \(z \) for \(|z| < \epsilon \). (b) Show that \(\gamma \) is an analytic arc near 0. (c) Show that the reflection through \(\gamma \) is given by \(z^* = \overline{h(\overline{z})} - \overline{\zeta} \).

4. Determine the reflection \(z \mapsto z^* \) across the parabola \(y = x^2 \). Expand \(z^* \) in a power series, in powers of \(\overline{z} \). Determine the radius of convergence of the series. Hint: See #4 of Homework 7 from last semester.

5. Find a conformal map \(w(z) \) of the slit plane \(\mathbb{C} - (-\infty, 0] \) onto the open unit disk satisfying \(w(0) = i \), \(w(-1 + 0i) = +1 \), \(w(-1 - 0i) = -1 \). What are the images of circles centers at 0 under the map? Sketch them.